
A New PC-Based Workbench for Virtual Instrumentation and
Automatic Control Using Matlab GUI/MEX-C++ Application

JEAN MBIHI

EEAT (Electrical, Electronic, Automation and Telecommunications) Research Laboratory
Advanced Teachers’ Training College for Technical Education

University of Douala, BP 1872, Douala, Cameroon
mbibidr@yahoo.fr , http://www.cyberquebec.ca/mbihi/

Abstract: - This paper presents an original PC-Based Workbench for virtual instrumentation and automatic
control. Its software platform results from a mix of Matlab Graphical User Interface (GUI) design and
Matlab Executable (MEX) C++ programming. It is shown how a sophisticated custom MEX C++ control
library, callable from Matlab GUI application, has been built from the C++ driver of an arbitrary data
acquisition board. The varieties of simulation and experimentation modes provided include: digital-to-digital
controls, digital-to-analog and analog-to-digital conversion, open loop control, and Matlab GUI/MEX
controllers. A sample of simulated and experimental results obtained and presented, shows the great merit of
the proposed well tested PC-based workbench in control engineering education.

Key-Words: - PC-Based Workbench, Virtual instrumentation, Automatic control, Matlab GUI, MEX-C++,
mexFunction, data acquisition board, Advanced Programming, Matlab/MEX controllers.

1 Introduction

In engineering education, workbenches are widely
used as didactic equipments in laboratories and
workshops. They enable learners to study the
experimental behavior of a variety of real systems
used or to be used in the professional or social
world. The experimentation is an efficient means to
reinforce the understanding of conceptual models
and properties, learned when theoretical lessons are
taught in classrooms or amphitheaters. In addition,
the experiments conducted on workbenches also
enable students to acquire practical knowledge and
professional skills about the use of real systems.

Generally speaking, the demand of workbenches
for educational purposes takes into account a
number of requirements including: size, ease of
use, flexibility, interactivity, experiments options,
monitoring comfort, communication performance,
ease of extension, robustness, security and costs.
Hence, the need of building powerful solutions to
these multiples requirements, have motivated over
years a rapid development of virtual workbenches
with local or remote access [1]-[2]. At the heart of
a virtual workbench is a digital computer, i.e., a
PLC (programmable logic controller), an industrial
PC (personnel computer) or a standard PC. A
sample of digital computers types used nowadays
for building virtual workbenches is presented in
Fig. 1. In each case, there are specific constraints

about the additional peripherals, the digital control
platform and the maintainability.

Fig. 1 Sample of digital computers.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 52 Volume 12, 2015

mailto:mbibidr@yahoo.fr
http://www.cyberquebec.ca/mbihi/

A long time ago, because of robustness and low
cost requirements, PLCs were the most efficient
equipments for instrumentation and automatic
control in industry. However, compared to PCs,
their use today at the heart of virtual workbenches
in engineering education is far to be a merit since :

a) PLC programming needs the availability of a
complete PC for developing and compiling
the automation software, and uploading the
resulting objet code into embedded memory;

b) PLC programming languages lack building
resources for sophisticated control policies,
e.g, feedback control with state observers, self
tuning control, intelligent control from fuzzy
logic or neural network models of dynamic
plants, optimal or predictive control, stochastic
control with/without Kalman state estimator.

c) PLC programming framework lacks sufficient
capacity memory for data monitoring or
logging over a long time period.

d) PLC-based virtual instrumentation needs either
a very costly visualization equipment, e.g., a
Magelis, or a supervision PC driven by a
development tool with drivers for PLC targets
such as Labview, Cadepa or Automgen.

e) PLC operating systems very have limited
capabilities in terms of digital processing
speed of tasks, compared to Windows or Linux
platforms used for PC-based controls.

More details about weaknesses of PLCs compared
to PCs when building instrumentation and control
systems, are outlined in [3]. Following these
comparatives studies, it is clear that the overall cost
of a PLC-based workbench appears to be more
significant than that of a PC-based workbench with
identical performance and quality. At this point, it
is important to mention that industrial PCs are as
robust as PLCs (see Fig. 1). In addition, they
support the same type of operating system,
development software, communication bus,
hardware, digital input-output ports, data acquisition
boards and external peripherals than the standard
PCs. However, for the same characteristics and
performance, industrial PCs are more costly than
standard PCs. For these main raisons, standard PCs
appears to be the better building technology for
virtual workbenches in engineering education.

PC-Based workbenches encountered in modern
engineering, consist of power processes, hardware
interfaces, and software control applications [4]-[9]
In control engineering education, Matlab is
increasingly used as the most versatile development
tool, for rapid creating virtual instruments and

controllers with advanced GUI (graphical user
interface) ([7], [8], [10]). Nowadays this growing
popularity is reinforced by data acquisition (DAQ)
toolboxes available in recent Matlab editions [11].

However, the real time feasibility of virtual
instrumentation and control under Matlab is
dictated by the availability and capabilities of DAQ
(data acquisition) drivers in Matlab/Simulink DAQ
Toolboxes [11]. Unfortunately:

a) Recent Matlab editions do not support all
types of DAQs available in the market;

b) DAQ drivers supported by recent Matlab
editions only provide basic input-output
functions, at the expend of instrumentation
resources and real time control policies;

c) Real time control policies can be only
implemented as Matlab/Simulink blocks;

d) A digital feedback controller consisting of
Matlab/Simulink blocks, might become
greedy within a fast real time control loop.

e) Updating DAQ board drivers registered in
Matlab cannot be done independently by
the end user.

In order to overcome these weaknesses, this paper
presents a new PC-based workbench for virtual
instrumentation and automatic control. The novelty
of the proposed workbench arises from many facts:

a) Its software platform relies on Matlab GUI and
MEX (Matlab Executable) C++;

b) Its precompiled MEX-C++ library provides
advanced functions and real time controllers;

c) A custom DAQ board is supported even
though it is not registered in Matlab;

d) A wide variety of experiments are provided.

The prototyping realizations of the proposed virtual
workbench, are in use at the Advanced Teachers’
Training College for Technical Education of the
university of Douala. Most are used in the electrical
and electronic engineering department, in order to
reinforce practical skills in instrumentation and
control courses, to a mean population of 90
undergraduates per semester. In addition, the
GUI/MEX-C++ codes are used as realistic case
studies in Master degree II program, when teaching
the course entitled Advanced programming of
Automated systems, to a mean population of 20
graduate students per year.

In Section 2, the hardware architecture of the
proposed workbench is presented. Then, the
software architecture of Matlab GUI/MEX-C++
application is outlined in Section 3. In Section 4, a
custom MEX-C++ library is outlined, followed in

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 53 Volume 12, 2015

Section 5 by the presentation of experimentation
modes and related experimental results obtained
when testing the proposed PC-based virtual
workbench. Finally, the conclusion of the paper is
outlined in Section 6.

2 PC-based workbench Architecture

As shown in Fig. 2, the hardware architecture of the
PC-based workbench consists of 3 main subsystems:

- A PC with preinstalled Matlab GUI/MEX-
C++ application described later (Fig. 1(a)).

- An USB hardware interface (Fig. 2(b)). It is a
low cost Velleman K8055/VM110 DAQ with
mean conversion rate 50 Samples/s. It
consists of two 8-bits ADC (analog-to-digital
conversion) channels with adjustable gains,
two 8-bits digital-to-analog conversion
(DAC) channels with light indicators, 8
digital-to-digital conversion (DDC) outputs
with light indicators and 5 DDC inputs with
test buttons. In addition, it is sold with a free
drivers for standard programming languages
including C++. Although the K8055 DAQ
toolkit for Matlab might be already available,

It is not necessary in our context because of the
aforementioned weaknesses about most Matlab
DAQs drivers.

- A power servo system shown in Fig. 2(c),
with a load disturbance (magnetic brake).

Fig. 2 Synoptic diagram of the PC-based
workbench.

A real view of the prototyping PC-based workbench
is presented in Fig. 3, where subsystems are
identified and numbered from 1 to 10.

1) Servo DC motor -Tacho unit; 2) Magnetic brake; 3) Power supply; 4) Servo Amplifier; 5) Preamplifier;
6) K8055/VM110/USB-MDAQ; 7) USB Cable; 8) PC; 9) GUI/MEX-C++ application; 10) Digital voltmeter

Fig. 3: Hardware architecture of the virtual workbench for a servo system

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 54 Volume 12, 2015

3 Matlab GUI/MEX-C++ application
 software

The structure of Matlab GUI/MEX-C++ application
software presented in Fig. 4 consists of:

- A visual control panel (Fig. 4(a) with
interactive and static visual controls.

- A set of GUI and a Matlab files edited as
objects Figure *.Fig and Matlab file *.m
respectively as shown in Fig. 4(b). While the
file *.Fig contains references of visual objects
embedded on the front panel, Matlab file
(*.m) contains Matlab Callback functions
(Fig. 4(d)), including MEX functions
accessible from the GUI as shown.

- A MEX Library in Fig. 4(e)). It consists of
MEX functions compiled offline.

- A C++ driver given by the manufacturer of
the target DAQ board.

Fig. 4 Structure of Matlab GUI/MEX-C++

application

The calling syntax of a MEX function as presented
in Fig. 5, involves m output and n input variables,
each of which being thought off as mxArray object.

Furthermore, the structure of MEX C/C++ function
as shown in Fig. 6, is similar to a special C/C++
program named MyMexCpp.C or MyMexCpp.Cpp,
and consists of 4 important sections:
 a) Standard C/C++ libraries to be used;
 b) Special libraries: <windows.h>, ”mex.h”;
 c) Global C/C++ structures or functions, and a
 C++ driver procedure Myddl() to be called at
 run-time for loading K8055.DLL driver,

Fig. 5 : Calling syntax of a MEX function available

in the proposed MEX-C++ Library.

Fig. 6 Structure of a MEX-C++ function

// Mex-C++ Source Program - MyMexCpp.Cpp
// Section I : Declare standard C/C++ Library
 # include <stdio.h> // Example 1
 # include <math.h> // Example 2
 …
 # include <math.h> // Example n
// Section II : Declare dedicated C/C++ Library
 # include <windows.h> // Example 3
 # include ‘‘mex.h’’ // Example 4
// Section III : Define : a) New global types of
// pointers and User data structure for access
// et run time to K8055.DLL functions ;
// b) Define instance Object for K8055.DLL
 int MyDll() // a) Load K8055.DLL into RAM
 // b) Instantiate C++ User Names
 // function using Lib names red
 // c) Open USB-DAQ connection
// Section IV : Edit the main entry function
void mexFunction
 (int nlhs, // Number of LHS Args
 mxArray *plhs[], // LHS Array pointer
 // from prhs[0]
 int nrhs, // Number of LHS Args
 const mxArray *prhs[] // Number of
 // RHS Args
)
 {
 // 1) Declare local variables and pointeurs
 // for data Array to be Imported/Exported
 // 2) Test of imported Data *prhs[] for errors.
 // 3) Processing imported data using global
 // and local functions, including MyDll()
 // 4) Call DAQ output(s) into DLL if needed
 // 5) Create output Memory for Array pointer
 // to be returned to Matlab
 // 6) Compute Array output to be returned
 // 7) Return Array output to Matlab program
 }

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 55 Volume 12, 2015

 and initializing connections, for access to
 hardware ports of the target DAQ board.
 d) Main entry function entitled mexFunction.

The arguments of a mexFunction are:
 nlhs: Number of left hand side outputs
 *lhs: Left hand side mxArray pointer
 nrhs: Number of right hand side inputs
 *rhs: Right hand side mxArray pointer

4 MEX-C++ Library for K8055/VM110/USB-
 DAQ board and access from Matlab GUI

Following MEX programming techniques presented
in Figs. 5 and 6, Table 1 summarizes a set of input-
output (I/O) functions integrated in the proposed
MEX-C++ library, built from the basic K8055.DLL
driver for C++ of the K8055/VM110-DAQ board.

Table 1: Basic K8055.DLL driver f or C++ and

the proposed MEX-C++ library

K8055.DLL for C++
and I/O functions

Proposed MEX- C++ Library
and novel I/O functions

OpenDevice State = open_usb_card (0)
Closedevice close_usb_card ()
SetDigitalChannel ddcout (ddCh, Val)

 ddCh = 1 to 8 Bit Number
 = 9 Output word
 = 10 All output bits
 Val = 0 – 254 if ddCh = 9
 = implicit (otherwise).

ClearDigitalChannel
SetAllDigital
ClearAllDigital
WriteAllDigital

ReadDigitalChannel Val = ddcinp (ddCh)
 ddCh = 1-8 for single bit select
 = 9 for reading a word

ReadAllDigitalChannel

ReadAnalogChannel N = adcoutcode (Ch_Dac)
N : 0-253 ReadAllAnalog

OutputAnalogChannel dacinpcode (dac_Ch, N1, N2)
 dac_Ch = 1, 2 or 3 (for 1 & 2)
 N1, N2 : 0 - 253 ;

OutputAllAnalog
SetAnalogChannel
SetAllAnalog
 Val = ddc (dir, Ch, State)

 dir = 0 (output), 1 (input)
 Ch = 1-8 (bit), 9 (word), 10 (All)
State = 0 or 1 if dir =0
 = implicit (otherwise)
dacout (dac_Ch, U)
dac_Ch = 1, 2 and 0 ≤ U ≤ 4.7 V
U = adcinp (adc_Ch)
adc_Ch = 1, 2 or 3 (for 1 & 2);
 0 ≤ U ≤ 4.7 V
Y=oploco(dacCh,Uc,adcCh, Nms)
 Uk_1 = UpidMat (Args)
 Uk_1 = UpidMex (Args)

It is a great merit to observe that, unlike most DAQ
drivers for Matlab/simulink as in [12], the
proposed MEX-C++ library, provides under an
arbitrary DAQ with available basic C++ driver,
many powerful real time control functions such as
ddc, oploco (open loop control), and UpidMex.

In addition, following Fig. 4, each MEX-C++
function provided in Table 1 for real time
instrumentation or control, with extension
*.Mexh32 in the current folder, exactly behaves as
any standard Matlab function. Thus, it could be
called from the callback procedure associated with
visual objects available on Matlab GUI used as an
advanced virtual instrumentation and control tool.

The general structure of the callback procedure
associated with Matlab GUI visual object named
ObjName, consists of 3 sections as shown in Fig. 7.

 Fig. 7 Structure of the callback function

for a GUI visual object.

In Fig. 7, get and set are Matlab GUI commands
allowing to capture and modify respectively, the
property of any GUI visual object Objname2
pointed by the handles.ObjName2 argument.

In addition, num2str is a standard Matlab command,
whereas adcoutcode(1) and adcoutcode(2) are
typical MEX-C++ input/output functions.

5 Experimentation modes

The starting screen of Matlab GUI/MEX-C++
application presented in Fig. 8, provides a variety
of configuration and experimentation modes
including Digital-to-digital conversion (DDC),
digital-to-analog conversion (DAC), analog-to-
digital conversion (ADC), and Open/Closed loop
tests.

function ObjName1_Callback(hObject, …
 eventdata, handles)
% SECTION I
% Get Input data from GUI if any
% for preliminary processing.
% Example:
 Val = get(handles.CheckCna, 'Value');
% SECTION II
% Process data using Matlab commands
% including MEX functions
% Example:
 if Val = = 1
 N1Can = adcoutcode(1); % MEX call
set(handles.TextCanN1,'String', num2str(N1Can));
 N2Can = adcoutcode (2);
set(handles.TextCanN2, 'String', num2str(N2Can));

 end % for If command
% SECTION III
% Additional decision making and actions
end % for function

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 56 Volume 12, 2015

5.1. Digital-to-digital conversion mode

The digital-to-digital conversion (DDC) frame
provided in Matlab GUI is presented in Fig.9.

Fig. 9 Digital-to-digital conversion frame

If the DD Input control button is clicked, then in
the corresponding callback procedure, the input
channel state DIch is red and displayed as a label
object DIval according to the function syntax
ddcinp(DIch). Otherwise, if the DD Output control
button is clicked, then the value DOval is sent to
the digital output according to command syntax
ddcout (DOch, DOval).

5.2. DAC/ADC modes

The DAC/ADC frame is presented in Fig. 10. In the
callback procedure associated with the control
button labeled Conversion, the MEX function
dacinpcode (Ch, N1, N2) could be called for DAC,
or/and adcoutcode (Ch) may be called for ADC
depending on the state of the related checkbox.
Recall from Table 1 that Ch = 3 (channel number)
stands for DAC1 & DAC2, or ADC1 & ADC2.

Fig. 10 DAC and ADC frame.

Then, in each case and for each conversion step, a
couple of experimental data is collected since a
standalone digital voltmeter could be used to
measure the external analog value, whereas the
related digital value displayed on the DAC/ADC

Fig. 8 Starting screen of Matlab GUI/MEX-C++ application software of the workbench

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 57 Volume 12, 2015

frame could be red. At the end of the experiment,
the set consisting of coupled of experimental data,
can be recorded in the current folder as a Matlab
array for direct reading and plotting from a callback
procedure associated with the control button
labeled U(N)/N(u) in Fig. 10. The manual
record of DAC/ADC data might be automated
in next version of the proposed software.

Fig. 11 Input-output characteristic of DAC

channel

Fig. 11 shows a typical input-output characteristic of
a single DAC channel with mean values modeled
as follows:
 u(N) = 0.0201 N (1)
where N stands for the integer input code.

5.3. Open/Closed loop tests mode

The Open/Closed loop tests frame is presented in
Fig. 11, where the set of modifiable input data is :
 Tech: Sampling period in milliseconds
 Nech: Number of sample
 Num = K: Numerator of the plant transfer

function Gc(p).
 Delay = λ: Time delay of the dynamic plant
 Den : Denominator of Gc(p).
 Kp, Ti, Td: Parameters of PID (proportional,

Inegral and derivative) controller.
As shown in Fig. 12, four main varieties of tests can
be conducted by the user from the Open/Closed
loop tests frame.

5.3.1 Open loop (OPL) Tests

The step response with speed as output is conducted
in this case, using a callback of the MEX-C++

Fig. 12: Open/Closed loop tests frame.

command oploco.Mexh32 described earlier in
Table 1. Then, the experimental data related to
speed values are acquired, plotted and saved into
the disk for further estimation of a dynamic model
of the servo system.

Fig. 13 Test results for open loop step response.

Given the visual properties observed on the
experimental step response plotted in Fig. 13, the
dynamic behavior of the servo system could be
modeled as follows using a first order transfer
function with delay:

 s
c e

asa
K

sU
sYsG λ−

+
==

01)(
)()((2)

where Ks, λ , a1 and a0 are parameters to be
estimated offline using an identification method.

5.3.2 Open loop Simulation

Using Matlab Identification toolbox [13], the
parameters Ks, λ , a1 and a0 are estimated given
experimental data and the model structure (2). As a
result, the default values of these parameters are
displayed in Fig. 12, in which case the nominal
transfer function considered is given as follows:

 s
c e

s
sG 25.0

193.0
1.1)(−

+
= (3)

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 58 Volume 12, 2015

Fig. 14 Open Loop step response (simulation)

In Fig. 14, the simulated open loop step response of
is successfully compared to the experimental test.

5.3.3 PID Control Simulation

Given the dynamic model (3) of the servo system,
the parameters of the PID controller to be used to

Fig. 15 Simulation results for PID control of

speed.
achieve good performance under digital control,
could be designed offline using any method
available in control engineering ([14]-[18]). The
default parameters of the PID transfer function

 sT
sT

K
s
sUsD i

d
pc ++=

∈
=

1
)(
)()((4)

are provided on Fig. 11, and the simulation result
obtained under a step input is presented in Fig. 14.

5.3.4 Digital PID control and robustness

The digital PID algorithm obtained from (4) using
 Tustin’s technique

+
−

=

+
−

→ −

−

1

1

1
12

1
12

z
z

Tz
z

T
s

[19], is given by (5) given (6).

)2()1()()1()(210 −+−++−= keakeakeakuku (5)

−+=

−=

++=

12
2

,4

,
2

21

2

1

0

T
T

T
TKa

T
T

T
TKa

T
T

T
TKa

d

i
p

d

i
p

i

d
p

 (6)

Following the novel MEX-C++ library summarized
in Table 1, recall that (5) given (6) is implemented
as optional Matlab and MEX controllers.

The experimental closed loop behavior of the servo
system is shown in Fig. 16. In Fig. 16(a) the
emphasis is on PID control under the nominal (or
default) parameters on the plant, whereas the
results shown in Fig. 16(b) are obtained under 50 %
variation of a load disturbance, consisting of a
mobile magnetic brake.

(a) Test results for PID control of speed.

(b) Test results for control robustness of speed.

Fig. 16 Test results - PID control and

robustness.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 59 Volume 12, 2015

In addition, it is possible also to make sequential
experiments, and to plot all graphical results on the
same object figure for the sake of better comparison
and well understanding. As an example, Fig. 17
shows the results obtained from the following
sequential experiments:

a) PID control simulation of the speed;
b) Matlab-PID control under nominal load;
c) Matlab-PID control under 50 % increase of

the load disturbance;
d) Matlab-PID control with 50 % increase of

load disturbance from steady state at 5.8 s.

5.3.5 Impact of the proposed virtual workbench

In the electrical and electronic engineering
department, of the Advanced Teachers’ Training
College for Technical Education of the university of

Douala, the proposed PC-based virtual workbench
has become a common versatile platform, for
virtual instrumentation and digital control courses,
given its rich palette of ready-to-use simulation
and experimentation tools.

For undergraduate students, laboratory work
sessions needs beside Matlab software, the
preinstalled custom resources (in each Laptop to be
used as a virtual instrument), consisting of:

a) Matlab main program MexGuiDaq.m;
b) Matlab GUI application MexGuiDad.Fig;
c) Compiled MEX-C++ library (*.MexW32);
d) C++ driver K8055.Dll of the DAQ target.

Matlab GUI application MexGuiDad.Fig is
activated automatically when running the main
program MexGuiDaq.m from Matlab prompt. In this

Fig. 17 Sequential experiments for speed control.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 60 Volume 12, 2015

mode, visual objects and their appearance on Matlab
GUI, cannot be neither updated nor modified by
the user. Following our own experience, it is
important to mention that, under minimum help of
an instructor, a mean of 30 minutes is sufficient
for undergraduate students to understand and setup
equipments of the workbench, and to start Maltab
GUI/MEX application. In addition, each experiment
selected from Matlab GUI application is usually
conducted before 5 minutes. Furthermore, a number
of independent experiments can be performed
sequentially using simple mouse clicks after
minor/major changes on target modifiable
parameters (if any). In which case updating the
physical architecture of the whole workbench, is
made automatically and instantaneously. For each
experimentation strategy, a screen view of the
results obtained can be captured and pasted to a
word or image editor, for further use in a technical
report to be edited as a homework and submitted to
the instructor a few days later for evaluation.

For graduate students, the main aim behind
laboratory work sessions using the proposed PC-
based virtual workbench, is to enable them to
understand in depth the secrets of creating custom
virtual instruments and automated systems from
Matlab GUI/MEX-C++ programming fundamentals.
In this case, beside Matlab, the complete
preinstalled custom resources (in each Laptop to be
used as a prototyping PC-based virtual instrument)
consist of:

a) Matlab main program MexGuiDaq.m;
b) Matlab GUI application MexGuiDad.Fig;
c) Compiled MEX-C++ library (*.MexW32).
d) MEX-C++ library source codes (*.CPP);
e) C++ driver K8055.Dll of the DAQ target.
f) Standard C++ development tool e.g.

Bloodshed Dev-C++ if any, otherwise the
default Matlab C++ compiler might be used
along with a text editor for viewing or
modifying MEX C++ codes.

Subsequently, both Matlab GUI application
MexGuiDad.Fig and Matlab main program
MexGuiDaq.m are activated automatically when
running the guide command from Matlab prompt,
followed by the specification of the target folder
and executable file in a guide form. In this design
mode, visual objects and their appearance on Matlab
GUI can be either updated or modified according
to the user needs. For each single experiment,
graduate students with good prerequisites learned
from the theoretical advanced programming course,
can open related GUI and MEX source codes, in

order to discover and understand with minimum
help from the instructor, how real time
programming tasks involved are organized,
implemented and compiled.

Thus, compared to traditional laboratory sessions
where a variety of real instruments and equipments
should be frequently reconnected, manipulated and
updated by learners, the proposed virtual workbench
offers a number of potential merits for both
undergraduate and graduate cases, including,
significant time saving, higher reliability, better
working comfort, greater considerable didactic
efficiency, and more powerful base of realistic case
studies for engineering researches.

6 Conclusion

The research work presented in this paper, shows
how an advanced virtual instrumentation and
automatic control tool for PC-based servo systems,
can be developed using a mix of Matlab GUI
programming strategies and MEX-C++ developing
technologies. While Matlab GUI programming has
proved to be very attractive for rapid development
of visual applications under Matlab platform, the
major merit of MEX-C++ development relies on
the great opportunity of building sophisticated real
time Matlab libraries from C++ drivers of an
arbitrary DAQ.

Compared to equivalent codes implemented using
standard Matlab commands, MEX-C++ functions
runs very fast. In addition, a MEX-C++ library for
real time instrumentation and control, might be used
under Matlab to drive an arbitrary DAQ board from
its basic C++ driver, even though a corresponding
driver version for Matlab is unavailable in Matlab
DAQ toolbox.

Although the proposed virtual instrumentation and
control platform for servo system has proved to be
very satisfactory for engineering education, next
editions should bring significant improvements and
extensions. For example, the acquisition of
DAC/ADC characteristics might become an online
callback decision. In addition, the dynamic model
of the servo plan might be estimated from the open
loop test, using an automated callback estimation
process. Furthermore, it would be fruitful to
provide an additional position control option of the
servo shaft on the proposed Matlab GUI/MEX-C++
application. These important improvements will be
investigated in future research works.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 61 Volume 12, 2015

Acknowledgment

The author of this paper sincerely thanks the
anonymous reviewers of WSEAS transaction on
advances in engineering education, for their very
helpful comments and suggestions.

References

[1] A. Munjiza, N.W.M. John, “Virtual

Nanotechnology Workbench for Engineering
Education”, International Conference on
Engineering Education – ICEE, September 3-7,
Coimbra, Portugal, 2007.

[2] L. Benetazzo, M. Bertocco, F. Ferraris, and A.
Ferrero, “A Web-based distributed virtual
educational laboratory”, Proceedings of the
16th IEEE Conference on Instrumentation and
Measurement Technology, Volume:3, pp.
1851-1856, 24 May 1999-26 May 1999.

[3] J. Mbihi and Alexis Motto, “Informatique et
automation – Automatisme programmable
contrôlés par ordinateur”, 358 pages, 2006,
© Ellipses Editions, Paris.

[4] M.K. Abuzalata, M.A.K. Alia, Shebel Asad and
Mazouz Salahat, “Design of a Virtual PLC
Using Lab View”, Research Journal of Applied
Sciences, Engineering and Technology, Vol 2,
No 3, pp. 283-288, May 10, 2010.

[5] J. Mbihi, “Contribution à l’étude et au
prototypage d’un banc d’essais didactique
flexible d’instrumentation virtuelle et
d’asservissement par ordinateur” , Journal sur
l’enseignement des sciences et des technologies
de l’information et des systèmes, J3EA-Vol.
9, No. 1, 2010, EDP Sciences.

[6] R. Sethunadh, S. Athuladevi and S. Sankara
Iyer, “Virtual Instrumentation Techniques in
Test and Evaluation of Launch Vehicle
Avionics”, Defence Science Journal. Vol. 52.
No. 4, October 2002. pp. 357-362, O 2002,
DESIDOC.

[7] S. Antonios Andreatos and D. Anastasios
zagorianos, “Matlab GUI application for
teaching control systems”, proceedings of the
6th WSEAS international conference on
engineering education, 208-211, ISBN: 978-
960-474-100-7

[8] H. Ali Assi, H. Maitha A. Shamizi and H. N.
Hassan Hejasse, “Matlab GUI application for
teaching electronics - Engineering education
and research using Matlab”, October 2011, ©
InTech, www.interchopen.com.

[9] J. Mbihi and A. Motto, “Instrumentation
virtuelle assistée par ordinateur - Principes et

techniques, cours et exercices corrigés”,
Ellipses Editions, 240 pages, October 2012,
Paris.

[10] Zhengmao Ye, Habib Mohamadian, Hang Yin,
Guoping Zhang, Su-Seng Pang, “Advancing
laboratory education in control engineering
with practical implementation approaches”,
WSEAS Transactions on advances in
engineering education, pp. 55-65, Issue 2,
Volume 6, February 2009.

[11] Mathworks, “Matlab 2013 – DAQ Toolbox”,
www.mathworks.com/products/daq.

[12] Mathworks, “MATLAB Support Package for
Velleman K8055/VM110 User Guide ”, June
13, 2011.

[13] Mathworks, “Matlab R2013a - System
identification toolbox”, Mathworks.

[14] H. O. Bansal, R. Sharma, P. R.
Shreeraman, “PID Controller Tuning
Techniques: A Review”, Journal of Control
Engineering and Technology, Vol. 2, Issue
4, October, pp. 168-176, © World Academic
Publishing 2012, www.ijcet.org.

[15] S. N. Deepa and G. Sugumaran, “Design of
PID controller for higher order continuous
system using MPSO based model
formulation technique”, International journal
of electrical and electronics engineering,
Issue 4, vol. 5, pp. 289-295, 2011.

[16] M. Y. Tabari, A. V. Kamyad, “Design
optimal fractional PID controller for DC
motor with generic algorithm”, International
Journal of Scientific and engineering
research, Vol. 3, Issue 12, pp. 01-04,
December 2012, www.ijser.org.

[17] Ziegler, J. G. and N. B. Nichols,
“Optimum Settings for Au tomatic
Controllers”, Transactions ASME, Vol. 64, pp.
758-768 (1942), www.ijsrp.org.

[18] S. Das, A. Chakraborty, J. K. Ray, S
Bhattacharjee, and B. Neogi, “Study on
Different Tuning Approach with
Incorporation of Simulation Aspect for
Z-N (Ziegler - Nichols) Rules”, International
Journal of Scientific and Research
Publications, Volume 2, Issue 8, August 2012.

[19] G. F. Franklein, J. D. Powell and M.
L. Workman, Digital control of dynamic
systems, 2nd Edition, Addison-Wesley, 1990.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 62 Volume 12, 2015

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Benetazzo,%20L..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bertocco,%20M..QT.&searchWithin=p_Author_Ids:37273763700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ferraris,%20F..QT.&searchWithin=p_Author_Ids:37274552900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ferrero,%20A..QT.&searchWithin=p_Author_Ids:37274838500&newsearch=true
http://www.interchopen.com/
http://www.mathworks.com/products/daq
http://www.ijcet.org/
http://www.ijser.org/
http://www.ijsrp.org/

