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Abstract: - This paper presents an original  PC-Based Workbench for virtual instrumentation and automatic 
control.  Its  software  platform  results from  a mix of Matlab Graphical User Interface (GUI) design and 
Matlab Executable  (MEX) C++ programming.  It is shown  how  a  sophisticated  custom MEX C++ control 
library, callable from Matlab GUI application, has been  built from  the  C++ driver of an arbitrary data 
acquisition board.  The varieties of simulation and experimentation modes  provided include: digital-to-digital 
controls, digital-to-analog and analog-to-digital conversion, open  loop  control,  and Matlab GUI/MEX 
controllers. A sample of simulated and experimental results obtained  and presented,  shows the great merit of 
the proposed well tested PC-based workbench  in control engineering education. 
 
Key-Words: - PC-Based Workbench,   Virtual instrumentation, Automatic control, Matlab  GUI,  MEX-C++,  
mexFunction, data acquisition board,  Advanced  Programming,  Matlab/MEX controllers. 
 
1 Introduction 
 
In engineering education,  workbenches are widely 
used as didactic equipments in laboratories  and  
workshops. They enable learners to study the 
experimental behavior of a variety of real systems 
used or to be used  in the professional or social 
world. The experimentation is an efficient means to  
reinforce the understanding of conceptual models 
and properties, learned when theoretical lessons are 
taught in classrooms or amphitheaters. In addition, 
the experiments conducted on workbenches also 
enable students to acquire practical knowledge and 
professional skills about the use of real systems. 
 
Generally speaking, the demand of workbenches  
for educational purposes takes into account a 
number  of requirements including:  size, ease of 
use, flexibility, interactivity, experiments options, 
monitoring comfort,  communication performance, 
ease of extension, robustness, security and costs.  
Hence, the need of  building powerful solutions to 
these multiples requirements, have motivated over 
years a rapid development of virtual workbenches 
with  local  or remote access [1]-[2]. At the heart of 
a virtual workbench is a digital computer, i.e., a 
PLC (programmable logic controller),  an industrial  
PC (personnel computer) or a standard PC. A 
sample of  digital computers  types  used nowadays 
for  building  virtual   workbenches   is presented in 
Fig. 1. In each case,  there are specific constraints 

about  the additional peripherals,  the  digital control 
platform and the maintainability.  

 
Fig. 1   Sample  of  digital  computers.  
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A long time ago, because of robustness and  low 
cost requirements, PLCs were the most efficient  
equipments for instrumentation and automatic 
control in industry.  However, compared to PCs, 
their use today at the heart of   virtual  workbenches 
in engineering education is far to be a merit since :  

a) PLC programming  needs the availability of a 
complete PC for  developing and compiling  
the automation software, and  uploading  the 
resulting objet code into embedded memory;   

b) PLC programming languages lack building  
resources  for  sophisticated control policies, 
e.g,  feedback control with state observers, self 
tuning control, intelligent control from fuzzy 
logic or  neural network models of dynamic 
plants, optimal or predictive control, stochastic 
control with/without  Kalman state estimator. 

c) PLC programming framework lacks sufficient 
capacity memory for data monitoring or 
logging  over a long time period.    

d) PLC-based virtual instrumentation needs either 
a very costly visualization equipment, e.g., a 
Magelis, or a supervision PC driven by a 
development tool with drivers  for PLC targets 
such as Labview, Cadepa or Automgen.   

e) PLC operating systems very have limited 
capabilities in terms of digital processing 
speed of tasks, compared to Windows or Linux 
platforms used for  PC-based controls. 

 
More details about  weaknesses of  PLCs  compared 
to PCs  when building  instrumentation and control 
systems, are outlined in [3].  Following these 
comparatives studies, it is clear  that the overall cost 
of a PLC-based workbench appears to be  more 
significant than that of a PC-based workbench with 
identical performance and quality.  At this point, it 
is important to mention that industrial  PCs are as  
robust as PLCs (see Fig. 1). In addition, they 
support the same type of operating system, 
development software, communication bus, 
hardware, digital input-output ports, data acquisition 
boards and external peripherals than the standard 
PCs. However, for the same characteristics and 
performance,  industrial PCs are  more costly  than  
standard PCs. For these main raisons, standard PCs 
appears  to be the better building  technology for 
virtual workbenches in engineering education. 
 
PC-Based workbenches encountered in modern 
engineering, consist of power processes, hardware 
interfaces, and software control applications [4]-[9] 
In control engineering education, Matlab is 
increasingly used as the most versatile  development 
tool, for rapid creating virtual instruments and 

controllers with advanced GUI (graphical user 
interface) ([7], [8], [10]). Nowadays this growing 
popularity is reinforced by  data acquisition (DAQ) 
toolboxes  available in recent Matlab editions [11]. 
   
However, the real time feasibility of virtual  
instrumentation and control  under  Matlab is 
dictated by the availability and capabilities of DAQ 
(data acquisition) drivers in  Matlab/Simulink  DAQ 
Toolboxes  [11]. Unfortunately:   

a) Recent Matlab editions do not support all 
types of DAQs available  in the market;   

b) DAQ drivers supported by recent Matlab 
editions only provide basic input-output 
functions,  at the expend of instrumentation 
resources and  real time control policies;   

c) Real time control policies can be only 
implemented as  Matlab/Simulink  blocks;   

d) A digital feedback controller consisting of  
Matlab/Simulink blocks, might become 
greedy within a fast  real time control loop. 

e) Updating  DAQ board drivers registered in 
Matlab  cannot be done independently by 
the end user.  

In order to overcome these weaknesses, this paper 
presents a new PC-based workbench for virtual 
instrumentation and automatic control. The novelty  
of the proposed workbench arises from  many  facts:    

a) Its software platform relies on Matlab GUI and 
MEX (Matlab Executable) C++; 

b) Its precompiled MEX-C++ library provides 
advanced functions and real time controllers;   

c) A custom DAQ  board is supported even 
though it is not  registered in Matlab;  

d) A wide variety  of   experiments  are provided.  
 
The prototyping realizations of the proposed virtual 
workbench, are in use at the Advanced Teachers’ 
Training College for Technical Education of the 
university of Douala. Most  are used in the electrical 
and electronic engineering department,  in order to 
reinforce practical skills in instrumentation and 
control courses, to a mean population of 90 
undergraduates per semester. In addition, the 
GUI/MEX-C++ codes are used as realistic case 
studies in Master degree II  program, when teaching 
the course entitled Advanced programming of 
Automated systems, to a mean population of 20 
graduate students per year.   
 
In Section  2, the hardware architecture of  the 
proposed workbench is presented. Then, the  
software architecture of Matlab GUI/MEX-C++ 
application is outlined in Section 3. In Section 4, a 
custom MEX-C++ library is outlined, followed in  
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Section 5 by the  presentation of experimentation  
modes and  related  experimental results  obtained 
when testing the proposed PC-based virtual 
workbench.  Finally,  the conclusion of the paper is  
outlined in Section 6. 
 
2  PC-based workbench Architecture  
 
As shown in Fig. 2, the hardware architecture of the  
PC-based workbench consists of 3 main subsystems:  

- A PC with preinstalled Matlab GUI/MEX-
C++  application described  later (Fig. 1(a)). 

- An USB  hardware interface (Fig. 2(b)). It is a 
low cost Velleman K8055/VM110 DAQ with 
mean conversion rate 50 Samples/s. It 
consists of two 8-bits ADC (analog-to-digital 
conversion) channels with adjustable gains, 
two 8-bits digital-to-analog conversion 
(DAC) channels with light indicators, 8 
digital-to-digital conversion (DDC) outputs  
with light indicators and 5 DDC inputs with 
test buttons.  In addition, it  is sold with a free 
drivers for standard programming languages 
including C++. Although the K8055 DAQ 
toolkit  for Matlab might be already available,  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is not necessary in our context because of the 
aforementioned weaknesses about most Matlab  
DAQs drivers. 

- A power  servo system  shown in Fig. 2(c), 
with a load  disturbance  (magnetic brake). 

Fig. 2   Synoptic diagram  of  the  PC-based 
workbench. 

 
A real view of the prototyping PC-based workbench 
is presented in Fig. 3, where subsystems are 
identified and numbered  from 1 to 10. 

 
 

1) Servo DC motor -Tacho unit;   2)  Magnetic brake;   3) Power supply;      4) Servo Amplifier;   5) Preamplifier;  
6) K8055/VM110/USB-MDAQ;  7)  USB Cable;      8) PC;   9) GUI/MEX-C++ application;      10)  Digital  voltmeter 

 

 

Fig. 3:  Hardware architecture of the virtual workbench for a servo system 
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3  Matlab  GUI/MEX-C++  application 
    software  
 
The structure of  Matlab GUI/MEX-C++ application 
software  presented in Fig. 4 consists of: 

- A visual control panel (Fig. 4(a) with 
interactive and static visual controls.  

- A set of GUI and a Matlab files  edited as 
objects Figure *.Fig and Matlab file *.m 
respectively as shown in  Fig. 4(b). While the 
file *.Fig contains references of visual objects 
embedded on the front panel,  Matlab file 
(*.m) contains Matlab Callback functions 
(Fig. 4(d)), including MEX functions 
accessible from the GUI as shown.   

- A  MEX Library in Fig. 4(e)). It  consists of 
MEX functions  compiled offline.  

- A C++ driver given  by the manufacturer of 
the target DAQ board. 

        

 
Fig. 4  Structure  of  Matlab GUI/MEX-C++ 

application 
 
The calling syntax of a MEX function as presented  
in Fig. 5,  involves  m  output and n input variables, 
each of which being thought off as  mxArray  object.  
 
Furthermore, the structure of  MEX C/C++  function 
as shown in Fig. 6,  is similar to a special C/C++  
program named MyMexCpp.C  or  MyMexCpp.Cpp, 
and consists of 4  important sections: 
    a)  Standard C/C++ libraries  to be used;  
    b)  Special libraries:  <windows.h>,  ”mex.h”;  
     c)  Global C/C++ structures or  functions,  and  a  
          C++ driver procedure  Myddl( ) to be called at   
         run-time  for  loading  K8055.DLL  driver,  

           

 
 
Fig. 5 :  Calling syntax  of a MEX function available   

in the  proposed MEX-C++ Library. 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Fig. 6    Structure of a MEX-C++ function 

//  Mex-C++  Source  Program - MyMexCpp.Cpp 
//  Section I :    Declare   standard C/C++  Library  
        #   include  <stdio.h>                   //  Example 1 
        #   include  <math.h>                  //  Example 2   
                 … 
        #   include  <math.h>                  //  Example n              
//  Section II :    Declare  dedicated  C/C++ Library 
         #   include  <windows.h>           // Example 3 
         #   include  ‘‘mex.h’’                   // Example 4           
//   Section III :   Define : a)  New global  types of  
//         pointers and User data structure  for access      
//         et run time to  K8055.DLL  functions ;  
//        b) Define  instance Object  for  K8055.DLL                         
 int  MyDll( )  //  a)  Load  K8055.DLL into RAM 
                         //  b)  Instantiate  C++ User Names  
                         //        function using  Lib names red 
                         //  c)   Open USB-DAQ connection 
//  Section IV :    Edit the  main entry function                               
void  mexFunction  
         ( int   nlhs,                  //  Number of  LHS  Args                            
           mxArray   *plhs[ ],   //   LHS Array pointer  
                                              //   from    prhs[0]                                          
           int  nrhs,                    // Number of  LHS Args 
           const   mxArray  *prhs[ ]     //   Number  of               
                                                         //   RHS  Args  
          )     
  { 
     // 1)   Declare local variables and   pointeurs  
     //        for data Array to be  Imported/Exported  
     // 2)   Test  of  imported  Data  *prhs[ ] for errors. 
     // 3)   Processing imported data using global  
     //        and  local functions, including  MyDll( )  
     // 4)   Call  DAQ  output(s)  into  DLL if  needed 
     // 5)   Create output Memory for  Array pointer  
     //        to be returned to Matlab   
     // 6)   Compute  Array output to be returned 
     // 7)   Return Array output to Matlab program                     
   } 
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         and  initializing  connections, for   access to  
          hardware  ports  of  the target  DAQ board. 
    d)  Main entry function entitled  mexFunction. 
 
The arguments of a mexFunction are: 
 nlhs:  Number of left hand side outputs 
 *lhs:   Left hand side mxArray  pointer 
 nrhs:  Number of right  hand side  inputs 
 *rhs:  Right hand side mxArray  pointer 

 
4  MEX-C++  Library  for  K8055/VM110/USB- 
    DAQ board and access from Matlab GUI 
 
Following MEX programming techniques presented 
in Figs. 5 and 6,  Table 1 summarizes  a set of input-
output (I/O) functions integrated in the proposed 
MEX-C++  library, built from the basic K8055.DLL 
driver for C++ of the K8055/VM110-DAQ board. 
 
Table 1:   Basic  K8055.DLL   driver f or  C++ and 

the proposed  MEX-C++  library 
  

K8055.DLL for  C++ 
and  I/O  functions 

Proposed   MEX- C++  Library 
and  novel   I/O  functions 

OpenDevice State = open_usb_card (0) 
Closedevice close_usb_card ( ) 
SetDigitalChannel  ddcout (ddCh,  Val) 

 ddCh   =  1 to 8  Bit Number 
             =      9     Output word 
             =    10     All output bits 
 Val = 0 – 254  if  ddCh = 9 
        = implicit (otherwise). 

ClearDigitalChannel 
SetAllDigital 
ClearAllDigital 
WriteAllDigital 

ReadDigitalChannel Val = ddcinp (ddCh) 
 ddCh = 1-8  for single  bit select 
           = 9  for reading a word 

ReadAllDigitalChannel 

ReadAnalogChannel N = adcoutcode (Ch_Dac) 
N : 0-253 ReadAllAnalog 

OutputAnalogChannel dacinpcode (dac_Ch,  N1,  N2) 
       dac_Ch = 1, 2 or 3 (for 1 & 2) 
       N1,  N2 :   0 - 253 ; 

OutputAllAnalog 
SetAnalogChannel 
SetAllAnalog 
 Val = ddc (dir, Ch, State) 

   dir = 0 (output),  1 (input) 
   Ch = 1-8 (bit), 9 (word), 10 (All) 
State = 0 or 1 if dir =0 
         = implicit  (otherwise) 
dacout  (dac_Ch, U) 
dac_Ch = 1, 2  and 0 ≤ U ≤ 4.7  V 
U = adcinp (adc_Ch) 
adc_Ch  = 1, 2 or 3 (for 1 &  2);   
            0 ≤  U  ≤  4.7 V 
Y=oploco(dacCh,Uc,adcCh, Nms) 
 Uk_1 =  UpidMat (Args) 
 Uk_1 =  UpidMex (Args) 

 
It is a great merit to observe that, unlike most DAQ 
drivers  for  Matlab/simulink as in [12], the  
proposed MEX-C++ library, provides under an 
arbitrary DAQ with available basic C++ driver,  
many powerful real time control functions such as 
ddc, oploco (open loop control), and UpidMex. 

In addition, following Fig. 4, each MEX-C++  
function provided in Table 1 for real time 
instrumentation or control, with extension  
*.Mexh32  in the current folder,  exactly behaves as  
any standard  Matlab  function.  Thus, it could be 
called  from the callback procedure associated with   
visual objects available on  Matlab GUI used as an 
advanced  virtual instrumentation and control tool.    
 
The general structure of the callback procedure 
associated with Matlab  GUI  visual object named 
ObjName, consists of  3 sections as shown in Fig. 7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 Fig. 7    Structure  of  the   callback   function 

for  a  GUI  visual object. 
 

In Fig. 7, get and  set are  Matlab GUI commands 
allowing to capture  and  modify  respectively, the  
property  of any GUI visual object Objname2 
pointed by the handles.ObjName2 argument.  
 
In addition, num2str is a standard Matlab command, 
whereas  adcoutcode(1) and  adcoutcode(2) are 
typical MEX-C++  input/output  functions. 
 
5   Experimentation modes  
 
The starting screen of Matlab GUI/MEX-C++ 
application presented in Fig. 8,  provides a variety 
of configuration and experimentation modes 
including Digital-to-digital conversion (DDC), 
digital-to-analog conversion (DAC), analog-to-
digital conversion (ADC),  and  Open/Closed  loop  
tests.   

function     ObjName1_Callback(hObject,   … 
                                               eventdata,   handles)                                                 
%   SECTION I    
%        Get Input data from GUI if any   
%        for preliminary processing.   
%                                Example:  
                 Val = get(handles.CheckCna, 'Value'); 
%   SECTION II   
%        Process  data  using  Matlab  commands 
%        including  MEX  functions  
%                               Example: 
 if   Val  = = 1    
      N1Can  = adcoutcode(1);  % MEX  call   
set(handles.TextCanN1,'String',  num2str(N1Can));  
      N2Can = adcoutcode (2);    
set(handles.TextCanN2, 'String', num2str(N2Can));  
 
 end    %   for   If  command 
%   SECTION III   
%       Additional  decision making  and   actions       
end    %  for function  
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5.1. Digital-to-digital conversion  mode  
 
The digital-to-digital conversion (DDC) frame 
provided in Matlab GUI  is presented in Fig.9.  
           

    
Fig. 9   Digital-to-digital conversion   frame 

 
If  the DD Input control button is clicked, then  in 
the corresponding callback procedure,  the input 
channel state  DIch   is red and displayed as a label 
object DIval  according to the function  syntax  
ddcinp(DIch).  Otherwise, if the DD Output  control 
button  is clicked, then  the value DOval  is  sent to 
the digital output according to command syntax 
ddcout (DOch,  DOval). 

 
               
5.2.  DAC/ADC  modes  
 
The DAC/ADC  frame is presented in Fig. 10. In the 
callback procedure associated with the control 
button labeled Conversion, the MEX function 
dacinpcode (Ch, N1, N2)  could be  called for DAC, 
or/and adcoutcode (Ch) may be called for ADC 
depending on  the state of the related checkbox.  
Recall from Table 1 that Ch = 3  (channel number) 
stands  for  DAC1 &  DAC2, or  ADC1 & ADC2. 
 

 
Fig. 10    DAC and ADC   frame. 

 
Then, in each case and for each conversion step, a 
couple of experimental data is collected since  a 
standalone digital voltmeter could be used to 
measure the  external analog value, whereas the 
related digital value displayed  on the DAC/ADC 

Fig. 8    Starting   screen   of   Matlab   GUI/MEX-C++ application  software  of   the   workbench 
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frame could be red. At the end of the experiment, 
the set consisting of coupled of experimental data, 
can be recorded in the current folder as a Matlab 
array for direct reading and plotting from a callback 
procedure associated with the control button 
labeled U(N)/N(u) in Fig. 10. The manual 
record of DAC/ADC data  might be automated 
in next version of the proposed software.  
 

 
Fig. 11   Input-output characteristic   of  DAC 

channel 
 
Fig. 11 shows a typical input-output characteristic of 
a single DAC channel with mean  values  modeled  
as follows: 
                   u(N) = 0.0201  N                         (1) 
where  N  stands for the integer input code. 
 
5.3.   Open/Closed loop  tests mode 
 
The Open/Closed loop  tests  frame is presented in 
Fig. 11, where the set of modifiable  input data is : 
 Tech:  Sampling period in milliseconds 
 Nech:  Number of sample 
 Num = K: Numerator of the plant transfer 

function Gc(p). 
 Delay = λ: Time delay of the dynamic plant 
 Den : Denominator of Gc(p). 
 Kp, Ti, Td:  Parameters of  PID (proportional, 

Inegral and derivative) controller. 
As shown in Fig. 12, four main varieties of tests can 
be conducted by the user from  the Open/Closed 
loop tests  frame. 
 
5.3.1  Open  loop (OPL)  Tests  
 
The step response with speed as output is conducted  
in this case, using a callback of the MEX-C++   

 
Fig. 12:   Open/Closed loop  tests    frame. 

 
command  oploco.Mexh32  described earlier  in 
Table 1. Then, the experimental data related to  
speed  values are acquired,  plotted and saved into 
the disk  for further  estimation of  a dynamic model 
of the servo system. 
 

 
Fig. 13    Test  results   for  open loop step response. 
 
Given the visual properties observed on the 
experimental  step response plotted in Fig. 13, the 
dynamic behavior  of the servo system  could be 
modeled  as follows using  a first order transfer 
function with delay: 

                s
c e

asa
K

sU
sYsG λ−

+
==

01)(
)()(            (2) 

where  Ks, λ , a1 and a0 are  parameters  to be 
estimated offline using an identification method.          
 
5.3.2  Open loop   Simulation  
 
Using Matlab  Identification toolbox [13],  the 
parameters  Ks, λ , a1 and a0  are estimated given 
experimental data and the model structure (2). As a 
result, the default values of these parameters  are 
displayed in Fig. 12, in which case the nominal 
transfer function considered is given as follows: 

                s
c e

s
sG 25.0

193.0
1.1)( −

+
=              (3) 

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Jean Mbihi

E-ISSN: 2224-3410 58 Volume 12, 2015



 
Fig. 14  Open Loop  step response (simulation) 

 
In Fig. 14, the simulated  open loop step response of 
is successfully compared to the experimental test.    
 
5.3.3  PID  Control  Simulation  
 
Given the dynamic model (3) of the servo system, 
the parameters of the PID controller to be used to  
 

 
Fig. 15    Simulation results for PID control of  

speed. 
achieve good performance under  digital control,  
could be designed offline using any method 
available in  control  engineering  ([14]-[18]). The 
default parameters of the PID transfer function  

      sT
sT

K
s
sUsD i

d
pc ++=

∈
=

1
)(
)()(             (4) 

are provided  on  Fig. 11, and the simulation result 
obtained under a step input is presented in Fig. 14. 
 
5.3.4  Digital  PID  control  and  robustness 
 
The digital PID algorithm obtained from (4) using 
 Tustin’s technique 
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Following the novel MEX-C++ library summarized 
in Table 1, recall that (5) given (6) is  implemented 
as  optional Matlab and MEX controllers. 
 
The experimental closed loop behavior of the servo 
system  is shown  in Fig. 16.  In Fig. 16(a) the 
emphasis is on PID control under the nominal (or 
default) parameters on the plant,  whereas  the  
results shown in Fig. 16(b) are obtained under  50 % 
variation of a load disturbance, consisting of a 
mobile magnetic brake.  
 

 
(a) Test  results  for  PID  control of speed. 

 

 
(b) Test  results  for  control  robustness of speed. 

 
Fig. 16    Test  results - PID control and 

robustness. 
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In addition, it is possible also to make sequential 
experiments,  and  to plot all graphical results on the 
same object figure for the sake of better comparison 
and well understanding. As an example, Fig. 17 
shows the results obtained from the following 
sequential experiments:  

a) PID control simulation of the speed;  
b) Matlab-PID control under nominal load;   
c) Matlab-PID control under 50 % increase of 

the load disturbance; 
d) Matlab-PID control with 50 % increase of 

load disturbance from  steady state at 5.8 s. 
 
5.3.5  Impact of the proposed virtual workbench 
 
In the electrical and electronic engineering 
department, of the Advanced Teachers’ Training 
College for Technical Education of the university of  

 
 
 
Douala, the  proposed PC-based virtual workbench 
has  become  a  common   versatile  platform,  for 
virtual instrumentation and digital control courses, 
given its rich palette of  ready-to-use  simulation 
and experimentation tools.   
 
For undergraduate students, laboratory work 
sessions needs beside Matlab software, the 
preinstalled custom resources (in each Laptop to be 
used as a virtual instrument),  consisting of: 

a) Matlab main program MexGuiDaq.m;  
b) Matlab GUI application MexGuiDad.Fig; 
c) Compiled MEX-C++ library (*.MexW32); 
d) C++ driver K8055.Dll of the DAQ target.  

 
Matlab GUI application MexGuiDad.Fig is 
activated automatically when running  the main 
program MexGuiDaq.m from Matlab prompt. In this 

Fig. 17   Sequential   experiments  for  speed control.  
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mode, visual objects and their appearance on Matlab 
GUI, cannot be  neither  updated nor modified by 
the user. Following our own experience, it is 
important to mention that,  under  minimum help of 
an instructor, a mean of 30  minutes  is  sufficient 
for undergraduate students to understand and setup 
equipments of the workbench, and to start Maltab 
GUI/MEX application. In addition, each experiment 
selected from Matlab  GUI application is usually 
conducted before 5 minutes. Furthermore, a number 
of independent experiments can be performed  
sequentially using simple mouse clicks  after 
minor/major changes on target modifiable 
parameters (if any). In which case  updating the 
physical architecture  of the whole workbench, is 
made automatically and instantaneously.  For each 
experimentation strategy, a screen view of the 
results obtained can be  captured and pasted to  a  
word or image editor, for further use in  a technical 
report to be edited as a homework  and submitted to 
the instructor  a few days  later  for  evaluation. 
 
For graduate students, the main aim behind  
laboratory work sessions  using the proposed PC-
based virtual workbench, is to enable  them  to 
understand  in depth  the secrets of  creating  custom 
virtual instruments  and automated systems from 
Matlab GUI/MEX-C++ programming fundamentals. 
In this case, beside Matlab, the complete 
preinstalled custom resources (in each Laptop to be 
used as a prototyping  PC-based virtual instrument) 
consist of: 

a) Matlab main program MexGuiDaq.m;  
b) Matlab GUI application MexGuiDad.Fig; 
c) Compiled MEX-C++ library (*.MexW32).  
d) MEX-C++ library source codes (*.CPP);  
e) C++ driver K8055.Dll of the DAQ target. 
f) Standard C++ development tool e.g. 

Bloodshed Dev-C++ if any, otherwise the 
default Matlab C++ compiler might be used 
along with a text editor for viewing or 
modifying  MEX C++ codes. 

 
Subsequently, both Matlab GUI application 
MexGuiDad.Fig and Matlab main program  
MexGuiDaq.m  are  activated automatically when 
running  the guide command from Matlab prompt, 
followed  by  the specification of the target folder 
and executable file  in a guide  form. In this design 
mode, visual objects and their appearance on Matlab 
GUI  can   be   either updated or modified according 
to the user needs. For each single experiment,  
graduate students with good prerequisites learned 
from the theoretical advanced programming course, 
can  open related GUI and MEX source codes,  in 

order to discover and understand with minimum 
help from the instructor, how real time 
programming tasks involved are organized, 
implemented and compiled. 
 
Thus, compared to traditional laboratory sessions 
where a variety of real instruments and equipments 
should be frequently reconnected, manipulated and 
updated by learners, the proposed virtual workbench 
offers a number of potential merits for both 
undergraduate and graduate cases, including,   
significant time saving,  higher  reliability, better 
working comfort, greater considerable  didactic  
efficiency, and more powerful base of realistic case 
studies for engineering researches. 
      
6   Conclusion 
 
The research work  presented in this paper, shows  
how an advanced virtual instrumentation and 
automatic control  tool for PC-based servo systems, 
can be developed  using  a mix of Matlab  GUI  
programming strategies and MEX-C++ developing  
technologies.  While  Matlab GUI programming has 
proved to be very attractive for rapid development 
of visual applications  under Matlab platform, the 
major merit  of MEX-C++ development  relies on 
the great opportunity  of building  sophisticated  real 
time Matlab libraries from C++ drivers of an 
arbitrary DAQ.  
 
Compared to equivalent codes implemented using 
standard Matlab commands, MEX-C++ functions 
runs very fast.  In addition,  a MEX-C++ library for   
real time instrumentation and control, might be used  
under Matlab to drive an arbitrary DAQ board from 
its basic C++ driver, even though  a corresponding 
driver version for Matlab is unavailable in Matlab 
DAQ toolbox.  
 
Although  the proposed virtual instrumentation and 
control platform  for servo system  has proved to be 
very satisfactory for engineering education,  next 
editions  should bring significant  improvements and 
extensions. For example, the acquisition of 
DAC/ADC characteristics  might  become an online 
callback  decision. In addition, the dynamic model  
of the  servo plan might  be estimated from the open 
loop test, using  an automated callback estimation 
process.  Furthermore, it would be fruitful to 
provide  an additional position control option of the 
servo shaft  on the proposed Matlab GUI/MEX-C++ 
application.  These important improvements will be 
investigated in future research works. 
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