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Abstract: Demos created to illustrate the bootstrapping procedure and its application to machine vision are 
presented with special emphasis on the area under the receiver operating characteristics (ROC) curves 
associated with a sensor. These formed an integral part of the undergraduate course in engineering probability 
updated to include topics in data analytics. Starting from the basics, the demos offer a step-by-step way to 
implement bootstrapping and statistical analysis of the areas under the ROC curves. A smaller data set was 
initially used to articulate all the details before analyzing the larger data set. Students were able to follow the 
procedures alongside. Results were also verified contemporaneously using commercial software used in ROC 
analysis. Furthermore, the efficacy of the demos and its effect on the learning process was evaluated through a 
set of individual assignments to the students followed by the statistical analysis of student surveys given at the 
beginning and conclusion of the course. They appear to show enhanced understanding of bootstrapping and 
ROC analysis by the students. The demos and the methodology proposed here could easily be extended to 
cover other topics of interest to expose the students to didactic aspects of complex concepts in engineering 
probability. 
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1 Introduction 
Data analytics is integrated into the undergraduate 
engineering probability course to expand its scope 
to include applications of topics in probability and 
random variables to machine learning, medical 
diagnostics, signal processing, etc. At Drexel 
University, author started the initiative last year 
introducing topics of confusion and transition 
matrices, receiver operating characteristics (ROC) 
curves, and parametric hypothesis testing through 
the analysis of machine vision data [1]. The natural 
progression of these topics led to the introduction of 
bootstrapping as a tool to understand and interpret 
the statistics of metrics of interest such as the 
population mean, the area under the ROC curve 
(AUC), or the areas under the ROC curves collected 
from the same machine by two sensors [2,3]. The 
pedagogy of bootstrapping and its implementation 
are often sidelined in publications because of their 
reliance on bootstrapping software packages [4]-[9].  
While software offers practical solutions, the 
didactic aspects of bootstrapping are lost without 
access to explicit instructive steps involved. 
Additionally, concepts of non-parametric hypothesis 
testing involving z-test, p-value, zscore, 95% 
confidence intervals [10] are also reinforced when 
bootstrapping is implemented in its basic form.  The 
manuscript reports on demos created for students in 
an undergraduate course in engineering probability 
during the Fall quarter of 2018-2019, offering a 
step-by-step procedure to implement bootstrapping 
relying only on a uniform random number generator 

and verifying the results through other means. The 
demos then formed the basis for weekly exercises 
for the students. The efficacy of the demos in 
expanding the knowledge base in data analytics was 
investigated through student surveys conducted 
during the first and last week of classes. 
 
2 Background 
Inferences and predictions are often made on the 
basis of a single experiment done a few times. For 
example, we measure the temperature a few times or 
at a few locations in a room and offer inferential 
statistics, namely the mean and variance of 
temperature for any applications requiring such 
information.  In another experiment involved in the 
testing of the efficacy of a new medical screening 
device, we recruit a number of subjects (having no 
illness and having illness) and undertake the 
statistical analysis of the efficacy of the device [5, 
11,12].  The situation is identical to the case of a 
sensor used in a machine vision or machine learning 
system to determine the presence or absence of a 
target in its field of view. In these cases, the receiver 
operating characteristics curves (ROC) quantified 
through the metric, area under the ROC curve 
(AUC) is used to establish the performance of the 
new screening device or the sensor [13]. While 
simple formulas are available to study the statistics 
of the population mean (measurement of 
temperature mentioned above), there are very few 
formulaic tools available to examine the statistics of 
the AUC to draw inference on its variability 
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(variance) and its 95% confidence level [14, 15, 16]. 
In another case, two competing screening (medical) 
devices may need to be tested to see which one 
offers a better performance and whether any 
improvement in capability (quantified through the 
metric AUC) offered by one of the devices is 
statistically valid.  The interest in machine vision is 
to test whether one sensor is better than the other in 
identifying the presence of a target [14, 15, 17, 18, 
19]. If there is a way to undertake the experiment 
multiple times, we may be able to study the 
inferential statistics. Because of difficulties in 
recruiting large number of subjects available for 
screening or the high costs of setting up machine 
vision testing multiple times, we need to explore 
other ways to study the efficacy of the devices and 
sensors. 
 
Computer simulation may be one of the ways to 
mitigate the issue of limited resources.  But we have 
very little information on the underlying statistics 
and often we do not know whether the data 
collected from the sensors or screening of the 
subjects follow a Gaussian, Rayleigh, Rician, or any 
other distribution [10]. Therefore, we need to ensure 
that any simulation undertaken is non-parametric 
(densities are characterized in terms of its 
parameters and hence the term parametric is 
associated with simulations that rely on densities).  
A simple way to replicate the experiment without 
making any assumptions on the underlying statistics 
involves resampling. Bootstrapping allows 
empirical regeneration of samples of the outcomes 
of the experiment through continual resampling 
regardless of the underlying statistics [20]. 
 
A number of publications offer insight into 
bootstrapping. Most of these demonstrate the 
principle of bootstrapping through examples that 
examine the statistics of the population mean while 
others offer explanations on the procedure relying 
on commercial software for bootstrapping and 
follow up statistical analysis [4, 5, 6, 8, 9]. Very 
few, if any, provide a step-by-step description of the 
mechanics of bootstrapping when formulaic means 
are absent for verification such as in the case of 
AUC in a machine vision experiment or comparison 
of the AUCs in a machine vision experiment 
involving two sensors.  For students in the 
engineering probability course, the implementation 
of bootstrapping needs to be illustrated at the very 
basic level so that they understand and appreciate its 
usefulness in data analytics to draw conclusions 
based on the data. This means that the procedure 

must contain elements of the traditional course 
material and the possibility of expanding their 
repertoire of knowledge to cover other topics that 
would have been very conceptual. Such topics 
include non-parametric hypothesis testing using z-
tests, p-values and confidence intervals [10,20].   
 
The topic of bootstrapping was introduced after 
students were exposed to topics in mathematical 
statistics (marginal, conditional, joint probabilities, 
and, Bayes’ rule), one and two random variables, 
parametric hypothesis testing (chi square tests), 
receiver operating characteristics, etc. Students were 
also familiar with data analytics because they were 
required to solve one homework problem every 
week with a unique data set for every student 
(besides a set of common problems for the class). 
Students had already done problems in estimating 
positive predictive values, confusion matrix, area 
under the receiver operating characteristics curve, 
chi square testing involving multiple densities to 
determine the best fit, maximum likelihood 
estimation of parameters of densities, and statistical 
analysis of improvement in performance achieved 
through signal processing algorithms (arithmetic 
mean, geometric mean, maximum).  
 
At Drexel university, every quarter consists of 10 
weeks of classes followed by examinations during 
the eleventh week. The engineering probability 
course is offered every quarter (required course for 
students pursuing baccalaureate degrees in electrical 
engineering as well as computer engineering) as a 4-
credit course with three hours of lecture followed by 
one hour of recitation every week. For the recitation 
sessions, the class is split into smaller sections (less 
than 30 students). During this past quarter, 
recitations were held in three separate sessions for a 
class of about 75 students. Lectures and recitations 
(three different non-overlapping sessions) were 
covered by the author while teaching assistants were 
responsible for grading the homework submissions.  
The demos created are described next. They were 
implemented in Matlab (www.mathworks.com).  
Even though Matlab provides built-in function 
bootstrap(.) to perform bootstrapping, Matlab was 
only used for random number generation, general 
computations, and, plotting.   
 
3 Creation of the demos and results 
Three different types of demos were created. The 
first was a simple one involving the study of the 
population mean and the other two involved the 
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statistics of AUC. All the demos were done in class 
and students were provided with the data sets ahead 
of the lecture so that they could follow the 
procedure as the discussion proceeded.  
The data set #1 consisted of M = 20 integer samples 
(numbers 1, 2, 3, 4, and 5) identified as vector x . 
The resampling implies picking a number from this 
set, noting it down, returning the number back to the 
set. Another number is then taken, noted down and 
returned back to the set. This process is repeated 
until we have noted down M new samples. This 
constitutes the first bootstrap set. Since we are 
returning the number back to the original set, it can 
be understood that the numbers (1,2,3,4 or 5) may 
be repeated. If the original M samples are set in a 
single column, bootstrapping implies choosing any 
row randomly each time. In other words, we are 
choosing numbers randomly between 1 and M (row 
indices).  The row indices for resampling to create 
the first bootstrap set is the vector v  
 ( )( )1, *v ceil rand M M=  . (1) 
In eqn. (1), rand(1,M) provides M uniform random 
numbers in [0,1]. These are scaled by M and ceil(.) 
provides integers between 1 and M. Use of the 
indices in eqn. (1) mimics the process of picking a 
ball from a box containing balls numbered 1, 2, 3, 4, 
5, noting its value, putting the ball back, and 
repeating the procedure M times. The bootstrap set 
created, y , is 
 ( )y x v=  . (2) 
This process of creating a new index vector and a 
corresponding bootstrap set was repeated N (1000) 
times to generate N bootstrap sets. Fig. 1 shows the 
original set (bottom row) and 10 bootstrap sets (for 
convenience each set is shown as a row vector). The 
column at the right end provides the population 
mean of each bootstrap set and the original set. N 
bootstrap sets produce N population means and the 
mean and variance of the population mean can be 
calculated.   
 
Figure 2 shows the histogram of the means, mean 
and variance of the population mean along with 
95% confidence interval of the mean (range 
between 2.5 and 97.5 percentiles). It can be seen 
that the mean of the population mean and the 
population mean match (3.2). The population 
variance (1.9579) is approximately equal to 20 times 
the variance of the mean (0.089) as expected from 
the concept of the sample mean [20]. Thus, in this 
experiment, bootstrapping results were tested 

against formulaic method for obtaining the mean 
and variance of the population mean. 
 

 
Fig. 1 Original data set (input) and 10 bootstrap 
sample sets. The mean of each set appears in the last 
column. 

 
Fig. 2 Histogram of the population mean, its mean, 
variance and 95% confidence interval of the mean 
 
While the bootstrapping procedure demonstrated 
with interest in the statistics of the mean is simple 
and straightforward and results verifiable 
formulaically, the statistical analysis of AUC does 
not lend itself to simple formulae.  The demos on 
AUC and comparison of AUCs for two sensors were 
undertaken in an expanded way, first through the 
use a smaller size data set (16 samples) to explain 
all the intricacies and then repeated on a larger size 
data set (130 samples).  
Consider the data collected in a machine vision 
experiment where a sensor was used to detect the 
presence of a target in its field of view. The 
backscattered power or amplitude using a trans-
receiver (wireless, infra-red, or acoustic) provided 
the samples. The data used in this work was created 
through random number simulation ensuring that the 
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larger size data satisfied densities such as Rayleigh, 
Rician, Nakagami, gamma, Weibull etc. observed in 
wireless and other systems [21]. Sampled values 
represent data collected when a target was present in 
the field (hypothesis H1) or target was absent in the 
field (hypothesis H0). Figure 3 (first two columns) 
displays the data collected with N1= 10 samples of 
target absent and N2= 6 samples of target present. 
The values are respectively labeled ‘0’ and ‘1’ to 
indicate the two distinct categories (hypotheses).  
The step-by-step procedure for the generation of the 
ROC plot of this machine vision sensor is shown in 
Fig. 3 with the goal of drawing a plot of the 
probability of false alarm (deciding that a target is 
present given hypothesis H0) and probability of 
detection (deciding that a target is present given 
hypothesis H1) as the threshold for the decision is 
varied from the maximum of the sample values to 
‘0’. The lowest value of ‘0’ was chosen because the 
samples represented either power or amplitude and 
therefore, the range of the values would always be 
positive. 

  
Figure 3 Steps involved in the creation of the 
receiver operating characteristics curve 
 
The total number of sampled values M is 16. The 
pooled data in [M x 2] matrix (columns 3 and 4) 
was sorted in descending order of values (boxed 
matrix, columns 5 and 6). The threshold set was 
chosen as the sorted values with the concatenation 
of ‘0’ at the bottom, resulting in (M+1) threshold 
values (column 7). The number of 1’s above the 
threshold (NC) and number of 0’s above the 
threshold (NF) from the sorted labels column 
(column 5) were counted and used to obtain 
probability of detection (PD) and probability of false 
alarm (PF) respectively to generate the ROC curve. 
Once the ROC curve was obtained, AUC was 
calculated using trapz(.) command in Matlab. The 
ROC plot is shown in Figure 4 along with the value 

of AUC (indicated as Az). None of the steps 
outlined in Figures 3 and 4 required the use of 
bootstrapping and students had already seen those 
steps earlier during the lecture on ROC [1]. Students 
also had completed individual homework 
assignments on ROC.  

 
Fig. 4 ROC plot corresponding to the 16-sample set 
in Fig.3 
 
The next step was to obtain the statistics of the AUC 
through bootstrapping.  This matrix of labels and 
values (columns 3 and 4) in Fig. 3 was the input to 
the bootstrapping procedure.  The data sets and 
bootstrapping procedure are illustrated in Table 1. 
The first two columns in Table 1 constitute the 
labels and the values. The matrix of these two 
columns formed the input to the bootstrapping 
procedure. Initially four bootstrap sets were created 
and the bootstrap indices are shown in Table 1. The 
indices were generated as mentioned earlier with 
M=16. Generation of a single bootstrap set required 
the choice of rows from the [M x 2] matrix (label 
and the corresponding value) matching the indices. 
The four bootstrap sets of the matrix are given in 
Table 1. Each bootstrap set was now used to obtain 
the corresponding ROC and AUC.  The samples of 
the ROC plots corresponding to the four bootstrap 
sets are shown in Fig. 5.  The bootstrapping was 
carried out 5000 times yielding 5000 samples of the 
AUCs. With the availability of 5000 samples, the 
mean, standard deviation and 95% confidence 
interval (between 2.5 and 97.5 percentile as seen 
earlier) of the mean were then calculated. Fig. 6 
displays the result. The very broad range of the 95% 
confidence interval is a direct manifestation of the 
very low sample sizes.  
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Table 1 Bootstrapping procedure associated with the 
16-sample set from Fig. 3 (four sets of indices and 
corresponding matrices of [label, value] shown) 
 

 
 

 
Fig. 5 Four ROC plots associated with the four 
bootstrap sets in Table 1 
 
The next demo involved the comparison of the 
performances of two sensors that were part of the 
same machine vision or machine learning 
experiment. The goal was to see which sensor was 
the better of the two in terms of the AUC values. 
While the first set of measured values was seen in 
Table 1, Table 2 contains the details of the analysis 
with two sets. The first three columns in Table 2 
represent the binary labels, value#1 (sensor #1) and 
value #2 (sensor #2).  The ROC plots were obtained 
separately by pairing [label, value#1] and [label, 
value#2]. Fig. 7 displays the ROC curves 
corresponding to these two sets. Even though AUC 
(Az2) from sensor#2 is higher than AUC (Az1) from 

sensor#1, our interest is in assessing whether the 
difference in AUC values is statistically significant.  
This requires bootstrapping. 

 
Fig. 6 Histogram of the bootstrap samples of the 
area under the ROC curve and its statistics for the 
data in Fig. 3 
 

 
Fig. 7 ROC plots associated with the two data sets 
from Table 2 
 
Table 2 illustrates the steps involved in performing 
the bootstrapping of the pared sets. The first three 
columns of Table 2, namely the [M x 3] matrix 
consisting of [label, value#1, value#2] with M = 16 
was the input.   Bootstrapping now involves 
resampling of the rows of this matrix. Bootstrap 
indices were generated as in the previous case and 
the first four bootstrap sets (paired) are shown in 
Table 2. Each bootstrap set is now used to obtain 
AUC values just as in Fig. 7. With N-bootstrap sets 
(N=5000), we now have N samples of the areas, Az1 
and Az2, corresponding to sensors #1 and #2. With 
the resampling of rows containing paired values 
from sensor #1 and sensor #2, we retained the 
association (if it existed) between the two sets of 
values and this association would be reflected in the 

     input data                  indices                                          bootstrap sets                                                       
Label value #1 1 2 3 4                # 1              #2               #3            #4

0 1.1428 11 13 16 12 1 1.4308 1 0.8309 1 1.4868 1 1.4577
0 0.3511 7 16 5 7 0 1.3645 1 1.4868 0 0.8395 0 1.3645
0 0.9526 14 6 16 4 1 1.1524 0 0.9911 1 1.4868 0 0.8165
0 0.8165 3 14 9 3 0 0.9526 1 1.1524 0 0.8563 0 0.9526
0 0.8395 2 3 8 5 0 0.3511 0 0.9526 0 1.3647 0 0.8395
0 0.9911 3 14 4 5 0 0.9526 1 1.1524 0 0.8165 0 0.8395
0 1.3645 6 5 14 7 0 0.9911 0 0.8395 1 1.1524 0 1.3645
0 1.3647 14 1 7 1 1 1.1524 0 1.1428 0 1.3645 0 1.1428
0 0.8563 11 4 2 7 1 1.4308 0 0.8165 0 0.3511 0 1.3645
0 1.4065 4 11 6 1 0 0.8165 1 1.4308 0 0.9911 0 1.1428
1 1.4308 12 11 13 16 1 1.4577 1 1.4308 1 0.8309 1 1.4868
1 1.4577 13 10 14 16 1 0.8309 0 1.4065 1 1.1524 1 1.4868
1 0.8309 9 3 1 10 0 0.8563 0 0.9526 0 1.1428 0 1.4065
1 1.1524 3 12 5 13 0 0.9526 1 1.4577 0 0.8395 1 0.8309
1 1.5498 4 1 14 5 0 0.8165 0 1.1428 1 1.1524 0 0.8395
1 1.4868 4 2 9 2 0 0.8165 0 0.3511 0 0.8563 0 0.3511
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correlation of the AUCs (if correlation between the 
two sensors existed). 
 
The assessment of statistical significance entails the 
use of a z-test requiring the estimation of zscore. 
Following standard notation, the zscore of the two 
correlated data sets (in this case, Az1 and Az2) is 
[10, 20]  
 

( )
1 2 1 2

2 2
121 2 1 2 1 2var 2

score

Az Az
z

Az Az
µ µ µ

σσ σ ρσ σ

− − ∆
= = =

− + −
   (3) 

In eqn. (3), <.> represents the statistical average 
and  
 

 
( )

1 1

22 2
1 1 1 1var

Az

Az Az Az

µ

σ

=

= = −
  (4) 

 
( )

2 2

22 2
2 2 2 2

,

var

Az

Az Az Az

µ

σ

=

= = −
  (5) 

 1 2µ µ µ∆ = −   (6) 

 2 2 2
12 1 2 1 22σ σ σ ρσ σ= + −   (7) 

 1 2 1 2

1 2

Az Az Az Az
ρ

σ σ
−

=   (8) 

Equation (8) represents the correlation coefficient of 
the areas corresponding to the two sensors.  We may 
perform the z-test in two ways, either as a two-tailed 
(two-sided) test or a single-tailed (one-sided) test. 
The former tests whether the difference in AUCs is 
statistically significant and the latter tests whether 
one of the sensors performs better than the other (in 
the present case, a lower or left-tailed test because  
∆µ is negative).  For a two-tailed test, the critical 
value is 1.96 implying that zscore smaller than 1.96 
suggest that the null hypothesis is not rejected, i. e., 
there is no statistically significant difference 
between the performances of two sensors (measured 
in terms of the respective AUCs) at a significance 
level of 0.05. The alternate hypothesis (the 
difference in areas is statistically significant at 0.05 
level) cannot be rejected if zscore is larger than 1.96. 
For a single-tailed test (left-tailed), the critical value 
is -1.65. If zscore is smaller than -1.65, the alternate 
hypothesis (sensor # 2 performs better than sensor 
#1) cannot be rejected at a significance level of 
0.05. If ∆µ is positive, we will undertake a right-
tailed test and in this case, zscore larger than 1.65 
implies that the alternate hypothesis (sensor #1 
performs better than sensor # 2) cannot be rejected 
at a significance level of 0.05. The p-value 

identified as the probability associated with null 
hypothesis, p(Null Hypothesis) is expressed as [10] 
 

( )
( )
( ) ( )
( ) ( )

2Prob , two-tailed

Prob , left-tailed 0

Prob , right-tailed 0

score

score score

score score

X z

p Null Hypothesis X z z

X z z

 >
= < <
 > >

 (9) 

 
Figure 8 Histogram of the difference in area samples 

In eqn. (9), X is a standard normal random variable 
of zero mean and variance of unity. Fig. 8 displays 
the histogram of the samples of the AUCs and fig. 9 
provides the summary statistics of the comparison 
of AUCs corresponding to the two sensors.  
Regardless of whether one-sided or two-sided test is 
used, it is clear that the null hypothesis, (no 
difference between the performances of the two 
sensors) cannot be rejected. Even though the p-
values are given, the zscore provides answers 
regarding whether classifier #2 (sensor #2) performs 
better than classifier #1 (sensor #1) as described in 
the paragraph above and z-tests are not necessary. 
The p-value of the two tailed test is approximately 
twice the p-value of the single tailed test as seen in 
Fig. 9.  

The demos created so far offered students a 
reasonably clear set of steps involved in 
bootstrapping regardless of whether we are looking 
at the statistics of the population mean, AUC or 
comparison of the performance of two sensors (or 
diagnostic devices). However, the analysis based on 
AUCs done with a smaller data size offers only a 
very limited view. Students were also provided with 
larger sets of data from two sensors. In this case, the 
data consisted of 70 values of target absent and 60 
values of target present. Fig. 10 displays the two 
ROC plots corresponding to the two sensors.  
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Fig. 9 Summary statistics of the analysis of the areas 
under the ROC curves from the two data sets 

The bootstrapping (N=5000) procedure was now 
undertaken as described earlier and results are 
shown in Figs. 11, 12 and 13. Fig. 11 displays the 
histogram of the bootstrap samples of AUCs from 
the sensors, their mean and the respective standard 
deviations. Fig. 12 displays the statistics of the 
difference in AUCs along with the Gaussian fit and 
the mean and standard deviation of the difference in 
AUCs. Fig. 13 displays the summary of the 
statistical analysis. The value of the correlation 
coefficient is also provided showing that the sensors 
are correlated. Fig. 13 shows that alternate 
hypothesis (using either test) could not be rejected at 
a significance level of 0.05.  Appropriate theoretical 
aspects in Fig. 9 and Fig. 13 were generated 
automatically in Matlab to offer a formal and 
complete picture of the analysis without the need for 
any supplementary materials or notes. This 
automated generation of the summary results 
allowed the students to see the variability in the 
statistics of AUCs as the demos were run repeatedly 
(even though the basic conclusions did not change 
from iteration to iteration). 

 

Figure 10 ROC plots associated with the two larger 
data sets 

 
Fig. 11 Histograms of the bootstrap samples of the 
two areas 

The step-by-step procedure of bootstrapping 
demonstrated through so far still lacked verification 
from external sources. While the first demo of the 
study of the population mean does not require any 
extra proof (the mean and standard deviation of the 
population have formulaic answers as explained 
earlier), the analysis of the AUC of a single 
classifier (sensor) and the comparison of the AUCs 
from two classifiers (sensors) would not be 
pedagogically complete without verification of the 
results from other sources that do not use 
bootstrapping. 

 
Fig. 12 Histogram of the difference in area samples 
corresponding to the data sets used in Figure 10 
 

Formulae for estimating the standard deviation of 
the AUC and the zscore for the comparison AUCs 
obtained from two classifiers are available in 
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literature [14, 15].  While the statistical analysis of 
the AUC of a single sensor is relatively 
straightforward, the comparison of the performance 
of two correlated sensors is far more complex 
requiring access to a table of correlation values 
provided [15] or advanced statistical methods [14]. 
A simpler solution was to use commercial software 
for verification purposes that utilized both these 
methodologies. 

 
Fig. 13 Summary statistics of the analysis of the 
areas under the ROC curves from the two data sets 
in 

Medcalc® software (www.medcalc.org) was used in 
this work. It provided the option of statistical 
analysis undertaken using formulae suggested by 
both research groups for the estimation of standard 
deviation AUC and zscore for the comparison of 
AUCs from two sensors [14, 15].  The results from 
Medcalc (shown during the lecture) are provided in 
the supplementary materials (Pages 2-5). They 
clearly show that the statistical parameters estimated 
from the bootstrapping procedure demonstrated in 
this work align very well with the formulaic results 
(Medcalc only performs a two-sided z-test).  The 
larger data set used in this work is also included in 
the supplementary materials (Pages 8-11). 

 
4 Discussion and Conclusions   
Demos specifically created to elucidate the concepts 
and applications of bootstrapping were illustrated. 
The use of the smaller size data made it possible for 
the students to follow the inner workings of the 
bootstrapping procedure and the associated 
statistical explorations while highlighting the perils 
of having smaller sizes resulting in higher values of 
the standard deviations for the AUCs. The inclusion 
of the formulaic analysis of both smaller size and 

larger size data using Medcalc established two 
important points, the validation of the results of 
bootstrapping undertaken here and the simplicity 
offered by the bootstrapping procedure which relied 
only on a uniform random number generator. It was 
also clear that the ensuing statistical analysis could 
be carried out through the use of simple tools in 
Matlab. 
 
The demos also offered an opportunity for the 
students to reinforce some of the concepts learned 
earlier in the course such as the zscore (covered in 
connection with the Gaussian random variables), 
correlation of random variables, variance of the sum 
and difference of correlated random variables, 
Gaussian fits, and, learn newer topics such as the z-
test and the association between p-values and 
significance levels. Following the demo, students 
were assigned homework problems (individual data 
sets) on bootstrapping. They were allowed to use the 
Matlab command bootstrap(.) to create bootstrap 
sets for the analysis. Homework problems on paired 
sensor analysis were not assigned because of the 
lack of a large number of paired sets for individual 
students and it is expected that such a homework 
problem will be ready for the next academic year.  
While it was possible to observe the reactions of the 
students during the lecture from successful 
completion of the individual homework assignments 
and subsequent interactions outside the class, an 
indirect assessment of the students’ views was 
undertaken. Students were surveyed in week#1 in 
seven areas in the form of seven questions with 
Likert style scores of 1, 2, 3, and 4 corresponding to 
their level of knowledge [very little, some, well, 
very well], with questions on ROC (Q#5) and 
bootstrapping (Q#6). The same survey was given on 
the last day of classes. Even though the course had 
73 students, 68 students were present during the 
survey in week#1 and 66 students were present on 
the last day of classes.  Surveys were anonymous 
and the survey questionnaire is included in the 
supplementary materials (Page 6). 
 
For Q#5, the mean and standard deviation of the 
score were 1.134 and 0.4198 respectively in week#1 
and 2.8336 and 0.8392 respectively in week#10. For 
Q#6, the mean and standard deviation of the score 
were 1.1765 and 0.4869 respectively in week#1 and 
2.4848 and 0.8813 respectively in week#10. These 
values suggest an enhanced understanding of the 
topics during the instruction. Even though the views 
of the students are subjective, they still offered some 
positive perspective on the data analytics portion of 
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the course. Since the surveys were anonymous, it 
was not possible to undertake a paired t-test to see 
the increased average scores were statically 
significant.  Simple t-tests and Wilcoxon rank sum 
tests [10] showed that the alternate hypothesis that 
students gained understanding could not be rejected 
(p-value <0.001). The bar charts displaying the 
survey results pertaining to Q#5 and Q#6 are 
included in the supplementary materials (Page 7). 
 
The demos created to articulate the details of 
bootstrapping to expand the topics in data analytics 
appear to have been beneficial to the students. 
Author is planning to incorporate additional topics 
on non-parametric hypothesis testing (z-tests, t-tests, 
Wilcoxon rank sum test etc.) during the upcoming 
years using similar methodology developed in this 
work. 
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Table 2 Bootstrapping procedure associated with the data collected from two sensors 
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