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Abstract : In this paper we describe a study about predictability of brain reactions during educational 
procedures. More specifically we research neurophysiological indexes, that are able to describe the scalable 
difficulty of educational procedures. Using electroencephalographic (EEG) signals we extracted a big amount 
of feature vectors based on entropies and using proper algorithms and data mining methods we found out good 
practices in order to predict and describe more efficiently the differentiations of brain reaction in various math 
problems with scalable difficulty. We use this indexes in order to identify and to predict difficulties in 
educational procedures. Entropies are indexes that reflects fluctuations in brain activity which is imprinted 
in brain map. Furthermore we use classification methods in order to find a proper mathematical model to 
predict learning difficulties. 
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Introduction 
 
The human brain recognizes and processes 
educational information from his early childhood. 
A physiological baby is capable of distinguishing 
whether an object is bigger than another 
(comparison), while understanding that five objects 
are more than two (quantity). The comparison are 
fundamentals on algorithmic cognitions and they 
are perceived from human brain before having 
begun to speak and execute other basic operations. 
 
In the present work we study neurophysiological 
models capable of describing the different 
operation of human brain in relation to the 
difficulty of educational-identification problems. 
Similar studies have also become in other discipline 
fields of neurophysiology [2],[3],[4],[9],[10] that 
have contributed in better comprehension of 
cortical activity and have opened the horizons for 
new studies. Within this work we studied the way 
of reaction of human brain in various learning 
stimuli with scalable difficulty.   
 
In [28] the authors refer to the differentiation of the 
signals during the image recognition. The main 

topic of this research is not only the visualization of 
the brain potentials, but also does the research refer 
to the differentiation of the potentials among 
the signals produced when the subject tries to 
distinguish an easy picture from a hard one. This 
differentiation noticed at the brain activity is 
visually made from the grand average figure 1, 
which is at the second page of the research at [8]. 
The authors don’t use neither a sorting method nor 
a certain mathematical model. They only do a 
visual exploration. There is also an effort made in 
order to clarify the differentiation of the data from 
the table 1, page 4 at [28], in which the reaction 
times are presented. 
At [29] the authors evaluate the possibility of the 
cerebral electrical activity’s power spectrum to 
show differences between people who have normal 
understanding abilities and others who have 
learning difficulties. Another goal of this specific 
research is to correlate this electrical activity with 
ingenuity, the school activity and the 
neurophysiological output from several tests. The 
methods that are used are the classical signal 
analysis methods like cross validation or the cross 
correlation of 10 variables and the discriminant 
functions. The sorting was done with several 
independent classifiers like replication LD. 
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There was also correlation made among behavioral 
variables like Wide Range Achievement. 
 
 
Method of study, tools and 
neurophysiological metrics-indexes 
 
In this study participated physiologic individuals 
(the subjects), which do not suffer from any 
learning stress. Subjects, were tested in educational 
procedures (identification tasks) of increasing 
difficulty (easy figures recognition EFR, hard 
figures recognition HFR, there is an animal into the 
figure AIF, there is not animal into the figure 
NAIF), while simultaneously was recorded their 
cerebral activity using Electroencephalography 
method. The data for this study are distributed from 
researchers under GNU/GPL permission in the 
follow URL : 
http://sccn.ucsd.edu/~arno/fam2data/publicly_avail
able_EEG_data.html 
   
Then we processed the cerebral signals, with final 
aim to export neurophysiological indexes that are 
able to describe the difficulty that the human brain 
faces in his effort to resolve identification 
procedures. Having in mind the nonlinear and 
dynamic nature of operation of brain we studied six 
different entropies; Shannon, Sample, Threshold, 
Sure, Log Energy and Norm Entropies. 
 
Then, using knowledge data mining algorithms, we 
studied the possibility of various classifiers 
predictability of subjects’ cerebral reaction in their 
effort to resolve the educational procedures 
(identification tasks). In order to evaluate the 
vectors of indicators (feature vectors) and for 
knowledge data mining we used the environment of 
WEKA [41].   
 
After having exported the desirable feature vectors, 
we evaluated them and exported information about 
the better prediction model of difficulty of learning 
operations. We did this procedure using classifiers. 
A classifier is an algorithm that receives data 
separated into classes. It is trained to understand, 
via a dataset, the relation among some features and 
classes that are assigned to the learning operations, 
and then, taking some values, it is able to predict in 
which class can it (the data) be categorized. In fact 
(in our case) the models constructed from various 
classifiers, can predict the difficulty that the subject 
faces, in his trial to solve the learning operation. 
 

The Indexes that we studied in the present work - in 
order to draw out conclusions via their feature 
vectors, for their probably correlation with the 
difficulty of educational-identification problem - 
are related with entropies of signals.  
 
For the aims of present research were used thirteen 
classifiers (table 1), which are completely described 
in the [7].   
 

Table 1. Classification Algorithms. 
  

Classification Aglorithms 
BayesNet 

AdaBoostM1 
BFTree 

ClassificationViaRegression 
DecisionTable 
meta.Decorate 

KStar 
Logistic 

NaiveBayes  
NaiveBayesSimple 

NBTree 
PART 
SMO 

 
 
Results  
 
We received a plethora of feature vectors by 
executing three different  experiments. We used the 
data from 14 subjects, the 4 tasks and the 6 
attributes (entropies) in order to record  the  
cerebral activity. Every feature vector has 
dimension 1x31, where 31 was the EEG electrodes 
(channels). We can see 4 feature vectors for 
Threshold Entropy. Every color is a different math 
operation. In horizontal axe there are the 31 
electrodes, while in vertical axe is Threshold 
Entropy.    
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Fig. 1. Threshold Entropy for 31 channels – subject 
No 10 – green (EFR) – Blue (HFR) – Red (AIF) – 

Blac (NAIF) 
 
We executed three different experiments: 
 
1st experiment: We used all the available data 
(from 6 entropies, the 14 subjects and the 4 tasks) 
without averages. By this way, for classification we 
got 14 feature vectors (1x31) for each class (4 tasks 
– math operations) and each attribute (entropy). 
Summarizing, we totally classified 1083 instances 
for each math operation.   
 
2nd experiment: At the second experiment we took 
into account the data from the first experiment with 
the following difference: We took the mean from 
the 14 subjects. Thus for classification we got 1 
feature vector (1x31) for each class (4 tasks – math 
operations) and each attribute (entropy). 
Summarizing, we totally classified 31 instances for 
each learning operation.   
 
3rd experiment: At the third experiment we took 
into account the data from the first experiment with 
the following difference: We took the mean from 
the 31 channel data. Thus for classification we got 
14 feature vectors (1x1) for each class (4 tasks – 
math operations) and each attribute (entropy). 
Summarizing, we totally classified 14 instances for 
each learning operation.     
 
To understand better the total results we can take a 
look at the confusion matrix of one classification. 
For example the Naïve Bayes classifier Algorithm 
confusion matrix for a 2nd type experiment ( Fig 2) 
 

 
 

Fig. 2. the Naïve Bayes classifier Algorithm 
confusion matrix 

 
 
In the confusion matrix of image 1 we can see the 
following results: for the first math operation 
(a=EFR) the classification algorithm predicted 
correctly 22 instances (of 31).  Furthermore, it 
classified incorrectly 6 instances in the second 

(b=HFR) math operation, 2 in the third (c=AIF) 
and 1 in the fourth (d=NAIF) and so on.  
 
The corresponding results of each experiment with 
the prediction of difficulty of educational operation 
and the equitable classification of corresponding 
action for each classifier that we used, appear in the 
three figures below (Fig. 3, 4 and 5):  
 

 
 

 
Fig. 3. Classifier Predictability for the 1st 

experiment 
 

 
 

Fig. 4. Classifier Predictability for the 2nd 
experiment 

 

 
 

Fig. 5. Classifier Predictability for the 3rd 
experiment 

 
 
Discussion 
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From images 2,3 and 4 we can clearly observe that 
the classifiers that give the better results are: the 
Logistic Regression, ClassificationViaRegression 
and meta.Decorate, getting a good percentage of 
correctly classified instances (90%). The first and 
the second are regression algorithms while the third 
is a meta learning algorithm. Logistic Regression 
was the best classifier with percentages at about 
92% for all the three different experiments.  
It is notable that in cases of experiments with 
means (2nd for subjects means and 3rd for channels 
means) there is some classifiers (as the kStar from 
k-neighbourhoods algorithms family and 
NaiveBayes from Bayesian algorithms family) that 
lost a big amount of their predictability. 
As feature work we think about to examine sets of 
electrodes separately. For example we would like 
to study separately the signals from frontal 
electrodes, or from parietal electrodes, or temporal 
electrodes, but also combinations of these. For 
example, how is the variation of the classifiers 
predictability, when we study only temporal and 
parietal signals. 
 
Conlusions 
 
We can export very useful conclusions from the 
previous discussion. Taking into consideration the 
results from the three experiments of the present 
research and having the EEG signals during the 
educational progress we can spot the points where 
the subject faces difficulties when doing several 
educational actions. We obtained very good 
predictions from algorithms Logistic Regression, 
ClassificationViaRegression and meta.Decorate. 
We can conclude that, the regression Algorithms 
give us very good predictability.  
 
As future work we would like to study different 
nature educational problems and find other 
algorithms that extract the best results. By this way, 
we would like to create models with parameters 
that will change their value depending on the 
educational problem and will provide the best 
model each time which will give the best 
prediction. Also we would like to research other 
neurophysiologic indexes, like ERPs’, Power 
Spectra, ITCs’, EPRSPs’, etc. with the aim of 
extracting the best, each time, algorithms for the 
prediction of the difficulties that the subject faces 
when doing an educational procedure. 
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