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Abstract: Study on properties of general Sierpinski fractals, including dimension, measure, Lipschitz equivalence,
etc is very interesting. Like other fractals, general Sierpinski fractals are so complicated and irregular that it is
hopeless to model them by simply using classical geometry objects. In [22], the authors the geometric modelling
of a class of general Sierpinski fractals and their geometric constructions in Matlab base on iterative algorithm
for the purpose of studying fractal theory. In this paper, we continue such investigation by adding certain rotation
structure and obtain some results by extending our approaches to three dimensional space. Our results may be used
for any graphical goal, not only for mathematical reasons.
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1 Introduction
Geometric modelling of fractal objects not only plays
an important role in the study of fractal theory, but
also is a difficult process in the field of computer
graphics. Computer simulation is based on the ba-
sic theory of fractal. But drawing strange and amaz-
ing fractal images by computer, simultaneously in turn
can provide us the most intuitive discussion and expla-
nation, greatly promoting the development of fractal
theory. Computer graphics provides many algorithms
to generate fractal images, such as IFS(Iterated Func-
tion System), L-system, recursive, time-escaped algo-
rithm, etc. There are various source programs are de-
signed based each algorithm. However, to our knowl-
edge, most algorithm and source programs are for
graphical goal and often done by non-mathematical
researchers. This makes them are difficult to un-
derstand and application for most mathematical re-
searchers because of the lack of professional knowl-
edge of programming language(such as Visual Basic,
Visual C++, Delphi, Java, etc). Also, for this reason,
the following question aries naturally.

Question 1. How to use a popular and easy-to-
understand way as much as possible, in a real-time
information exchange interface, such that the mathe-
matical researchers can well obtain the desired im-
ages in their study by modifying a few parameters,
without need to know much about the complex com-

puter programming language?

The present paper does not give a complete an-
swer to Question 1, which is likely to be extremely
hard. It does, however, study the question in several
important special case that should allow us to gain
some deep insight into the problem.

Fixing an integer n ≥ 2, let D1 = {0, 1, · · · , n−
1}2 and D2 = {1, · · · , n}2. For A ⊂ D1, B ⊂ D2,
we assume that 1 < ]A + ]B < n2 to exclude the
trivial case, where ]A and ]B denote the cardinalities
of A and B respectively. Let T := T (A,B) ⊂ R2

be the unique non-empty compact set satisfying the
following set equation:

T = [(T + A) ∪ (B − T )]/n.

We shall call T (A,B) a general Sierpinski carpet
throughout this paper. Let α = (1, 0) and β =
(1/2,

√
3/2). If we recast the above sets D1 and D2

as follows:

D1 =
{

k1α+k2β : k1+k2 ≤ n−1 and k1, k2 ∈ N∪{0}
}

and

D2 =
{

k1α+k2β : 2 ≤ k1+k2 ≤ n and k1, k2 ∈ N
}

,

then T (A,B) is called a general Sierpinski gasket.
Notice that here A or B may be empty. In general,
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(a) (b)

Figure 1: (a) Sierpinski carpet (b) Sierpinski gasket

T (A,B) is of 180◦ rotation structure when B 6= ∅.
A familiar example of a general Sierpinski carpet is
the Sierpinski carpet(see Figure 1(a)), in which n =
3, A = D1 \ {(1, 1)}}, B = ∅. A familiar ex-
ample of a general Sierpinski gasket is the Sierpin-
ski gasket (see Figure 1(b)), in which n = 2, A =
{(0, 0), (1, 0), (1/2,

√
3/2)}, B = ∅.

Let Q = [0, 1]2(resp. 4), where

4 = {c1α + c2β : c1 + c2 ≤ 1 and 0 ≤ c1, c2 ≤ 1}

be the equilateral triangle with lower-left coordinate
(0, 0) and side 1. We define T 0(A,B) = Q,

T 1(A,B) = [(Q + A) ∪ (B −Q)]/n,

and recurrently,

T k+1(A,B) = [(T k(A,B)+A)∪(B−T k(A,B))]/n

for k ≥ 1. Then T k(A,B) is a union of squares (resp.
equilateral triangles) of size 1/nk (called them the k-
squares (resp. k-triangles)). For simplify, we shall
call T k(A,B) a k-squares (resp. k-triangles). Clearly
T k+1(A,B) ⊂ T k(A,B), and

T (A,B) =
∞⋂

k=1

T k(A,B).

Recently, many works have been devoted to the
study of properties of general Sierpinski fractals that
described as above include, dimension, measure, Lip-
schitz equivalence, etc, see [8, 10–12, 17, 18, 21–25]
and the references in all of these. There has been no-
table progress on the study of general Sierpinski frac-
tals. Yet much is still unknown, and this progress has
led to more unanswered questions, especially the gen-
eral Sierpinski fractals with certain rotation structure.
For such fractal, how to achieve the goal described in
question 1 has become the most concerned problem
for most mathematical researchers at present.

An fundamental concept in fractal geometry is it-
erated function systems. It is introduced in Hutchin-
son [9] as a unified way of generating and classifying
a broad class of fractals which contains classical Can-
tor sets, dragon curves, limit sets of Kleinian groups,
Sierpinski gaskets, Julia set, and much more. Among
all algorithms for generating fractal images, IFS algo-
rithm may be most popular one. There many applica-
tion on it(see [1,2,4,7,14,16,22] and references there
in). IFS algorithm include deterministic algorithm and
random iterated algorithm. The mathematical basis
of deterministic algorithm was developed in Hutchin-
son [9]. The random iterated algorithm was developed
in Barnsley and Demko [2]. IFS algorithm is very
simple, it is easy to implement in any programming
language and the results it generates are very spectac-
ular and may be used for any mathematical reason, not
only for graphical goal.

Matlab is a high-level technical computing lan-
guage and interactive environment for algorithm de-
velopment, data visualization, data analysis, and nu-
merical computation. A proprietary programming
language developed by MathWorks. It has a strong
audience within the applied mathematics community.
Matlab was first adopted by researchers and practi-
tioners in control engineering, Little’s specialty, but
quickly spread to many other domains. It is now also
used in education, in particular the teaching of linear
algebra, numerical analysis, and is popular amongst
scientists involved in image processing. For further
details on Matlab, see [13].

Notice that the powerful advantages of Matlab in
numerical calculation and graphic visual ability and
its programming language is more easily understood
and mastered by researchers in mathematics. In [22],
the authors study the geometric modelling of general
Sierpinski with no rotation structure and their geomet-
ric constructions in Matlab environment base on IFS
algorithm for the purpose of mathematical research.
In this paper, we continue such investigation started
in [22]. We remove the restriction on no rotation struc-
ture and obtain the geometric modelling of T (A,B)
and T k(A,B), which are needed in the study of prop-
erties of general Sierpinski fractal. The objects con-
sidered in the present paper are complex and intrigu-
ing since the 180◦ rotation structure are allowed. Al-
though the idea used was early developed by others,
the analysis is technical and the results obtained are
valuable and interesting to the readers.

The paper is organized as follows: In Section 2,
we briefly review the iterated function system and cor-
responding algorithms: deterministic algorithm and
random iterated algorithm. We discuss the geomet-
ric modelling of T k(A,B) using deterministic algo-
rithm in Section 3, and give corresponding source pro-
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gram designed in Matlab programming language. In
Section 4, we present the random iterated algorithm
implemented in the Matlab programming language to
generate T (A,B). In Section 5, we discuss the ex-
tension of our methods in three dimensional space.
Section 6 is conclusion. Several examples are given
in Section 3, Section 4 and Section 5 to illustrate our
results.

2 Preliminary
2.1 Iterated Function System
Let (X, d) be a complete metric space, often Eu-
clidean space Rn. We say that the mapping S : X →
X is a contraction with contraction ratio r if

r = sup
x∈X,x 6=y

d(S(x), S(y))
d(x, y)

< 1.

In particular, we say that a contraction S with contrac-
tion ratio r is a similitude if d(S(x), S(y)) = rd(x, y)
for all x, y ∈ X .

We call a finite family of contractions {Si : i =
1, 2, · · · , N} are defined in (X, d) an iterated func-
tion system or IFS, and denote it by {X : Si, i =
1, 2, · · · , N}. If ri is contraction ratio of Si, i =
1, 2, · · · , N , then r = max{r1, r2, · · · , rN} is called
contraction ratio of IFS. Let F(X) denote the class of
all non-empty subsets of X . For A,B ⊂ F(X), the
Hausdorff metric between A and B is defined by

dH(A,B) = max

[
sup
x∈A

d(x,B), sup
y∈B

d(A, y)
]
.

By [9], (F(X), dH) is a complete metric space when
(X, d) is a complete metric space. It is a standard
fact that every contraction map (in a complete metric
space) has a unique fixed point. Applying the fact to
(F(X), dH), we can obtain the following contraction
principle on (F(X), dH), similar description can also
be seen in many literatures, such as [5, 6, 9].

Lemma 1. Let {X : Si, i = 1, 2, · · · , N} be an it-
erated function system with contraction ration r and
mapping S : F(X) → F(X) be defined by

S(A) =
N⋃

i=1

Si(A), for any A ∈ F(X).

Then S is a contraction with ratio r and there is a
unique fixed point(attractor or invariant set) K that
satisfies

K = S(K) =
N⋃

i=1

Si(K)

and for any A ∈ F(X)

K = lim
n→∞Sn(A). (1)

2.2 Deterministic Algorithm and Random It-
erated Algorithm

Considering the iterated function system {R2 : Si, i =
1, 2, · · · , N}, where Si is an affine transformation
with the form

Si

(
x
y

)
=

(
ai bi

ci di

)(
x
y

)
+

(
ei

fi

)
, (2)

i = 1, 2, · · · , N . According to the Lemma 1, we can
obtain two algorithms for generating fractal images on
plane. One is deterministic algorithm, the other is ran-
dom iterated algorithm.

Deterministic algorithm: The mathematical basis
of this method is very simple, and it is the result of
the Lemma 1. Here is basic process: Choose a non-
empty set A0 ∈ F(R2). Then compute successively
the sequence of sets {Am = Sm(A0)}∞m=1 by

Am+1 = S(Am) =
N⋃

i=1

Si(Am).

It follows from 1 that the sequence {Am} converges to
the attractor K of the IFS {X : Si, i = 1, 2, · · · , N}
in the Hausdorff metric. In fact, if m is large enough,
then Am is approximately equal to K, and is basically
indistinguishable. Thus the image of attractor drawn
by us is actually Am with large enough m. This ap-
proach to generate fractal requires heavy amount of
memory, because in each iteration generate some im-
age and to store image generated by affine transforma-
tion requires large amount of memory.

Random iterated algorithm: Let P =
{p1, p2, · · · , pN} be a set of probability weights,
where pi can be thought of as relative weight for each
Si and

∑N
i=1 pi = 1. In general, we take

pi ≈ |detAi|∑N
i=1 |detAi|

,

where

Ai =
(

ai bi

ci di

)

and |detAi| denote the determinant of Ai, i =
1, 2, · · · , N . If |detAi| = 0, we take a small pos-
itive number as pi(For example pi = 0.01) and
make appropriate adjustments for other pk such that∑N

i=1 pi = 1. An iterated function system with prob-
abilities consists of an iterated function system {R2 :
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S1, S2, · · · , SN} together with a set {p1, p2, · · · , pN}
of probability weights. We often denote such iterated
function system by

{R2 : S1, S2, · · · , SN , p1, p2, · · · , pN}.

This random method is different from the deter-
ministic approach in that the initial set is a singleton
point and at each level of iteration, just one of the
defining contraction transformations is used to calcu-
late the next level. At each level, the contraction trans-
formation is randomly selected and applied. Points
are plotted, except for the early ones, and are dis-
carded after being used to calculate the next value.
The random algorithm avoids the need of a large com-
puter memory, it is best suited for the small computers
on which one point at a time can be calculated and dis-
play on a screen. On the other hand it takes thousand
of dots to produce an image in this way that does not
appear too skimpy. Here is basic process: Choose an
arbitrary point x0 ∈ R2 as start point, we randomly
choose a mapping Si in {S1, S2, · · · , SN} accord-
ing to probability distribution {p1, p2, · · · , pN}, and
move to x1 = Si(x0). We then make another random
choice of Sj , and move to x2 = Sj(x1). This contin-
ues indefinitely, we obtain a sequence {x0, x1, · · · }.
When Nmax is large enough, according to Lemma 1,
{xn : n ≥ Nmax} is indistinguishable from K. In
particular, we choose Nmax = 0 if x0 ∈ K.

3 Construction of General Sierpinski
Fractals Using Deterministic Algo-
rithm

According to [3], we can obtain a general Sierpin-
ski carpet(resp. general Sierpinski gasket) T (A,B)
described in introduction as follows: we decompose
initial pattern [0, 1]2(resp. 4) into n2 closed sub-
squares(resp. subtriangles) in the obvious manner, so
that these subsquares(resp. subtriangles) have disjoint
interiors and sidelength 1/n. We choose some sub-
squares(resp. subtriangles) according to the rule de-
scribed by A and B, again divide each of these sub-
squares(resp. subtriangles) into n2 congruent ones,
chose the subsquares(resp. subtriangles) according
the same rule and repeat the procedure inductively to
the infinity, then we get the general Sierpinski gas-
ket(resp. general Sierpinski carpet) T (A,B). For any
k ≥ 1, then T k(A,B) described in introduction is the
union of squares (resp. triangles) that are chosen in
the step k. For a ∈ A, b ∈ B, set

Sa(x) =
1
n

(x + a), Sb(x) =
1
n

(b− x). (3)

Then T (A,B) is unique invariant set of iterated func-
tion system {Sa}a∈A ∪ {Sb}b∈B .

3.1 Steps for Creating T k(A,B)(resp.
T (A,B)) Using Deterministic Algorithm

For creating T k(A,B) using deterministic algorithm
steps given below should be considered.

Step 1: Draw an initial pattern([0, 1]2 or 4) on
the plane, and decompose it into n2 congruent ones
in the obvious manner (for example, we can divide a
given equilateral triangle into n2 congruent triangles
by drawing n − 1 lines, parallel to each edge and di-
viding the other two edges into n equal parts).

Step 2: Create a 2× 4lk (resp. 2× 3lk) matrix of
zeros to store vertex coordinates of all small squares
(resp. triangles) chosen after each construction.

Step 3: Initialize the matrix in Step 2 with vertex
coordinates of initial pattern which are described in
the first step.

Step 4: Applying transformations (3) on vertex
coordinates of initial pattern and repeat Step 1 for each
subpattern obtained after applying transformations.

Step 5: Again apply transformations (3) on the
vertex coordinates of all subpattern obtained in Step 4
and repeat Step 1 for each new subpattern.

Step 6: Repeat step 5 again and again, this step 5
can be repeated infinite number of times.

3.2 Source Program for Creating k-squares
T k(A,B) Using Deterministic Algorithm

function Fractal square (E, F, n, k)
% FRACTAL SQUARE: Display the geometric con-
struction of k-squares T k(A,B).
% Call format: Fractal square (E, F, n, k)
% E and F are two dimensional arrays with the form

[c11, c12, . . . , c1m; c21, c22, . . . , c2m],

where for any 1 ≤ i ≤ m,

(nc1i, nc2i) ∈
{

A, when E is of such form;
B, when F is of such form.

% 1/n is contraction radio.
% k is iterated depth.
% Divide a unit square [0, 1]2 into n2 congruent
squares by drawing n − 1 lines, parallel to a pair of
opposite edges and dividing the other pair of opposite
edges into n equal parts.
t = 0 : 1/n : 1;
for i = 1 : (n + 1)

tx(1) = t(i); tx(2) = t(i); ty = [0, 1];
plot(tx, ty,′ b′)

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Zhiyong Zhu, Enmei Dong

E-ISSN: 2224-3410 46 Volume 14, 2017



hold on
plot(ty, tx,′ b′)
hold on

end
axis square
d = 1;
if isempty(E)

LE = 0;
else

LE =length(E(1, :));
end
if isempty(F )

LF = 0;
else

LF =length(F (1, :));
end
l = LE + LF ;
M =zeros(2, 4 ∗ lˆk); % M is an 2 × 4lk matrix of
zeros which be used to store vertex coordinates of all
small squares after each iteration.
M(:, 1 : 4) = [0, 1, 1, 0; 0, 0, 1, 1]; % Initialization of
matrix M .
for h = 1 : k

C = 1/n ∗M ; D = −1/n ∗M ;
for i = 0 : LE − 1,

M(:, i ∗ 4 ∗ (lˆ(h− 1)) + 1 : ((i + 1) ∗ (4 ∗
(lˆ(h − 1))))) = C(:, 1 : (4 ∗ (lˆ(h − 1)))) + E(:
, i + 1) ∗ ones(1, 4 ∗ (lˆ(h− 1)));

end
for j = 0 : LF − 1

M(:, ((LE + j) ∗ (4 ∗ (lˆ(h − 1)))) + 1 :
(((LE + j) + 1) ∗ (4 ∗ (lˆ(h − 1))))) = D(:, 1 :
(4∗(lˆ(h−1))))+F (:, j+1)∗ones(1, 4∗(lˆ(h−1)));

end
d = d/n;

% Divide each h−square into n2 congruent squares
for m = 1 : lˆh

squaregrid(min(M(1, 4 ∗ m − 3 : 4 ∗
m)),min(M(2, 4 ∗m− 3 : 4 ∗m)), n, d);

end
end
% Fill each small square in T k(A,B) with blue.
for i = 1 : lˆk

patch(M(1, 4 ∗ i − 3 : 4 ∗ i),M(2, 4 ∗ i − 3 :
4 ∗ i),′ b′);
end
set(gca,’xtick’,[],’xticklabel’,[]),
set(gca,’ytick’,[],’yticklabel’,[]) % Do not dis-
play the coordinate axis.
function squaregrid(x, y, r, s)
a = [x : s/r : x + s]; b = [y : s/r : y + s];
plot(a, meshgrid(b, a),′ b′)
hold on
plot(meshgrid(a, b), b,′ b′)

The percent-sign (%) implies that this is a remark
statement after it, the text shown in italics following
this sign. The remark statement is ignored when run-
ning program.

3.3 Source Program for Creating k-triangles
T k(A,B) Using Deterministic Algorithm

function Fractal triangle(E, F, n, k)
% FRACTAL TRIANGLE: Display the geometric con-
struction process of k−triangles T k(A,B).
% Call format: Fractal triangle(E, F, n, k).
% E and F are two dimensional arrays with the form

[c11, c12, . . . , c1m; c21, c22, . . . , c2m],

where for any 1 ≤ i ≤ m,

(nc1i, nc2i) ∈
{

A, when E is of such form;
B, when F is of such form.

% 1/n is contraction radio.
% k is iterated depth.
trianglegrid([0, 1, 1/2], [0, 0, sqrt(3)/2], n); % Draw
an equilateral triangle with vertex coordinates
(0, 0), (1, 0), (1/2,

√
3/2), and divide it into n2 con-

gruent triangles.
axis square, hold on
if isempty(E)

LE = 0;
else

LE =length(E(1, :));
end
if isempty(F )

LF = 0;
else

LF =length(F (1, :));
end
l = LE + LF ;
M =zeros(2, 3 ∗ lˆk); % M is an 2 × 3lk matrix of
zeros which be used to store vertex coordinates of all
small triangles after each iteration.
% Initialization of M .
M(:, 1 : 3) = [0, 1, 1/2; 0, 0, sqrt(3)/2];
for h = 1 : k

C = 1/n ∗M ;
D = −1/n ∗M ;
for i = 0 : (LE − 1)

M(:, i ∗ 3 ∗ (lˆ(h− 1)) + 1 : ((i + 1) ∗ (3 ∗
(lˆ(h − 1))))) = C(:, 1 : (3 ∗ (lˆ(h − 1)))) + E(:
, i + 1) ∗ ones(1, 3 ∗ (lˆ(h− 1)));

end;
for j = 0 : (LF − 1)

M(:, ((LE + j) ∗ (3 ∗ (lˆ(h − 1)))) + 1 :
(((LE + j) + 1) ∗ (3 ∗ (lˆ(h − 1))))) = D(:, 1 :
(3∗(lˆ(h−1))))+F (:, j+1)∗ones(1, 3∗(lˆ(h−1)));
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end;
for m = 1 : lˆh % Divide each equilateral trian-

gle in T h(A,B) into n2 congruent triangles.
trianglegrid(M(1, 3∗m−2 : 3∗m),M(2, 3∗

m− 2 : 3 ∗m), n)
end

end
% Fill each equilateral triangle in T k(A,B) by blue.
for i = 1 : lˆk

patch(M(1, 3 ∗ i − 2 : 3 ∗ i),M(2, 3 ∗ i − 2 :
3 ∗ i),′ b′);
end
set(gca,’xtick’,[],’xticklabel’,[]),
set(gca,’ytick’,[],’yticklabel’,[]) % Do not dis-
play the coordinate axis.
function trianglegrid(x, y, n)
plot([x(1), x(2), x(3), x(1)], [y(1), y(2), y(3), y(1)])
hold on
a = [linspace(x(1), x(2), n+1); linspace(y(1), y(2),
n + 1)];
b = [linspace(x(2), x(3), n+1); linspace(y(2), y(3),
n + 1)];
c = [linspace(x(3), x(1), n+1); linspace(y(3), y(1),
n + 1)];
for i = 2 : n

plot([a(1, i), b(1, n+2− i)], [a(2, i), b(2, n+2−
i)],′ b′)

hold on
end
for j = 2 : n

plot([b(1, j), c(1, n+2−j)], [b(2, j), c(2, n+2−
j)],′ b′)

hold on
end
for k = 2 : n

plot([c(1, k), a(1, n + 2 − k)], [c(2, k), a(2, n +
2− k)],′ b′)

hold on
end

Remark 2. The difference between here and source
program presented in Section 3.3 is that we replace
the command of dividing square by the command of
dividing triangle in each step construction.

3.4 Some Examples

Saving the text in a file called Fractal square.m
(resp. Fractal triangle.m) in your current directory.
We can obtain the fine structure of T k(A,B) by
calling corresponding self-defining function: Fractal
square(E, F, n, k)(resp.Fractal triangle(E, F, n, k))
in the Command Window of Matlab.

(a) The first step (b) The second step

(c) The third step (d) The fourth step

Figure 2: The first four steps of constructing General
Sierpinski carpet T (A1, B1).

Example 1. Let n = 3,

A1 = (0, 0), (0, 2), (2, 1), B1 = (2, 2).

We can obtain the fine structures of the first four steps
of constructing General Sierpinski carpet T (A1, B1)
by running the following instructions in turn:

Fractal square([0, 0, 2/3; 0, 2/3, 1/3], [2/3; 2/3], 3, k),

k = 1, 2, 3, 4,see Figure 2.

Example 2. Let n = 3,

A2 = {(1, 0), (
1
2
,

√
3

2
), (

3
2
,

√
3

2
)},

B2 = (
3
2
,

√
3

2
), (

5
2
,

√
3

2
), (2,

√
3)}.

We can obtain the fine structures of the first
four steps of constructing general Sierpinski gasket
T (A2, B2) by running the instructions in turn: Frac-
tal triangle(E, F, 3, k), where

E = [1/3, 1/6, 1/2; 0, sqrt(3)/6, sqrt(3)/6],

F = [1/2, 5/6, 2/3; sqrt(3)/6, sqrt(3)/6, sqrt(3)/3],

k = 1, 2, 3, 4,see Figure 3.
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(a) The first step (b) The second step

(c) The third step (d) The forth step

Figure 3: The first four steps of constructing general
Sierpinski triangle T (A2, B2).

When either of A and B is empty set, we
can also obtain the fine structure of k−squares(resp.
k−triangles) T k(A,B) according to the method pre-
sented in Example 3(resp. Example 4).

Example 3. Let n = 4,

A3 = {(0, 0), (3, 0), (1, 1), (2, 1), (1, 2), (2, 2),

(0, 3), (3, 3)}, B3 = ∅,
We can obtain the fine structures of the first four steps
of constructing general Sierpinski carpet T (A3, B3)
by running the following instructions in turn:

Fractal square(E, F, 4, k), k = 1, 2, 3, 4,

where E = [0, 3/4, 1/4, 1/2, 1/4, 1/2, 0, 3/4; 0, 0, 1/4,
1/4, 1/2, 1/2, 3/4, 3/4], F = [], see Figure 4.

Example 4. Let n = 2,

A4 = {(0, 0), (1, 0), (
1
2
,

√
3

2
)}, B4 = ∅.

We can obtain the fine structures of the first four steps
of constructing classic Sierpinski gasket T (A4, B4)
by running the instructions in turn:

Fractal triangle([0, 1/2, 1/4; 0, 0, sqrt(3)/4], [], 2, k),

k = 1, 2, 3, 4, see Figure 5.

(a) The first step (b) The second step

(c) The third step (d) The third step

Figure 4: The first four steps of constructing General
Sierpinski carpet T (A3, B3).

(a) The first step (b) The second step

(c) The third step (d) The forth step

Figure 5: The first four steps of constructing Sierpin-
ski gasket T (A4, B4).
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Remark 3. Dividing each square(resp. equilateral
triangle) chosen in each step for generating T (A,B)
into n2 congruent squares(resp. triangles) will be
helpful for researcher to investigate deeper the con-
nection between higher and lower k-squares (resp. k-
triangles). We can make the grid not shown in the fig-
ure by deleting the function of drawing grid in source
programs presented as above when we don’t want
grid.

Remark 4. Our results in present paper include the
results in our previous paper [22].

4 Applying Random Iterated Algo-
rithm to Generate General Sier-
pinski Fractal

Applying random iterated algorithm to generate frac-
tal, the principle is clear and simple, it is easy to im-
plement in any programming language and the results
it generates are very spectacular and may be used for
any graphical goal, not only for mathematical reasons.
The method may be illustrated with the Yuval Fishers
special copyrighter(see [20]) which receives as entry
an arbitrary image (may be a point) and applies to
it the set of affine transformation, generating a new
image. The image obtained is transmitted, using a
feedback process, on the entry of the copyrighter and
the process is repeated for several times. For exam-
ple, consider that the transformations are those which
describe the Sierpinski gasket. If we test the Yuval
Fisher copyrighter for different initial images we can
observe that the final image is the same, so it not de-
pends on the initial image but is defined by the affine
transforms applied to it. It is one of the most used
methods of generating a self-similar fractals. For cre-
ating T (A,B) using random iterated algorithm steps
given below should be considered.

Step 1: Choose (x, y) = (0, 0) as starting point.
Step 2: Let (x1, y1) be the point obtained by ap-

plying a transformation in the IFS, where each trans-
formation are chosen with probability 1/n.

Step 3: Repeat the step 2 with (x1, y1) as initial
point.

Step 4: Repeat step 3 again and again, this step 3
can be repeated infinite number of times.

4.1 Source Program for Creating T (A,B)
Using Random Iterated Algorithm

function Sierpinskifractal (k, n,M,P )
% SIERPINSKIFRACTAL: Drawing general Sierpin-
ski carpet(resp. triangle) T (A,B) by random iterated
algorithm.

% Call format: Sierpinskifractal (k, n,M,P ).
% k is the number of iteration.
% n is the number of affine transformations in IFS.
% M = [a11, a12, · · · , a16; a21, a22, · · · , a26; · · · ,
an1, an2, · · · , an6] is a n× 6 array, where

[ai1, ai2, · · · , ai6] = [ai, bi, ei, ci, di, fi]

satisfying (2).
% P = (p1, p2, · · · , pn) is a dimension array with∑n

i=1 pi = 1.
x = 0; y = 0; r =rand(1, k); B =zeros(2, k);
w =zeros(1, n);w(1) = P (1);
for i = 2 : n

w(i) = w(i− 1) + P (i);
end
m = 1;
for i = 1 : k

for j = 1 : n
if ri < w(j)

a = M(j, 1); b = M(j, 2); e =
M(j, 3); c = M(j, 4); d = M(j, 5); f = M(j, 6);

break;
end

end
x = a ∗ x + b ∗ y + e; y = c ∗ x + d ∗ y + f ;
B(1,m) = x; B(2,m) = y;
m = m + 1;

end
plot(B(1, :),B(2, :),’.’,’markersize’,0.5)
set(gca,’xtick’,[],’xticklabel’,[]);
set(gca,’ytick’,[],’yticklabel’,[])

4.2 Comments and Examples

Remark 5. We can’t obtain the fine structure of
k−squares(resp. k−triangles) by using random iter-
ated algorithm. But we can obtain close approxima-
tion of general Sierpinski carpet(resp. general Sier-
pinski gasket) T (A,B) faster than using deterministic
algorithm and need lesser computer memory.

Remark 6. For facilitating the readers to observe and
understand, one may add the command lines which di-
vide [0, 1]2(resp. equilateral triangle) into n2 congru-
ent ones (see source programs in Section 3 or [22] for
detail) at the beginning of program, the rest remain
the same.

Example 5. Let n = 5,

A5 = {(0, 0), (1, 0), ((2, 0))}, B5 = {(2, 2), (2, 3)}.
We can obtain close approximation of general Sierpin-
ski carpet T (A5, B5) by calling the function: fractal
(k, 5,M, P ) in the Matlab command window prompt,
as shown in Figure 6. Table 1 lists corresponding
transformations.
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(a) After 1000 iterations (b) After 5000 iterations

(c) After 10000 iterations (d) After 50000 iterations

Figure 6: General Sierpinski carpet T (A5, B5) gener-
ated using some iterations.

Table 1: T (A5, B5)

Si a b c d e f p

S1 1/3 0 0 1/3 0 0 1/5
S2 1/3 0 0 1/3 1/3 0 1/5
S3 1/3 0 0 1/3 2/3 0 1/5
S4 -1/3 0 0 -1/3 2/3 2/3 1/5
S5 -1/3 0 0 -1/3 2/3 1 1/5

Remark 7. This program can draw more fractals ex-
cept the general Sierpinski fractals mentioned in this
paper.

Example 6. We can obtain four famous fractals as
shown in Figure 7, the corresponding transformations
are listed in Table 2-Table 5.

Table 2: Bernsley fern leaf

Si a b c d e f p

S1 0 0 0 0.16 0 0 0.01
S2 0.85 0.04 -0.04 0.85 0 80 0.85
S3 0.2 -0.26 0.23 0.22 0 80 0.07
S4 -0.15 0.28 0.26 0.24 0 20 0.07

(a) Bernsley fern leaf (b) Fractal tree

(c) Levy curve (d) Flamboyrent crown

Figure 7: Examples of Non-general Sierpinski fractals
generated using 50000 iterations

Table 3: Fractal tree

Si a b c d e f p

S1 0 0 0 0.5 0 0 0.05
S2 0.42 -0.42 0.42 0.42 0 200 0.4
S3 0.42 0.42 -0.42 0.42 0 200 0.4
S4 0.1 0 0 0.1 0 200 0.15

Table 4: Levy curve

Si a b c d e f p

S1 0.5 -0.5 0.5 0.5 0 0 0.05
S2 0.5 0.5 -0.5 0.5 150 150 0.5

Table 5: Flamboyrent crown

Si a b c d e f p

S1 0.25 0 0 0.5 0 0 0.154
S2 0.5 0 0 0.5 -75 150 0.307
S3 -0.25 0 0 -0.25 75 300 0.078
S4 0.5 0 0 0.5 0 225 0.307
S5 0.5 0 0 -0.25 150 375 0.154

5 Extension

It is well know that the topological structures of 3D
general Sierpinski fractals become more challenging
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and intriguing than 2D general Sierpinski fractals. In
this section, since IFS can be defined for any dimen-
sion, we shall consider the extension of our techniques
to three dimensional general Sierpinski fractals. Fix-
ing an integer n ≥ 2, let D = {0, 1, · · · , n− 1}3. For
A ⊂ D, we assume that 1 < ]A < n3 to exclude the
trivial case. Let T (A) ⊂ R3 be the unique non-empty
compact set satisfying the following set equation:

T = (T + A)/n.

We shall call T (A) a general Sierpinski sponge
throughout this section. A familiar example of a gen-
eral Sierpinski sponge is the Sierpinski sponge(see
Figure 8), in which n = 3, A = D\{(1, 1, 0), (1, 0, 1
),(0,1,1), (1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)}}. Simi-
larly, we define T 0(A) = [0, 1]3, T 1(A) = (T 0(A) +
A)/n, and recurrently, T k+1(A) = (T k(A) + A)/n
for k ≥ 1. Then T k(A) is a union of cubes of
size 1/nk (called them k−cubes ). For simplify, we
call T k a k−cubes. Clearly T k+1(A) ⊂ T k(A) and
T (A) = ∩∞k=1T

k(A).
According to [3], we can obtain a general Sier-

pinski sponge T (A) as follows: we divide initial cube
[0, 1]3 into n3 closed subcubes in the obvious manner,
so that these subcubes have disjoint interiors and side
length 1/n. We choose some subcubes according to
the rule described by A, again divide each of these
subcubes into n3 congruent ones, chose the subcubes
according the same rule and repeat the procedure in-
ductively to the infinity, then we get general Sierpinski
sponge T (A). For any k ≥ 1, then T k(A) is the union
of cubes that are chosen in the step k. Clearly, T (A)
and T k(A) are not of rotation structures mentioned as
above. For a ∈ A, we define

Sa(x) =
1
n

(x + a). (4)

Then T (A) is unique invariant set of iterated function
system {Sa}a∈A.

In this section, we obtain the geometric mod-
elling of such T k(A)(or T (A)) by using two methods,
which are the extension of our techniques used in two
dimensional space. For conveniently, we shall call the
outward lower-left vertex of cube the lower-left vertex
throughout this section.

5.1 Source Program 1 for Creating k− cubes
T k(A) Using Deterministic Algorithm

Similar to the steps of creating k−squares T k(A, ∅)
in [22], we shall consider the following steps of gen-
erating k− cubes using deterministic algorithm.

Step 1: Select the lower-left vertex coordinate of
initial cube it can be (0, 0, 0).

Step 2: Compute the lower-left vertex coordi-
nates of all 1−cubes by applying transformations (4)
on the lower-left vertex coordinate of initial cube.

Step 3: Again apply transformations (4) on the
lower-left vertex coordinates of all new cubes ob-
tained after applying transformations (4).

Step 4: Repeat step 3 again and again, this step 3
can be repeated infinite number of times.

Step 5: Create three empty arrays to store x, y
and z coordinates of lower-left corner vertex of all
k−cubes respectively.

Step 6: Draw k− cubes by patch function which
is the low-level graphics function for creating patch
graphics objects in Matlab.

We implement the above algorithm in Matlab pro-
gramming language as follows:
function Sierpinskicube1 (M, x, y, z, d, n, k)
% SIERPINSKICUBE1: Drawing general Sierpinski
sponge using deterministic iterated algorithm.
% Call format: Sierpinskicube1 (M, x, y, z, d, n, k).
% M = [a1, · · · , am; b1, · · · , bm; c1, · · · , cm], where
(ai/n, bi/n, ci/n), i = 1, 2, · · · ,m(1 < m < n3),
are the lower-left coordinates of small cubes chosen
according to certain rule after the first division for the
initial cube.
% x is the x−coordinate of lower-left corner vertex
of initial cube.
% y is the y−coordinate of lower-left corner vertex
of initial cube.
% z is the z−coordinate of lower-left corner vertex of
initial cube.
% d is the side length of initial cube.
% 1/n is the contraction ratio.
% k is the number of iteration.
axis([x, x + d, y, y + d, z, z + d])
drawcube(x, y, z, d)
for j = 1 : k

a1 = []; b1 = []; c1 = []; % Three empty arrays,
will be used to store the x, y and z coordinates of the
lower-left corner of chosen cubes after the kth step
construction respectively.

for i = 1 :length(x)
x1 = x(i) + d/n ∗M(1, :);
y1 = y(i) + d/n ∗M(2, :);
z1 = z(i) + d/n ∗M(3, :);
a1 = [a1, x1]; b1 = [b1, y1]; c1 = [c1, z1];

end
d = d/n; x = a1; y = b1; z = c1;

end
for i = 1 :length(x)

patch(x(i) + [d, d, d, d, d], y(i) + [0, d, d, 0, 0],
z(i)+[0, 0, d, d, 0], z(i)+[0, 0, d, d, 0])

patch(x(i) + [0, d, d, 0, 0], y(i) + [0, 0, 0, 0, 0],
z(i)+[0, 0, d, d, 0], y(i)+[0, 0, 0, 0, 0])

patch(x(i) + [0, d, d, 0, 0], y(i) + [d, d, d, d, d],
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z(i)+[0, 0, d, d, 0], x(i)+[0, d, d, 0, 0])
patch(x(i) + [0, d, d, 0, 0], y(i) + [0, 0, d, d, 0],

z(i)+[0, 0, 0, 0, 0], y(i)+[0, 0, d, d, 0])
patch(x(i) + [0, d, d, 0, 0], y(i) + [0, 0, d, d, 0],

z(i)+[d, d, d, d, d], x(i)+[0, 0, 0, 0, 0])
patch(x(i) + [0, 0, 0, 0, 0], y(i) + [0, d, d, 0, 0],

z(i)+[0, 0, d, d, 0], z(i)+[0, 0, d, d, 0])
end
axis equal
axis off
set(gcf,’color’,[1, 1, 1])
function drawcube(x, y, z, d)
u =([0 1 1 0 0 0;1 1 0 0 1 1;1 1 0 0 1 1;0 1 1 0 0
0])∗d + x(1);
v =([0 0 1 1 0 0;0 1 1 0 0 0;0 1 1 0 1 1;0 0 1 1 1
1])∗d + y(1);
w =([0 0 0 0 0 1;0 0 0 0 0 1;1 1 1 1 0 1;1 1 1 1 0
1])∗d + z(1);
for i = 1 : 6

h =patch(u(:, i), v(:, i), w(:, i),’w’);
set(h,’edgecolor’,’k’,’facealpha’,0.5)

end
h=gcf;
view(-33,18)

Example 7. Let n = 3,

A1 = {(0, 0, 0), (
1
3
, 0, 0), (

2
3
, 0, 0), (0,

1
3
, 0)

(
2
3
,
1
3
, 0), (0,

2
3
, 0), (

1
3
,
2
3
, 0), (

2
3
,
2
3
, 0)

(0, 0,
1
3
), (

2
3
, 0,

1
3
), (0,

2
3
,
1
3
), (

2
3
,
2
3
,
1
3
)

(0, 0,
2
3
), (

1
3
, 0,

2
3
), (

2
3
, 0,

2
3
), (0,

1
3
,
2
3
)

(
2
3
,
1
3
,
2
3
), (0,

2
3
,
2
3
), (

1
3
,
2
3
,
2
3
), (

2
3
,
2
3
,
2
3
)}

We can obtain the fine structures of first three steps of
constructing Sierpinski sponge T (A1) by running the
following instructions:

Sierpinskicube1(M, x, y, z, 1, 3, k), k = 1, 2, 3,

where

M = [0 1 2 0 2 0 1 2 0 2 0 2 0 1 2 0 2 0 1 2;
0 0 0 1 1 2 2 2 0 0 2 2 0 0 0 1 1 2 2 2;
0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2],

as shown in Figure 8.

Example 8. Let n = 3,

A2 = {(0, 0, 0), (0,
2
3
, 0), (

2
3
, 0, 0), (

2
3
,
2
3
, 0)

(0, 0,
2
3
), (0,

2
3
,
2
3
), (

2
3
, 0,

2
3
), (

2
3
,
2
3
,
2
3
)}

(a) The firs step (b) The second step

(c) The third step

Figure 8: The first three steps of constructing Sierpin-
ski sponge T (A1).

We can obtain the fine structures of first four steps of
constructing 3D Cantor dust T (A2) by running the
following instructions:

Sierpinskicube1(M, x, y, z, 1, 3, k), k = 1, 2, 3, 4,

where

M = ([0 0 2 2 0 0 2 2; 0 2 0 2 0 2 0 2; 0 0 0 0 2 2 2 2],

as shown in Figure 9.

Example 9. Let n = 4,

A3 = {(0, 0, 0), (0,
3
4
, 0), (

3
4
, 0, 0), (

3
4
,
3
4
, 0)

(
1
4
,
1
4
,
1
4
), (

1
4
,
2
4
,
1
4
), (

2
4
,
1
4
,
1
4
), (

2
4
,
2
4
,
1
4
)

(
1
4
,
1
4
,
2
4
), (

1
4
,
2
4
,
2
4
), (

2
4
,
1
4
,
2
4
), (

2
4
,
2
4
,
2
4
)

(0, 0,
3
4
), (0,

3
4
,
3
4
), (

3
4
, 0,

3
4
), (

3
4
,
3
4
,
3
4
)}.

We can obtain the fine structures of first three steps of
constructing T (A3) by running the following instruc-
tions:

Sierpinskicube1(M, x, y, z, 1, 4, k), k = 1, 2, 3,

where

M = [0 0 3 3 1 1 2 2 1 1 2 2 0 0 3 3;
0 3 0 3 1 2 1 2 1 2 1 2 0 3 0 3;
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3],
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(a) The firs step (b) The second step

(c) The third step (d) The forth step

Figure 9: The first four steps of constructing 3D Can-
tor dust T (A2).

as shown in figure 10.

5.2 Source Program 2 for Creating k− cubes
T k(A) Using Deterministic Algorithm

For given rule A ⊂ D = {0, 1, · · · , n − 1}3. Note
that the cube has good symmetry, so it is more easier
to describe this rule by a three dimensional array with
elements 0 or 1. For example, for Sierpinski sponge,
if we denote the chosen cubes by 1, the others by 0,
then we can use a three-dimensional array of Matlab
to describe the corresponding rule as follows:

M(:, :, 1) =
1 1 1
1 0 1
1 1 1

M(:, :, 2) =
1 0 1
0 0 0
1 0 1

M(:, :, 3) =
1 1 1
1 0 1
1 1 1

.

So we can also use the following method for generat-
ing k−cubes T k(A). The general algorithm is:

Step 1: Select the lower-left vertex coordinate of
initial cube it can be (0, 0, 0).

(a) The firs step (b) The second step

(c) The third step

Figure 10: The first three steps of constructing T (A3)

Step 2: Describe the rule by a three-dimensional
array.

Step 3: Draw initial cube by patch function of
Matlab.

Step 4:Traversal the array in step 2. If encounter
0, draw cube with size 1/n in the corresponding place
with green using patch function of Matlab. If en-
counter 1, assign the lower-left coordinate and side
length of corresponding small cube to the variables of
lower-left coordinate and side length of initial square
by applying transformations (4).

Step 5: For each small cube, execute the step 1 to
4.

Step 6: Repeat the step 5 again and again. If it-
erated depth is k, then the step 5 can be repeated k
times.

Now, we implement the above algorithm in Mat-
lab programming language as follows:
function Sierpinskicube2(X1, X2, · · · , Xn, t, d, h)
% SIERPINSKICUBE2: Drawing k−cubes T k(A)
using deterministic iterated algorithm.
% Call format:

Sierpinskicube2(X1, X2, · · · , Xn, t, d, h).

% X1, X2, · · · , Xn are all n× n dimensional arrays,
in which each element is o or 1.
% t is the vertex coordinate of lower-left corner of
initial cube.
% d is the side length of initial cube.
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% h is the iterated depth.
M =cat(3, X1, X2, · · · , Xn);
u = t(1);v = t(2);w = t(3);l = d;
if h == 0

return
end
axis([u, u + l, v, v + l, w, w + l])
drawwhite(t,d)
m =length(M);
for i = 1 : m

for j = 1 : m
for k = 1 : m

if M(i, j, k) == 0
drawcube([t(1) + d ∗ (k −

1)/m, t(2)+d∗(j−1)/m, t(3)+d∗(i−1)/m], d/m)
else

Sierpinskicube2(X1, X2, · · · , Xn, [t(1)+
d ∗ (k − 1)/m, t(2) + d ∗ (j − 1)/m, t(3) + d ∗ (i−
1)/m], d/m, h− 1)

end
end

end
end
axis equal
axis off
function drawcube(t, d)
x =([0 1 1 0 0 0;1 1 0 0 1 1;1 1 0 0 1 1;0 1 1 0 0
0])∗d + t(1);
y =([0 0 1 1 0 0;0 1 1 0 0 0;0 1 1 0 1 1;0 0 1 1 1
1])∗d + t(2);
z =([0 0 0 0 0 1;0 0 0 0 0 1;1 1 1 1 0 1;1 1 1 1 0
1])∗d + t(3);
for i = 1 : 6

s =patch(x(:, i), y(:, i), z(:, i),’g’);
set(s,′ edgecolor′,′k′,′ facealpha′, 0.5)

end
s =gcf;
view(−33, 18)
function drawwhite(t, d)
x =([0 1 1 0 0 0;1 1 0 0 1 1;1 1 0 0 1 1;0 1 1 0 0
0])∗d + t(1);
y =([0 0 1 1 0 0;0 1 1 0 0 0;0 1 1 0 1 1;0 0 1 1 1
1])∗d + t(2);
z =([0 0 0 0 0 1;0 0 0 0 0 1;1 1 1 1 0 1;1 1 1 1 0
1])∗d + t(3);
for i = 1 : 6

s =patch(x(:, i), y(:, i), z(:, i),’w’);
set(s,’edgecolor’,’k’,’facealpha’,0.5)

end
s =gcf;
view(−33, 18)

Example 10. We can obtain the fine structures of first

(a) The firs step (b) The second step

(c) The third step

Figure 11: The first three steps of constructing Sier-
pinski sponge

three steps of constructing Sierpinski sponge that are
different from Example 8 by running the following in-
structions:

Sierpinskicube2(X, Y, Z, [0 0 0], 1, h), h = 1, 2, 3,

where X = [1 1 1; 1 0 1; 1 1 1], Y = [1 0 1; 0 0 0; 1 0
1], Z = [1 1 1; 1 0 1; 1 1 1], as shown in Figure 11.

Similarly, we also can obtain the different fine
structures with Example 9 and Example 10. If we
get rid of the step 2 in above algorithm(delete the 8th
line ’drawcube(t, d)’ in source program), we can get
the image of complementary set of general Sierpinski
sponge in [0, 1]3(sometime, the structure of comple-
mentary set is important to us when we study fractal
theory).

Example 11. We can get the images of complemen-
tary sets of Sierpinski sponge and 3D Cantor dust gen-
erated using 3 iterations by running the following in-
structions:

Sierpinskicube2(Xi, Yi, Zi, [0 0 0], 1, 3), i = 1, 2,

where X1, Y1, Z1 are same as that of Example 10,
X2 = [1 0 1; 0 0 0; 1 0 1], Y2 = [0 0 0; 0 0 0; 0 0 0], Z2

= [1 0 1; 0 0 0; 1 0 1] , as shown in Figure 12 .

An example in case n = 4 as follows:
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(a) (b)

Figure 12: (a) Complementary set of Sierpinski
sponge generated using 3 iterations;(b) Complemen-
tary set of 3D Cantor dust generated using 3 iterations.

(a) The first step (b) The second step

Figure 13: The first two steps for constructing General
Sierpinski sponge T (D \A4).
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Then we can obtain the images of first two steps for
constructing T (D\A4)(see Figure 13) by running the
following instructions:

Sierpinskicube2(X, Y, Z, W, [0 0 0], 1, h), h = 1, 2,

where

X = [0 1 1 0; 1 1 1 1; 1 1 1 1; 0 1 1 0]
Y = [1 1 1 1; 1 0 0 1; 1 0 0 1; 1 1 1 1]
Z = [1 1 1 1; 1 0 0 1; 1 0 0 1; 1 1 1 1]
W = [0 1 1 0; 1 1 1 1; 1 1 1 1; 0 1 1 0].

Remark 8. In order to get the better visual effect
for application, we also can integrate the above two
source programs as needed.

6 Conclusions

Geometric construction of fractal image with IFS be-
gins with original image and some successive trans-
formation are applied over the image. This paper
presents the application of theory of IFS in geomet-
ric modelling of general Sierpinski fractals and their
geometric constructions base on Matlab environment.
We can obtain the fine structure of each step which
generates 2D general Sierpinski fractal 180◦ rotation
structure with by using deterministic algorithm. Us-
ing random iteration algorithm, we can obtain close
approximation of fractal image faster than using de-
terministic algorithm and need lesser computer mem-
ory. Since IFS can be defined for any dimension, we
can extend our techniques to three dimensional ob-
jects. We obtain the geometric modelling of general
Sierpinski sponges with no rotation structure and their
geometric construction. This enables also generation
of more beautiful images. But the geometric mod-
elling of geometric construction of general Sierpinski
sponge with 180◦ rotation structure and general Sier-
pinski carpet(resp. gasket, sponge) with other rotation
structure are difficult for us now. That is what we are
going to do next.
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