
Fuzzy Systems, Extensions and Relative Theories 
 

MICHAEL GR. VOSKOGLOU 
Mathematical Sciences, School of Technological Applications 

Graduate T. E.I. of Western Greece 
Meg. Alexandrou 1 – 263 34 Patras 

GREECE 
mvosk@hol.gr ; http://eclass.teipat.gr/eclass/courses/523102 

 
 
Abstract: - The article at hands studies critically the development of the theory of Fuzzy Systems, its most 
common extensions and the main relative theories that have been introduced for managing the situations of 
uncertainty and vagueness or ambiguity appearing in Science, Technology and in the everyday life. The 
management of uncertainty in fuzzy systems in terms of the fuzzy probability and possibility is in particular 
discussed and examples are presented to illustrate the methods used for this purpose. The present work is 
important, because it offers a basic framework for those wanting to study deeper the above theories and the 
multi-valued logics connected to them that have found recently many and important applications to almost all 
sectors of human activity. 
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1 Introduction 
50-60 years ago probability theory used to be the 
unique tool in hands of the experts for dealing with 
situations of uncertainty appearing in problems of 
science, technology and of the everyday life. 
However, things have been changed nowadays with 
the development of the Fuzzy Set (FS) theory that 
gave to the experts the opportunity to model under 
conditions which are not precisely defined and 
therefore they cannot be tackled by the traditional 
probability methods.  
     From the time that Zadeh introduced the theory 
of FS in 1965 [1] many efforts have been made for 
improving its effectiveness to deal with uncertain, 
ambiguous and vague situations. As a result a series 
of extensions and generalizations of the ordinary 
FSs followed and relevant theories have been 
proposed as alternatives to the FS theory. The 
present work offers a basic framework to those 
wanting to study deeper the above FS extensions, 
the relative theories and the multi-valued logics 
generated by them that have found recently many 
and important applications to almost all sectors of 
human activity.  

 The rest of the paper is organized as follows:  In 
Section 2 the basic principles of the FS theory and 
the connected to it Fuzzy Logic {FL) are presented. 
In Section 3 the ways of managing the uncertainty 

in fuzzy systems are described in terms of the fuzzy 
probability and possibility and examples are given 
to illustrate them. The most common extensions of 
FS theory are discussed in Section 4, while the 
highlights of the main relative to the FS theories are 
presented in Section 5. The paper closes with the 
final conclusion stated in Section 6      

 
 

2 Fuzzy Sets and Logic 
The “Laws of Thought”, of Aristotle (384-322 BC) 
[2], that dominated for centuries the human 
reasoning include: 

• The principle of identity 
• The law of the excluded middle 
• The law of contradiction 

      The law of the excluded middle (TRUE or 
FALSE) was the basis for the traditional bi-valued 
Logic and the precision of the classical mathematics 
owes undoubtedly a large part of its success to it.    
     However, there were also strong objections about 
this law. The Buddha Sidhartha Gautama, who lived 
in India a century earlier, had already argued that 
almost every notion contains elements from its 
opposite one, while Plato (427-377 BC) discussed 
the existence of a third area beyond “True” and 
“False”, where these two opposite notions can exist 
together. Modern philosophers like Hegel, Marx, 
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Engels and others adopted and further cultivated 
Plato’s beliefs. 
     Forms of multi-valued logic have been studied 
since the 1920s, notably by the Polish philosopher 
Jan Lukasiewicz [3] and by the Polish-American 
logician and mathematician Alfred Tarski [4]. 
However, Fuzzy Logic (FL) was introduced much 
later by Lofti Zadeh with the help of the concept of 
FS [1]. FL, based on the observation that people 
make frequently decisions in terms of imprecise and 
non-numerical information, is an infinite-valued 
logic in which the truth values of variables may be 
any real number between 0 (completely true) and 1 
(completely false) [5].    
     It is recalled that a FS on the (crisp) set of the 
discourse U is defined with the help of its 
membership function (MF) m: U→  [0, 1] as the set 
of the ordered pairs A {(x, m(x)): x∈U}, where 
m(x) is called the membership degree of x in A. For 
reasons of simplicity many authors identify a FS 
with its MF. A crisp set A can be considered as a FS 
with its MF taking only the values 1, if x∈A, and 0, 
if x∉A.    
     FSs are mathematical models that have the 
capability of recognizing, representing, 
manipulating, interpreting, and utilizing data and 
information which are vague and lack certainty. 
However, the creditability of a FS in representing a 
real situation depends on the proper definition of its 
MF. In fact, the MF is not uniquely determined, its 
definition depending on the personal criteria of the 
designer of the corresponding FS. 
     It must be emphasized that probabilities and 
membership degrees, despite to the fact that they act 
on the same real interval [0, 1], they essentially 
differ to each other. For example, the expression 
“The probability of John to be tall is 85%” has a 
completely different meaning from the FL statement 
“John’s membership degree in the FS of the tall men 
is 0.85”. In fact, the former expression, in terms of 
the law of the excluded middle, means that John, 
being an unknown to the observer person, is either 
tall or short, but the probability to be tall is 85%. On 
the contrary, the latter statement, since John’s 
membership degree in the FS of the tall men is near 
to 1, means that John is a rather tall person. There 
are also other differences between the two theories 
mainly arising from the way of defining the 
corresponding notions and operations. For instance, 
whereas the sum of the probabilities of all the single 
events (singleton subsets) of U is always 1 
(probability of the certain event), this is not 
necessarily true for the membership degrees. 
Consequently, a probability distribution could be 
used to define membership degrees, but the 

converse does not hold in general. 
     The process of reasoning with fuzzy rules 
involves: 

• Fuzzification of the problem’s data by 
utilizing the suitable MFs to define the 
required FSs. 

• Application of FL operators on the defined 
FSs and combination of them to obtain the 
final result in the form of a unique FS. 

• Defuzzification of the final FS to return to a 
crisp output value, in order to apply it on the 
real world situation for resolving the 
corresponding problem. 

     Among the more than 30 defuzzification 
methods in use, the most popular is probably the 
Centre of Gravity (COG) technique. According to it, 
a problem’s fuzzy solution is represented by the 
coordinates of the COG of the level’s section 
contained between the graph of the MF involved 
and the OX axis [6].   
     For general facts on FSs and the connected to 
them uncertainty we refer to the book [7].   
     Zadeh introduced also the Fuzzy Numbers (FNs) 
[8] as a special form of FSs on the set of the real 
numbers such that: 

1. There exists x in U, with m(x)=1 (normal 
FS) 

2. Their x-cuts are closed real intervals 
3. Their membership function is piece-wise 

continuous  
     It is recalled that the x-cut Ax of a FS A, x∈[0, 
1], is defined to be the crisp set  

Ax = {y∈U: m(y) ≥  x}. 

     Zadeh defined the basic arithmetic operations on 
FNs in terms of his extension principle, which 
provides the means for any function mapping the 
crisp set X to the crisp set Y to be generalized so 
that to map fuzzy subsets of X to fuzzy subsets of Y.     
     An equivalent method of defining the arithmetic 
on FNs is with the help of their x-cuts and the 
representation-decomposition theorem of 
Ralesscou-Negoita for FS. According to the above 
theorem a FS A can be completely and uniquely 
expressed by the family of its x-cuts in the form   

A =
[0,1]

x

x
xA

∈
∑ ([9], Theorem 2.1, p.16). In this way 

the arithmetic of FNs can be defined with the help 
of the well known arithmetic of the closed intervals 
introduced by Moore et al. [10]. 
     However, the above two general methods are 
rarely used for performing arithmetic operations 
among FNs in practical applications, because both 
of them involve laborious calculations. Instead, the 
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use of simpler forms of FNs is preferred in such 
cases, like the Triangular and Trapezoidal FNs (e.g. 
[11], Chapter 7), etc., for which the two general 
methods lead to much easier rules for performing 
arithmetic operations.   
     FNs play an important role in fuzzy mathematics 
analogous to the role of the ordinary numbers in the 
traditional mathematics. For general facts on FNs we 
refer to the book [12]. 
     As it was expected, the far-reaching theory of 
FSs aroused some objections to the scientific 
community. While there have been generic 
complaints about the fuzziness of assigning values 
to linguistic terms, the most cogent criticisms come 
from Haack [13] in 1979, who argued that there are 
only two areas – the nature of Truth and Falsity and 
the fuzzy systems’ utility – in which FL could be 
possibly needed. Further, she maintained that in 
both cases it can be shown that FL is unnecessary. 
Fox [14] responded against to her objections, his 
most powerful arguments being first that traditional 
and FL need not be seen as competitive, but as 
complementary, and second that FL, despite the 
objections of classical logicians, has found its way 
into practical applications to almost all fields of 
human activity and has been proved very successful 
there.  

 
 

3 Managing the Uncertainty of Fuzzy 
Systems  

A system’s uncertainty can be defined as the 
shortage of precise knowledge and of complete 
information on data which describe the state of the 
system.  
     A fundamental principle of the classical 
Information Theory states that a system’s 
uncertainty is connected to its ability to obtain new 
information. Shannon introduced in 1948 a formula 
for measuring the uncertainty and the information 
connected to it, which is based on the laws of the 
classical probability and it is widely known as the 
Shannon’s entropy [15]. This name is due to the 
mathematical definition of the information 
connected to the evolution of a certain situation. In 
fact, when we have equally probable cases for the 
evolution of a particular situation, information is 

defined [15] by the formula
2log

)(log P∆
− , where P is 

the probability of appearance of each case. The 
above expression appears to be analogous to the 

well known from Physics formula ΔS =
T
Q∆ , where 

ΔS is the increase of a physical system’s entropy 
caused from an increase of the heat by ΔQ, when 
the absolute temperature T remains constant.   
    For use in a fuzzy environment Shannon’s 
formula has been adapted ([16], p. 20) to the form:  

H = -
1

1 ln
ln

n

s s
s

m m
n =
∑

       
          (1).

 
    In equation (1) ms = m(s) denotes the membership 
degree of the element s of the set of the discourse U 
in the corresponding FS and n denotes the total 
number of the elements of U.  Dividing the sum by 
the natural logarithm ln n one normalizes H, so that 
to take values in the interval [0, 1]. 
    The uncertainty measured by equation (1) is 
usually termed as the system’s probabilistic 
uncertainty. It is recalled that the fuzzy probability 
of an element s of U is defined by  

Ps = s

s
s U

m
m

∈
∑                               (2). 

    However, according to the British economist 
Shackle [17] and many other researchers after him, 
human reasoning can be formulated more 
adequately by the possibility rather, than by the 
probability theory. The possibility, say rs, of an 
element s of U is defined by  

rs = 
max{ }

s

s

m
m

                          (3). 

    In equation (3) the term max {ms} denotes the 
maximum value of ms, for all s in U. Therefore, the 
possibility of s expresses the relative membership 
degree of s with respect to max {ms}.  
    In terms of possibility theory a system’s 
uncertainty is measured by the sum of strife (or 
discord) and of the non-specificity (or imprecision). 
The former is connected to the conflict created 
among the membership degrees, whereas the latter 
is connected to the conflict created among the 
cardinalities (sizes) of the various fuzzy subsets of 
U ([16], p. 28). It is recalled that the cardinality of a 
FS on U is defined to be the sum ( )

x U
m x

∈
∑ of all 

membership degrees of the elements of U with 
respect to the particular FS. 
   The following example illustrates the above two 
types of uncertainty. 
    Example 1: Let U be the set of  all mountains of a 
country and let H and L be the FSs of the high and 
low mountains with MF mH and mL respectively.  
    Assume now that a mountain x in U has a height 
of 1000 m. Then the corresponding strife is created 
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by the existing conflict between the membership 
degrees mH(x) and mL(x). In fact, if the country has 
high mountains in general, then mH(x) should take 
values near to 0 and ml(x) near to 1. However, the 
opposite could happen, if the country had low 
mountains in general. 
    On the other hand, the non-specificity is 
connected to the question of how many elements of 
U should have zero membership degrees with 
respect to H and L.       
    Strife is measured ([16], p.28) by the function 
ST(r) on the ordered possibility distribution  

r:  r1=1≥  r2 ≥…….≥  rn ≥ rn+1 of the elements of U  

and it is defined by  

ST(r) = ∑
∑=

=

+−
n

i
i

j
j

ii

r

irr
2

1

1 log)([
2log

1
]   (4).                    

     Under the same conditions non-specificity is 
measured ([16], p.28) by the function 

N(r) = ∑
=

+−
n

i
ii irr

2
1 log)([

2log
1 ]     (5).                         

     The sum T(r) = ST(r) + N(r) measures the fuzzy 
system’s total possibilistic uncertainty. 
    Example 2: The performance of a student class 
has been evaluated by the linguistic grades A = 
excellent, B = very good, C = good, D = fair and F 
= unsatisfactory. The numbers of students receiving 
each of the above grades are the following: A =1, 
B=13, C=4, D=3, F=0. It is asked to calculate the 
existing in the class total possibilistic and 
probabilistic uncertainty.  
   i) Total possibilistic uncertainty: Defining the MF 
in terms of the frequencies of the student grades, i.e. 

by m(x) = xn
n

 where nx is the number of students 

who received the grade x and n is the total number 
of the students, one can represent the student class 
C as FS on the set U = {A, B, C, D. F} in the form:  

C = {(A, 1
21

), (B, 13
21

), (C, 4
21

), (D, 3
21

), (F, 0)}.   

    The maximum membership degree in C is equal 
to 13

21
, hence the possibilities of the elements of U 

in C are:  r(A) = 1
13

,  r(B) = 1, r(C) = 4
13

, r(D) = 3
13

, 

r(F) = 0. Thus, the ordered possibility distribution 
defined on C is  

r:  r1 = 1 > r2 = 4
13

 > r3 = 3
13

 > r4  = 1
13

 > r5 = 0 (6) . 

     Therefore equation (4) gives that 

ST(r) = 
2log

1 [(r2-r3) log
21

2
rr +

 + (r3-r4) log
321

3
rrr ++

   

+ (r4-r5) log
4321

4
rrrr +++

] 

     Replacing the values of the possibility 
distribution r from (6) to the above equation one 
finds that  

ST(r)=
2log

1 [ 1
13

log( 26
17

)+ 2
13

log( 39
20

)+ 1
13

log( 42
21

) 

≈0.27. 

    Also equation (5) gives for C that  

N(r) = 
2log

1 [ 1
13

log2+ 2
13

log3+ 1
13

log4]≈0.48. 

  Therefore, the total possibilistic uncertainty for C 
is T (r) ≈0.27+ 0.48 =0.75. 

   ii) Probabilistic uncertainty: Replacing the 
membership degrees of C to equation (1) one finds 
that the probabilistic uncertainty for C is equal to  

H=- 1
ln 5

( 1 1ln
21 21

+ 13 13ln
21 21

+ 4 4ln
21 21

+ 3 3ln
21 21

)≈0.64.  

The numerical values of the uncertainty found 
above are useful for comparing the performance of 
the particular class to the performance of other 
classes participating the same activity (e.g. common 
test). It becomes evident that the lower the existing 
uncertainty the better the corresponding class’s 
performance. 
 
 
4 Extensions of Fuzzy Sets 
In 1975 Zadeh generalized the ordinary FS, 
otherwise termed as type-1 FS), to the type-2 FS [8], 
so that more uncertainty can be handled connected 
to the MF. The MF of a type-2 FS is three - 
dimensional, its third dimension being the value of 
the MF at each point of its two – dimensional 
domain, which is called footprint of uncertainty 
(FOU). The FOU is completely determined by its 
two bounding functions, a lower MF and an upper 
MF, both of which are type-1 FSs. When no 
uncertainty exists about the MF, then a type-2 FS 
reduces to a type-1 FS, in a way analogous to 
probability reducing to determinism when 
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unpredictability vanishes.  
     In order to distinguish between a type-1 and a 
type-2 FS, a tilde symbol is put over the FS, so that 
A denotes the type-1 FS and A denotes the 
comparable type-2 FS. Nevertheless, Zadeh didn’t 
stop there, but in the same paper [8] generalized the 
type-2 FS to the type-n FS n = 1, 2, 3, …   However, 
when Zadeh proposed the type-2 FS in 1975, the 
time was not right for researchers to drop what they 
were doing with type-1 FS and focus on type-2 FS. 
This changed in the late 1990s as a result of Prof. 
Jerry Mendel and his student's works on type-2 FS 
[18]. Since then, more and more researchers around 
the world are writing articles about type-2 FS and 
systems. 

Another application of FS inspired by Prof. 
Zadeh is the methodology of Computing with Words 
(CWW), in which the objects of computation are 
words and propositions drawn from a natural 
language [19]. The idea is that computers would be 
activated by words, which would be converted into 
a mathematical representation using FSs and that 
these FSs would be mapped by a CWW engine into 
some other FS, after which the latter would be 
converted back into a word. As Mendel has argued 
[20] a type-2 FS should be used as a model for 
CWW, for which much research is under way.  
     The concept of the interval-valued FS (IVFS) 
was introduced in 1975 independently by Zadeh, 
Sambuc, Jahn and Grattan Guiness [21]. An IVFS is 
defined by a mapping F from the universe U to the 
set of closed intervals in [0, 1]. The idea behind 
IVFs is that the membership degrees of the 
traditional FSs can hardly be precise. 
     Kassimir Atanassov, Professor of mathematics at 
the Bulgarian Academy of Sciences, introduced in 
1986, as a complement of Zadeh’s membership 
degree m(x), x∈U, the degree of non-membership 
n(x) and proposed the notion of intuitionistic FS 
(IFS) for a more accurate quantification of the 
uncertainty [22]. An IFS A is formally defined as 
the set of the ordered triples  

A = {(x, m(x), n(x)): x∈U, 0≤  m(x) + n(x) ≤  1}. 

One can write m(x) + n(x) + h(x) = 1, where h(x) is 
called the hesitation or uncertainty degree of x. If 
h(x) = 0 for all x in U, then m(x) = 1 - n(x) and A 
becomes an ordinary FS. 
    Similar to the intention of IFS is the hesitant FS 
(HFS) introduced by Torra and Narukawa in 2009 
[23]. The difference in the definition of a HFS with 
respect to an ordinary FS is that the hesitant degree 
h(x) of an element x of U is not a single value like 
its membership degree, but a set of some values in 

[0, 1]. For example, if U = {a, b, c}, then we could 
have h(a) = {0.2, 0.3}, h (b) = {0.75, 0.8, 0.82} and 
h (c) = {0.9}.  
  A Pythagorean FS (PFS), introduced by Yager in 
2013 [24], considers the membership degree m(x) 
and non-membership degree n(x) satisfying the 
condition m2(x) + n2(x)≤ 1. HFS and PFS have 
stronger ability than IFS to manage the uncertainty 
in real-world decision-making problems [25].   
     The Romanian–American writer and 
mathematician Florentin Smarandache, Professor at 
the branch of Gallup of the New Mexico University, 
introduced in 1995 the degree of indeterminancy / 
neutrality (i) and defined the Neutrosophic set (NS) 
in three components (M, N, I), where  
M = {m(x): x∈U}, N = {n(x): x∈U} and  
I = {i(x): x∈U} are subsets of the interval [0, 1] 
[26]. In other words, if A is a NS on U, then each 
element x of U is expressed with respect to A in the 
form (m(x), n(x), i(x)). This structure makes 
NS an effective framework by empowering it to deal 
with indeterminate information which is not 
considered by FS and IFS. When the components 
m, n and i are independent, they are leaving room 
for incomplete information if their sum is <1, for 
paraconsistent information if their sum is >1 and 
for complete information if their sum is equal to 1.  
     Ramot et al. [27] introduced in 2002 the notion 
of Complex FS (CFS) characterized by a complex-
valued MF, whose range is extended from the 
traditional fuzzy range of [0, 1] to the unit circle in 
the complex plane. More explicitly, the MF of a 
CFS is of the form  

m(x) = r(x)eiθ(x) = r(x)[cos[θ(x)]+isin[θ(x)]. 

     In the above formula r(x) is the amplitude term 
and θ(x) is the phase term of the MF. The terms r(x) 
and θ(x) are both real-valued and r(x) is in [0, 1] for 
all x in the universal set U. Since m(x) is a periodic 
function, one may only consider θ(x) in [0, 2π]. 
When θ(x) = 0 for all x in U, then m(x) reduces to 
the MF of an ordinary FS. 
     The catalogue of the extensions of Zadeh’s 
ordinary FS does not end here. Several other 
generalizations have been introduced, some of them 
being hybrid approaches of the above mentioned 
concepts. For example, the notion of NS has been 
combined with IVFS to form a new hybrid set 
called interval valued neutrosophic set, etc. 
 
 
5. Relative Theories 
Apart of the extensions of the FS theory discussed 
in the previous section, various relative theories 
have been also proposed as alternative tools for 
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managing the situations of uncertainty and 
vagueness or ambiguity in science, technology and 
the everyday life. 
    In 1982 Julong Deng, professor of the Huazhong 
University of Science and   Technology, Wuhan, 
China, introduced the theory of Grey System (GS) 
[28] for handling the approximate data that are 
frequently appear in the study of large and complex 
systems, like the socio-economic, the biological 
ones, etc. The systems which lack information, such 
as structure message, operation mechanism and 
behaviour document, are referred to as GSs. 
Usually, on the grounds of existing grey relations 
and elements one can identify where "grey" means 
poor, incomplete, uncertain, etc. The GS theory was 
mainly developed in China and it has found many 
applications in agriculture, economy, management, 
industry, ecology and in many other fields of the 
human activity [29]. 
     An effective tool of the GS theory is the use of 
Grey Numbers (GNs) that are indeterminate 
numbers defined in terms of the closed real 
intervals. More explicitly, a GN, say A, is of the 
form A∈  [a, b], where a, b are real numbers with 
a≤ b. In other words, the range in which a GN lies is 
known, but not its exact value. A GN may enrich its 
uncertainty representation with respect to the 
interval [a, b] by a function g: [a, b] →  [0, 1], 
which defines a degree of greyness g(x) for each x in 
[a, b]. The well known arithmetic of the real 
intervals [10] has been used to define the basic 
arithmetic operations among the GNs. The real 
number with the greatest probability to be the 
representative real value of the GN A∈[a, b] is 
denoted by W(A). The technique of determining the 
value of w(A) is called whitening of  A. When the 
distribution of A is unknown (i.e. no function g has 
been defined for it) one usually takes  

W(A) = 
2

a b+
. 

     For general facts on GNs we refer to the book 
[30].  
      A rough set, first described by the 
Polish computer scientist  Zdzislaw Pawlak in 1991 
[31] is a formal approximation of a crisp set in terms 
of a pair of sets which give the lower and the upper 
approximation of the original set. In the standard 
version of rough set theory the lower and upper-
approximation sets are crisp sets, but in other 
variations, the approximating sets may be FSs. The 
theory of rough sets has found important 
applications to Informatics and to other scientific 
fields. 

     In 1999 Dmtri Molodstov, Professor of the 
Computing Centre of the Russian Academy of 
Sciences in Moscow, in order to overcome the 
existing difficulty in defining the proper MF of a 
FS, proposed the soft sets as a new mathematical 
tool for dealing with the uncertainties [32]. Let E 
be a set of parameters, then a pair (F, E) is called a 
soft set on the universe U, if, and only if, F is a 
mapping of E into the set of all subsets of U. In 
other words, the soft set is a paramametrized family 
of subsets of U. Every set F(ε) of this family, ε∈E, 
may be considered as the set of the ε-elements of the 
soft set (F, E).  
     As an example, let U be the set of the girls of a 
high school and let E be the set of the 
characterizations {pretty, ugly, tall, short, clever} 
assigned to each of them. It becomes evident that for 
an ε in E the corresponding set F(ε) could be 
arbitrary depending on the observer’s personal 
criteria, or empty, while some of them could have 
non empty intersection. A FS on U with 
membership function y = m(x) is a soft set on U of 
the form (F, [0. 1]), where F(α) =  {x∈U: m(x) ≥α} 
is the corresponding  α – cut of the FS, , for each α 
in [0. 1].  
     The topics presented in the previous two sections 
constitute the main extensions and relative to FS 
theories. In certain cases the corresponding notions 
have been combined to form new hybrid theories. 
For example, if in the definition of the soft set the 
set of all subsets of U is replaced by the set of all 
fuzzy subsets of U, one gets the notion of the fuzzy 
soft set, etc. 
 
      
6.  Conclusion 
This article reviews critically the FS theory, its 
extensions and the main relative theories that have 
been proposed in the effort of managing, more 
effectively than the traditional probability does, the 
frequently existing uncertainty in problems of 
science, technology and of the every day life. In 
particular the management of the uncertainty in 
fuzzy systems was discussed in terms of the fuzzy 
probabilities and possibilities of the elements of the 
universal set in the corresponding FSs.  
     The present work offers the basic framework for 
studying deeper the above theories that have been 
found many and important applications during the 
last 60 years to almost all sectors of the human 
activity.   
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