

Single quality model in software life cycle

RUDITE CEVERE, Dr.sc.comp., Professor
Faculty of Information Technologies

SANDRA SPROGE, Dr.sc.ing., Head of Department
Studies Centre

Latvia University of Agriculture
Liela Street, 2, Jelgava

LATVIA
rudite.cevere@llu.lv sandra.sproge@llu.lv http://www.llu.lv

Abstract: - The article deals with the problems associated with quality definition and assessment for software
development processes, intermediate and end products throughout the entire software life cycle. The main
objective of the research is to develop measures to improve software quality.
It is known that it is not possible to develop a software which is free from problems. Therefore methods and
techniques of software quality improvement are still being developed intensively. Our work is based on years
of experience in IT companies and higher education institution. In the information technology sector a lot of
attention has been paid to Software Quality Assurance. Our experience has led to the hypothesis that software
quality model can be generalized and applied to description and evaluation of quality in a wider area, including
quality of the processes. The extended software product quality life cycle is offered including the study process,
because during it the future IT professionals acquire their basic knowledge.
When starting any quality evaluation activity, at first it is necessary for all stakeholders to agree on a definition
of quality. In our work a single quality model and its application procedure has been developed based on
quality model defined in standard ISO / IEC 9126.

Key Words: - Quality Model, Software Product Quality, Internal and External Quality Model, Quality
Assurance, Study Programme, Study Courses

1 Introduction
Software products nowadays have become
widespread and affect quality of functioning in
many sectors. A lot of attention has been devoted to
definition and improvement of software product
quality since the very early days of programming.
This has resulted in development of a common
approach to quality in software lifecycle. The model
of internal and external quality has been defined to
describe the quality of the software product [1].

This approach is described in ISO / IEC Standard
9126. The quality model has been obtained by
generalizing the number of software quality models
developed before [2, 3]. This model has gained quite
a wide range of applications, however, it describes
only the internal and external software quality.
Standard describes also a quality model framework
which explains the relationship between different
approaches to quality. In accordance with this view
software quality in the lifecycle includes process
quality, internal quality, external quality and quality
in use.

Internal quality is the totality of characteristics
of the software product from an internal view. It
may be evaluated to a non-executable software
product during its development stages (such as a
request for proposal, requirements definition, design
specification or source code).

External Quality is the totality of characteristics
of the software product from an external view. It is
the quality when the software is executed, which is
typically measured and evaluated while testing.

Moreover, a wide range of concepts and terms is
found in software development related to quality:
quality assessment, quality assurance, quality
control, quality characteristic, quality certification,
quality evaluation, quality improvement, quality
management, quality measurement, quality models,
quality planning, quality requirements, quality
system. Typically, in each case, an understanding of
quality can be different [4, 5].

In the field of software development one of the
observations is that “graduates do not receive the
knowledge and skills needed for industrial software
development. It results in low quality and unusable
software systems” [6]. In order to improve quality

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 19 Volume 12, 2015

of the software product we should improve the
professional knowledge of IT specialists. Our
proposal is to achieve it by creation a single view to
the quality throughout the whole software life cycle.
This article provides a solution to establish a
common understanding of the quality throughout the
life cycle on the bases of transformation of the
software internal and external quality model.

2 Problem Formulation
Looking at the software quality model development
history, it is evident that a hierarchical structure is
selected for the models, in which terms that
characterize the quality of the software have been
placed in various combinations and
interconnectedness. Overall view point of which
quality characteristics should be selected is various
for different models. There is part of the terms that
appear almost in all quality models, but there are
those that appear only in one particular case [7].

The model described in standard ISO / IEC 9126
can be considered as an international agreement on
software quality model and the characteristics used
in it. The product quality in ISO 9126 is defined as a
set of characteristics and the relationships between
them which forms the framework for quality
requirements specification and evaluation.
Characteristics that affect product operation within
its intended environment are known as external
characteristics; those relating to the product being
developed are called internal characteristics. Model
contains 6 characteristics and 27 sub-characteristics
(see Fig.1)

Internal and external
quality

Functionality

Suitability
Accuracy
Interoperability
Security
Functionality
compliance

Usability

Understandability
Learnability
Operability
Attractiveness
Usability
compliance

Efficiency

Time behaviour
Resource
 utilisation
Efficiency
compliance

Portability

Adaptability
Instability
Co-existence
Replaceability
Portability
compliance

Maintainability

Analyzability
Changeability
Stability
Testability
Maintainability
compliance

Reliability

Maturity
Fault tolerance
Recoverability
Reliability
compliance

Fig.1 Software internal and external quality
model [1]
The model defines the following quality
characteristics:
• Functionality – the capability of the software

product to provide functions which meet
stated and implied needs when the software is
used under specified conditions;

• Reliability – the capability of the software
product to maintain a specified level of
performance when used under specified
conditions;

• Usability – the capability of the software
product to be understood, learned, used and

attractive to the user, when used under
specified conditions;

• Efficiency – the capability of the software
product to provide appropriate performance,
relative to the amount of resources used,
under stated conditions.

• Maintainability – the capability of the
software product to be modified.
Modifications may include corrections,
improvements or adaptation of the software to
changes in environment, and in requirements
and functional specifications;

• Portability – the capability of the software
product to be transferred from one
environment to another.

In the model each quality sub-characteristic is
subordinate to one particular characteristic.

Standards ISO / IEC 9126 and ISO / IEC 14598
recommend in any case of usage to choose only
some characteristics and sub-characteristics and
make their ranking of importance to a particular
application [1, 8]. Experience shows that it is not
enough for achieving sufficient mutual
understanding on the establishment of quality
definition. This is evidenced by numerous variants
of using modifications or additions of the standard’s
ISO 9126 model [9, 10, 11].

Evidence of the need for software quality model
improvement is development of a new series of
standards 250xx that was launched immediately
after Std 9126 TR status was transferred to the
distribution. The internal, external and quality of the
use approaches to the software product quality are
kept in the new quality model too, but the quality
characteristics and sub-characteristics have been
changed. Now there are 8 characteristics and 37
sub-characteristics (Fig 2).

Software product
quality

Functional
Suitability

Functional
completeness

Functional
Correctness

Functional
Appropriateness

Usability

Appropriateness
Recognizability
Learnability
Operability
User Error
Protection
User Interface
Aesthetics
Accessibility

Performance
Efficiency

Time behaviour

Resource
utilisation

Capacity

Portability

Adaptability
Installability
Replaceability

Maintainability

Modularity
Reusability
Analysability
Modifiability
Testability

Reliability

Maturity
Availability
Fault Tolerance
Recoverability

Compatibility

Co-existence

Interoperability

Security

Confidentiality
Integrity
Non-repudiation
Authenticity
Accountability

Fig.2 Quality characteristics and sub-
characteristics in model ISO 25010 [12]

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 20 Volume 12, 2015

Analysis of the new quality model shows that a
completely new quality characteristics are not
offered, but characteristics and sub-characteristics of
the previous model have been restructured and new
names have been given. A comparison of both ISO
models, starting with the name of the characteristic
in ISO 9126, and then the characteristic of ISO /
IEC 25010 is given below.

Functionality→Functional Suitability.
The name is changed, the current sub-

characteristic Suitability is added to the name of
characteristic; the characteristic has 3 sub-
characteristics, two of them are similar to sub-
characteristics in previous model (Functional
correctness with Accuracy and Functional
appropriateness with Suitability). Current sub-
characteristic Interoperability has been moved to
position of a sub-characteristic to a new
characteristic Compatibility. In turn, sub-
characteristic Security has become a characteristic
and 5 new sub-characteristics have been defined for
it: Confidentiality, Integrity, Non-repudiation,
Accountability, Authenticity

Reliability→Reliability.
Names of the characteristic and 3 sub-

characteristics are the same, one new sub-
characteristic is offered: Availability - degree to
which a system, product or component is
operational and accessible when required for use.

Usability→Usability.
In the new model this characteristic has 6 sub-

characteristics. Two of them are identical to
previous sub-characteristics (Learnability and
Operability) and new names are offered for two
previous ones (meaning of Understandability is
similar to Appropriateness recognisability and
Attractiveness to User interface aesthetics). Sub-
characteristics User error protection and
Accessibility are offered as new.

Efficiency→Performace efficiency.
The name of characteristic is changed, the word

Performace has been added to the previous name.
Current sub-characteristics are kept and one new is
added: Capacity - degree to which the maximum
limits of a product or system parameter meet
requirements

Maintainability→Maintainability.
Five sub-characteristics are offered. Names of

the characteristic and 2 sub-characteristics are the
same. Explanation of the new sub-characteristic
Modifiability - degree to which a product or system
can be effectively and efficiently modified without
introducing defects or degrading existing product
quality – is quite similar to current Changeability -

the capability of the software product to enable a
specified modification to be implemented. In
addition 2 sub-characteristics are offered in the new
model (Modularity and Reusability), and current
Stability is not used.

Portability→Portability.
Three current sub-characteristics are kept for this

characteristic also in the new model (Adaptability,
Installability and Replaceability). Sub-characteristic
Co-existence has been moved as a sub-characteristic
to the new characteristic Compatibility

--- →Compatibility.
The new characteristic has 2 sub-characteristics:

current Co-existence has been moved from
Portability and Interoperability from Functionality.

--- →Security.
The previous sub-characteristic of Functionality

has been moved to the level of characteristics and 5
new sub-characteristics are defined for it:
Confidentiality, Integrity, Non-repudiation,
Accountability, and Authenticity

The comparison of models shows that a
significant changes are not offered. The terms have
been searched that seems more important to
stakeholders and appropriate for software quality
description and evaluation.

3 Problem Solution
The main goal of our research is to find a form of
quality definition, allowing to use a single approach
to quality assessment during the entire software life
cycle. In order to justify that a transformed quality
model of standard ISO / IEC 9126 can be used in
different cases of software life cycle, it is necessary
to investigate for evaluation of what type of
artefacts this model has been developed.

3.1 Software intermediate products
Evaluation of software products in order to satisfy
software quality needs is one of the processes in the
software development lifecycle. Software product
quality can be evaluated by measuring internal
attributes (typically static measures of intermediate
products), or by measuring external attributes
(typically by measuring the behaviour of the code
when executed) [1].

Let us see what are the main intermediate
products is software development and what are their
characteristics.

Software development starts with understanding
what needs to be done. This is valid both for a level
of large and complex project and for solving a

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 21 Volume 12, 2015

simple problem report or change request. That
means looking for the answer to a question What to
Do?

For that purpose information is collected,
analysed and classified. A variety of methods and
tools has been developed: research of industrial
activities, studying of documents and real process,
interviewing, data and information flow modelling,
and so on. Possible forms of documentation of
results are also very diverse.

In software engineering looking for answer to the
question What to Do? is called requirements
specification. Often requirements specification is
understood as development of Software
requirements specification document in accordance
with the software engineering standards. In fact it is
only a one possible way of requirements
documentation.

In accordance with software requirements
specification standard a good SRS should has
characteristics described in Table 1.

Table 1 Characteristics of a good SRS [13]

Quality
characteristic

Software/System
Requirements Specification

Correct An SRS is correct if, and only if,
every requirement stated therein
is one that the software shall
meet. There is no tool or
procedure that ensures
correctness. The SRS should be
compared with any applicable
superior specification, such as a
system requirements specifica-
tion, with other project docu-
menttation, and with other
applicable standards, to ensure
that it agrees

Unambiguous An SRS is unambiguous if, and
only if, every requirement stated
therein has only one
interpretation. As a minimum,
this requires that each
characteristic of the final product
be described using a single
unique term.

Complete An SRS is complete if, and only
if it includes a) all significant
requirements, whether relating to
functionality, performance,
design constraints, attributes, or
external interfaces; b) definition
of the responses of the software
to all realizable classes of input
data in all realizable classes of

Quality
characteristic

Software/System
Requirements Specification
situations; c) full labels and
references to all figures, tables,
and diagrams in the SRS and
definition of all terms and units
of measure

Consistent An SRS is internally consistent
if, and only if, no subset of
individual requirements
described in it conflict

Ranked for
importance
and/or
stability

An SRS is ranked for importance
and/or stability if each
requirement in it has an identifier
to indicate either the importance
or stability of that particular
requirement

Verifiable An SRS is verifiable if, and only
if, every requirement stated
therein is verifiable. A
requirement is verifiable if, and
only if, there exists some finite
cost-effective process with which
a person or machine can check
that the software product meets
the requirement. In general any
ambiguous requirement is not
verifiable.

Modifiable An SRS is modifiable if, and
only if, its structure and style are
such that any changes to the
requirements can be made easily,
completely, and consistently
while retaining the structure and
style. Modifiability generally
requires an SRS to a) have a
coherent and easy-to-use
organization with a table of
contents, an index, and explicit
cross- referencing; b) not be
redundant (i.e., the same
requirement should not appear in
more than one place in the SRS);
c) express each requirement
separately, rather than intermixed
with other requirements.

Traceable An SRS is traceable if the origin
of each of its requirements is
clear and if it facilitates the
referencing of each requirement
in future development or
enhancement documentation.
The following two types of
traceability are recommended: a)
backward traceability (i.e., to

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 22 Volume 12, 2015

Quality
characteristic

Software/System
Requirements Specification
previous stages of development).
This depends upon each
requirement explicitly
referencing its source in earlier
documents; b) forward
traceability (i.e., to all
documents spawned by the SRS).
This depends upon each
requirement in the SRS having a
unique name or reference
number

The next stage in software development is to
invent how the defined requirements will be
implemented in a program. It means to find an
answer to the question How to Do? The situation is
similar that with the answer to the question What to
Do? Traditionally, it is a software design
development task. Also, there exists a wide variety
of methods and tools for design development, and
diverse forms for its documentation.

Each user of a design description may have a
different view of what are considered the essential
aspects of a software design. The proportion of
useful information for a specific user will decrease
with the size and complexity of a software project.
Hence, a practical organization of the necessary
design information is essential to its use.

Information about entity attributes can be
organized in several ways to reveal all of the
essential aspects of a design. In such case the user is
able to focus on design details from a different
perspective or viewpoint. A design view is a subset
of design entity attribute information that is
specifically suited to the needs of a software project
activity.

In accordance with Recommended Practice for
Software Design Descriptions (SDD) 10 design
entity attributes should be described (see Table 2).
Table 2 Attributes of the design entity [13]
Design entity

attributes
Attribute description

Identification The name of the entity
Type A description of the kind of entity
Purpose A description of why the entity

exists
Function A statement of what the entity

does
Subordinates The identification of all entities

composing this entity
Dependencies A description of the relationships

of this entity with other entities

Design entity
attributes

Attribute description

Interface A description of how other
entities interact with this entity

Resources A description of the elements
used by the entity that are
external to the design

Processing A description of the rules used by
the entity to achieve its function

Data A description of data elements
internal to the entity

A recommended organization of the SDD into
four separate design views to facilitate information
access and assimilation is given below.
Table 3 Recommended design views
Scope Entity

attributes
Example
representations

Decomposition description
Partition of
the system
into design
entities

Identification,
type, purpose,
function,
subordinates

Hierarchical
decomposition
diagram, natural
language

Dependency description
Dependency
description

Identification,
type, purpose,
dependencies,
resources

Structure charts,
data flow,
diagrams,
transaction
diagrams

Interface description
List of
everything a
designer,
programmer,
or tester
needs to
know to use
the design
entities that
make up the
system

Identification,
function,
interfaces

Interface files,
parameter tables

Detail description
Description of
the internal
design details
of an entity

Identification,
processing,
data

Flowcharts,
Program Design
Language (PDL)

The analysis of Standard 9126 shows that
Requirement specification and Design Description
are used for input to internal measurements. These
metrics give an indication of the expected quality of
the software to be developed. The information in
Tables 1 and 2 show the formal requirements of
software engineering standards to SRS and SDD
quality. These are requirements which must be met

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 23 Volume 12, 2015

in order to consider such documents as a reliable
source of information for assessment of software
product internal quality.

This means that quality model of a similar
structure can be used in the software life cycle in
any other case for quality assessment of a non-
executable product (the internal quality).

3.2 Extended life cycle of software quality
We offered to extend the life cycle of software
product quality proposed by ISO/IEC 9126 standard
by inclusion also the study processes (Fig 3). The
study period may be considered as one of the
preventive measures for the improvement of
software product quality.

Process

quality

Internal
quality

External
quality

Quality
in use

Process
measures

Internal
measures

External
measures

Quality in
use

measures

Depends onDepends onDepends on

Influences Influences Influences

Process Software product Effect of software
product

Staff
trainingStudy

process

Fig.3 Extended life cycle of software quality

The role of personnel in the development of
software product is prescribed also at the level of
standard Software Life Cycle Processes [15]. The
ISO/IEC 12207-2008 standard establishes the
human resource management process aimed to
provide an organisation with the necessary human
resources and competence of human resources
suitable for business needs. The basic tasks for the
mentioned process include identification of
personnel professional skills, skills development
plans, assurance of mastering skills, and knowledge
management. Therefore teaching the significance
and role of quality characteristics in different
software product development processes during
studies is a kind of preventive actions for the
development of quality products in future.

The single quality model has been developed and
proposed for usage in the entire software product
quality life cycle. It could enhance the establishment
of single view on quality through all its stages.

3.3 Development of single quality model
By examining the experience of current software
quality model development, it is evident that a much
broader set of terms has been used to characterize
the quality, than it is included in the standard.
Having regard to the fact that, in any case, it is
important that all stakeholders have better
understanding of the essence of quality the idea to

offer an extended set of characteristics was
proposed. The most popular variants of software
quality model development were investigated and
all the used terms were grouped according to their
frequency of use in different models. A list of
quality attributes used in all quality models during
their development is given in Table 6 at the end of
the article.

The structure of single quality model was
developed (Fig. 4). It represents a step-by-step
choice of quality characteristics and sub-
characteristics until a satisfactory agreement on the
definition of the quality has been reached.
The model has a two-level hierarchic structure:
Level 1 – basic quality characteristics;
Level 2 – sub-characteristics of quality
characteristics that are divided into:

• basic sub-characteristics;
• additional sub-characteristics;
• optional sub-characteristics.

One and the same term may be used in different
levels and in different relations between
characteristics and sub-characteristics.

Characteristic 1 Characteristic 2 Characteristic N

Subcharacteristic 1
. . .

Subcharacteristic N1

Subcharacteristic 1
. . .

Subcharacteristic N2

Subcharacteristic 1
. . .

Subcharacteristic Nn

Subcharacteristic 1
. . .

Subcharacteristic Nx

Subcharacteristic 1
. . .

Subcharacteristic Ny

Subcharacteristic 1
. . .

Subcharacteristic Nz

Basic characteristics

QUALITY MODEL

Level 2

Level 1

Basic
subcharacteristics

Additional
subcharacteristics

Optional
subcharacteristics

Fig.4 Single quality model
In the quality model relationship of characteristics
and sub-characteristics is 1: N, excluding optional
sub-characteristics. They have the relationship N:
M. This can be explained by the fact that the
optional sub-characteristics may be chosen for
representation of the various quality characteristics.
For example, sub-characteristic Readability can be
used for both Usability and Maintainability
characteristics.

Functionality, Reliability, Usability, Efficiency,
Maintainability and Portability were chosen as
characteristics of the single quality model. These
quality characteristics are the same that defined in
the ISO 9126 model. The choice of these
characteristics is also motivated by the information
in the publications of a number of scientific studies
that have been carried out on software product
quality evaluation based on the ISO 9126 model
[16, 17, 18, 19, 20].

For optional sub-characteristics of single quality
model it is recommended to use a non-exclusive list

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 24 Volume 12, 2015

of features. Those who defines quality requirements
and carry out an assessment may supplement the list
by more understandable to them and quality more
accurately characterizing features.

3.4 Suitability of study programme to single
quality model
As can be seen from Figure 3, the study process is a
part of the full life cycle of software quality.
Knowledge and skills acquired by next IT
professionals during their studies has significant
impact on quality of software products developed by
them. So, studies are one of the objects for quality
assessment of which the single quality model have
been adapted.

As mentioned above, a set of different
documents is prepared during the software
development. These documents are used also for the
evaluation of product quality. Basic documents are
requirements specification, design description and
source code. A similar set of descriptive documents
are prepared for the study programme. They are the
curriculum, study plan, and descriptions of study
courses. Mutual similarity can be seen in the general
documents in both cases.

The study program includes all requirements
necessary for an academic degree or professional
qualification. The study program is regulated by
description of the study content and implementation.
According to educational level and type it defines
the goals, objectives and expected results of
implementation of the specific program. These
documents describe the offered curriculum, amount
of compulsory, optional and elective parts of the
program, learning time allocation, educational
evaluation criteria, examination forms and
procedures [21].

The course is a description of a study subject or a
part of it that is specially organized at a certain
level, scope and duration [22].

Software requirements specification and design
description are taken as input item for
measurements when evaluating internal quality
characteristics of software product. Every design
entity is evaluated to predict the quality of software
end product. As a study course is the smallest unit
of the study programme, the total evaluation of
internal and external quality of the study programme
can be obtained by evaluation of each course
separately.

General quality requirements may be defined for
documents of study programme similarly to
software requirements specification or other
software program documents. First of all, they refer

to the course descriptions. These requirements shall
certify that study programme documents have been
prepared at a level sufficient for usage of evaluation
of the internal quality (compare Table 1 and Table
4).
Table 4 Characteristics of good study course

Quality
characteristic

Study programme and / or
course

Correct A course is correct if, and only
if, every topic stated therein is
one that corresponds to required
scope and level of the particular
course.

Unambiguous A course is unambiguous if, and
only if, every described topic is
not in mutual conflict with any
other topic. It requires at least
usage of unified terminology

Complete A course is complete if, and
only if, it includes all
significant topics; definition of
all practical or laboratory works;
describes all kinds of control and
contains references

Consistent Consistency refers to internal
consistency. If a course does not
agree with some higher-level
document, such as a study
programme or other courses,
then it is not correct

Ranked for
importance
and/or stability

A course is ranked for
importance and/or stability if
each topic in it has been
identified to indicate either the
importance or stability of that
particular topic

Verifiable A course is verifiable if, and
only if, every topic stated therein
is verifiable. A topic is verifiable
if, and only if, there exists some
finite cost-effective process with
which a person can check that
the studying of the particular
topic facilitates meeting the goal
of the course. In general any
ambiguous topic is not verifiable

Modifiable A course is modifiable if, and
only if, its structure and style are
such that any changes to the
topics can be made easily,
completely, and consistently
while retaining the structure and
style. Modifiability generally
requires an course to a) have a

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 25 Volume 12, 2015

Quality
characteristic

Study programme and / or
course

common structure of
description, and explicit cross-
referencing to literature and
other courses; b) not be
redundant (i.e. the same topic
should not appear in more than
one place in the course); c)
express each topic separately,
rather than intermixed with
other topics

Traceable A course is traceable if the
origin of each of its topics is
clear and if it facilitates the
referencing of each topic in the
future development of practical
or laboratory works. The
following two types of
traceability are recommended: a)
backward traceability (i.e. to
previous stages of development).
It depends upon each course
explicitly referencing its source
literature; b) forward
traceability (i.e. to all
documents spawned by the
course)

In case of study programme, a study course is an
analogous element as a software design entity. To
ensure implementation of study programme study
courses are arranged in groups according to their
compliance with sections A, B or C of the study
plan. It is necessary to arrange teaching of
individual courses in a certain order. In order to
build such a structure, the course descriptions
require a number of general attributes. Table 5
outlines the attributes of a study course analogues to
design entities described in Table 2.
Table 5. Attributes of a study course

Course
attributes

Attribute description

Identification Name of a study course and its
code in the information system

Type Place of a study course in the
study plan – Parts A, B or C,
and type of control

Purpose Aim of a study course
Function Description of the content of a

study course
Subordinates Division of a study course into

terms and forms of study work
Dependencies Relations of a course with other

courses

Course
attributes

Attribute description

Interface Preliminary knowledge required
to acquire the course, necessity
of the particular course for other
courses

Resources Division of lectures and
practical work, technical
resources necessary for the
course

Processing Requirements of a course for
obtaining the credit points

Data Bibliography necessary for a
course content, electronic
materials of lectures

The described similarity of the study program
and the software product allows to use also similar
quality models for evaluation the both objects.
Study program quality model can be derived from
the developed quality model following the
procedure of tailoring the single model.

3.4 Usage of the single quality model
The single quality model shall be tailored to the
context of usage and requirements of stakeholders
involved in the quality evaluation in each individual
case. In all cases, the tailoring shall be done in
accordance with the usage procedure of the single
quality model (Figure 5)

To identify/to choose the group of
users that will evaluate the quality

of product/process

To identify the quality
requirements of a product/
process set by the group of

stakeholders

To choose basic and additional
quality characteristics and
subcharacteristics from the

quality model

To prioritise each selected
characteristic

To choose metrics for each
quality characteristic/sub-

characteristic

To set the minimum quality
value of each selected metric

To provide the process of
measuring

To summarise and analyse
the obtained data

To prescribe activities for the
improvement of a product/

process quality

To identify optional
characteristics in case of

necessity

Fig. 5 Procedure of usage of the single quality model

The single quality model is developed so that it
may be used in any stage of the entire life cycle of
software product. As the study process has been
included in this cycle, the model was approbated
evaluating the quality of study programme and
demonstrating how to include the model into the
content of study programme in information
technologies. The model was approbated at Latvia
University of Agriculture.

The resulting quality model of a study
programme is shown in Figure 6. The model
encompasses 5 quality characteristics and 21 sub-
characteristics. Functionality, Usability, Efficiency,
Maintainability, and Portability were selected as the
basic characteristics

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 26 Volume 12, 2015

Internal an external
quality model

Functionality
Suitability
Accuracy
Interoperability
Functionality

compliance

Usability
Understandability

Learnability

Human engineering

Efficiency
Resource

 utilisation

Portability
Adaptability
Co-existence
Replaceability
Portability

compliance

Maintability
Analyzability
Changeability

Stability
Maintainability
 compliance

Characteristics

Basic
subcharacteristics

Attractiveness

Readability

Time behaviour Verifiability Additional

Optional
Fig. 6 Quality model of a study programme

In the model of study programme explanations
of included characteristics and sub-characteristics
are used, which is slightly different from a similar
explanations of the software product characteristics.
A question is shown for each characteristic to which
its use provides the answer.
• Functionality (are the necessary knowledge and

skills included into the study programme?)
o Suitability – course is topical, conforms to

the aims of study direction and labour
market requirements;

o Accuracy – it is possible to acquire
knowledge and skills included into the
programme and they conform to the
requirements of the qualification/degree to
be awarded;

o Interoperability – learning outcomes of the
programme support participation in
exchange studies and ensure the necessary
knowledge for further studies;

o Functionality compliance – the programme
is prepared consistent with the legislation
and regulations of higher education, it is
accredited.

• Usability (is the study programme easy to teach
and to learn?)
o Understandability – the curriculum plan is

balanced and logically structured, the
statement style conform to the level of
preliminary knowledge;

o Learnability – acquisition of theoretical and
practical knowledge of the programme is
balanced, teaching aids are defined and
available;

o Attractiveness – oratory skills of the
teaching staff are sufficient;

o Readability – descriptive documents of the
programme are prepared in good readable
language consistent with the regulatory
rules;

o Human engineering – degree up to which an
individual university lecturer can impact the
programme implementation.

• Efficiency (is the study programme efficient?)
o Time behaviour – conformance of the

programme volume to the time determined
for the programme acquisition;

o Resource utilisation – resources necessary
for the programme implementation.

• Maintainability (is it easy to maintain the study
programme?)
o Analysability – it is possible to analyse the

curriculum plan and content;
o Changeability – it is possible to modify the

study programme without worsening its
teachability;

o Stability – it is not necessary to
update/modify the content of study
programme during the academic year;

o Verifiability – it is possible to verify the
achievement of study programme aim;

o Maintainability compliance – the necessary
regulatory documents of the programme are
prepared, quality evaluation of the
programme is available.

• Portability (is it easy to adapt the study
programme to another audience?)
o Co-existence – the programme does not

require specific preliminary knowledge;
o Adaptability – adjustment of the programme

to other language or other cultural space
does not require redevelopment of the
programme;

o Replaceability – degree up to which
learning outcomes of the programme may
be achieved in another programme;

o Portability compliance – conformance to
the regulatory documents governing
students’ exchange programmes

Quality model of the study programme was used
when preparing the bachelor’s study programmes to
accreditation. Best practices are recommending that
the expenses to quality evaluation activities should
be small enough in comparison with the possible
benefits. This means that in each individual quality
assessment it is not recommended to use the full
quality model, but select only the most important
features. For the internal quality evaluation of the
bachelor’s study programme courses three
characteristics and 10 sub-characteristics were
selected (Fig.7).

Internal quality model

Functionality

Suitability
Accuracy
Interoperability
Functionality
compliance

Usability

Understandability
Lernability
Human factor

Readability

Efficiency

Resource
utilisation

Time behaviour

Characteristics

Basic
subcharacteristics

Additional

Optional
Fig. 7 Internal quality model of study courses

The assessment of internal quality of study
courses was carried out during the peer reviews by

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 27 Volume 12, 2015

all the teachers involved in the program. The
participants of the reviews prepared the estimate
according to the assessment questions, which were
formulated for each sub-characteristic as purpose of
the metrics.

For evaluation of the external quality, i.e. the
quality of implementation of the programme the
model was further modified slightly by reducing the
number of quality sub-characteristics. External
quality assessment is carried out by students after
completion of the course of study. For students a
similar survey questions were prepared, the answers
to which provides metric values for sub-
characteristics included in the model (Fig.8).

In order to provide a more complete
understanding of the quality, explanation of the
same sub-characteristic may vary slightly in cases of
internal and external quality assessment.

External quality model

Functionality

Suitability
Accuracy
Interoperability

Usability

Understandability
Lernability
Human factor

Presentability

Efficiency

Resource
utilisation

Time behaviour

Characteristics

Basic
subcharacteristics

Additional

Fig. 8 External quality model of study courses
For example, sub-characteristic Accuracy of

characteristic Functionality for the teachers’
evaluation has been explained as a "course is not
very fragmented, the number of topics and
presentation of the course meets the purpose and
scope, the description of independent work is
given”. For the external quality evaluation (student
survey) Accuracy is seen as "topics of course meets
the defined purpose and content of the course."

4 Conclusion
The quality in the software life cycle begins with the
training of next information technology specialists
during their studies. It is being developed gradually
until, together with an end product creates the
software quality in use. The developers must
evaluate quality consciously from the very
beginning, because it is impossible to put the quality
in the end or intermediate product. At least it is
much more expensive.

It would be useful for all personnel involved in
software development to consider the development
as a continuous decision-making process where
quality characteristics should be used as decision-
making criteria

A hierarchical form of quality model proposed
by Standard 9126 may be used to define quality in
all other phases of software development, and for

other types of products, including the study
program.

For harmonization general description of the
quality between all stakeholders involved in each
quality assessment it may be appropriate to use a
wider range of terms than are contained in the
generally accepted and standardized quality models.
If it can enhance mutual understanding, the same
term can be used at different levels and with
different interpretations. The most important thing is
to reach mutual agreement on the quality definition
between all stakeholders at the very beginning of
development and to comply with it all the time.

References:
[1] ISO/IEC 9126–1:2001 Software Engineering –

Product Quality – Part 1: Quality Model.
International Organization for Standardization.

[2] J. McCall, P. Richards, G. Walters, Factors in
software quality. volume i. concepts and
definitions of software quality. GENERAL
ELECTRIC CO SUNNYVALE CA, 1977

[3] B. Boehm, J. Brown, H. Kaspar, M. Lipow, G.
McLeod, M. Merritt, Characteristics of
Software Quality. North Holland, 1978

[4] Guide to the Software Engineering Body of
Knowledge (SWEBOK), 2004, online at -
http://www.computer.org/portal/web/swebok/ht
mlformat

[5] S. J. Khalaf, M. N. Al-Jedaiah, Software
Quality and Assurance in Waterfall model and
XP - A Comparative Study. WSEAS
TRANSACTIONS on COMPUTERS, Vol. 12,
No 7, 2008, pp. 1968-1976.

[6] K. Lapin, S. Ragaisis, Integrating team projects
into the SE Curriculum. WSEAS
TRANSACTIONS on ADVANCES in
ENGINEERING EDUCATION, Vol. 3, No 5,
2008, pp. 104-110.

[7] R. Al-Qutaish, Quality Models in Software
Engineering Literature: An Analytical and
Comparative Study. Journal of American
Science, Vol. 6, No 3, 2010, pp. 166–175.

[8] ISO/IEC 14598-2: 2000 Software engineering -
Product evaluation - Part 2: Planning and
Management. International Organization for
Standardization.

[9] B. Behkamal, M. Kahani, M. K. Akbari,
Customizing ISO 9126 quality model for
evaluation of B2B applications. Information
and Software Technology, Vol. 51, No 3, 2009,
pp. 599–609.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 28 Volume 12, 2015

http://www.computer.org/portal/web/swebok/htmlformat
http://www.computer.org/portal/web/swebok/htmlformat

[10] P. Berander et al., Software quality
attributes and trade-offs. Sweden, Blekinge
Institute of Technology, 2005, p. 100.

[11] C. Rohleder, Quality Control and ISO
Quality Compliance in the Product Lifecycle
Management at Siemens. WSEAS
TRANSACTIONS on COMPUTERS, Vol. 3, No
8, 2009, pp. 469-481.

[12] ISO/IEC 25010:2011 Systems and software
engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) –
System and software quality models.
International Organization for Standardization.

[13] IEEE Std 830–1998 IEEE Recommended
Practice for Software Requirements
Specifications. IEEE Standards Association.

[14] IEEE Std 1016–2009 IEEE Standard for
Information Technology – Systems Design –
Software Design Descriptions. IEEE Standards
Association.

[15] ISO/IEC 12207:2008 Information technology –
Software life cycle processes. International
Organization for Standardization.

[16] H. Jung, S. Kim, C. Chung, Measuring
software product quality: A survey of ISO/IEC
9126. Software, IEEE, Vol. 21 No 5, 2004, pp.
88–92.

[17] M. Fam, Y. Luo, G. Wu, X. Fu, An Improved
Analytic Hierarchy Process Model on Software
Quality Evaluation. In Proceedings of the 2nd
International Conference Information Science
and Engineering (ICISE). Hangzhou, China,
2010, pp. 1838–1842.

[18] B. Chua, L. Dyson, Applying the ISO 9126
model to the evaluation of an elearning system.
Proceedings of ASCILITE, 2004, pp. 5–8.

[19] B. Zeiss, D. Vega, I. Schieferdecker, H.
Neukirchen, J. Grabowski, Applying the ISO
9126 quality model to test specifications.
Software Engineering, 2007, pp. 231–242.

[20] I. Padayachee, P. Kotze, A. van Der Merwe,
ISO 9126 external systems quality
characteristics, sub-characteristics and domain
specific criteria for evaluating e-Learning
systems. The Southern African Computer
Lecturers’ Association, University of Pretoria,
South Africa, 2010

[21] Law on Institutions of Higher Education.
Available at: http://www.likumi.lv/doc.php?id=
37967, 05.01.2015 (Latvian).

[22] Study Regulations in Latvia University of
Agriculture (Studiju nolikums) (2008).
Available at: http://www.llu.lv/getfile.php?id=
5790, 05.09.2009 (Latvian)

Table 6 Attributes of study course

No. Characteris-
tic

Sub-
characteristic

No. Characteristic Sub-
characteristic

5 Reliability Accuracy 3 Functionality Analizability
5 Completeness 3 Changeability
5 Consistency 3 Maintainability

compliance
5 Rubustness/Integrity 3 Stability
5 Self containedness 3 Testability
5 Accuracy 3 Conciseness
5 Frequency/severity of

failure
3 Modularity

5 Mean time to failure 4 Self-descriptiveness
5 Predictability 3 Simlicity
5 Recoverability 2 Reusability Generality
5 Fault tolerance 2 Machine independence
5 Maturity 2 Modularity
5 Recoverability 2 Self-descriptiveness
5 Reliability compliance 2 Testability Accountability
5 Accuracy 2 Communicativiness
5 Consistency 2 Self-descriptiveness
5 Error tolerance 2 Structuredness
4 Efficiency Accountability 2 Instrumentation

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 29 Volume 12, 2015

No. Characteris-
tic

Sub-
characteristic

No. Characteristic Sub-
characteristic

4 Acessibility 2 Modularity
4 Device Efficiency 2 Self-descriptiveness
4 Efficiency compliance 2 Simlicity
4 Resource utilisation 1 Correctness Completeness
4 Time behaviour 1 Consistency
4 Execution efficiency 1 Tracebility
4 Storage efficiency 1 Flexibility Expandability
4 Portability Device independence 1 Generality
4 Self containedness 1 Self-descriptiveness
4 Adaptability 1 Human

Engineering Acessibility

4 Co-existence 1 Communicativiness
4 Installability 1 Rubustness/Integrity
4 Portability compliance 1 Integrity Access audit
4 Repliaceability 1 Access controll
4 Machine independence 1 Interoperability Communication

commonality
4 Self-descriptiveness 1 Data commonality
4

 Software-system
independence

1
 Modularity

4 Usability Aesthetics 1 Modifiability Augmentability
4 Consistency 1 Structuredness
4 Documentation 1 Performance Efficiency
4 Human factors 1 Resource consumption
4 Attractiveness 1 Response time
4 Learnability 1 Speed
4 Operability 1 Throughput
4 Understandability 1 Suportability Adaptability
4 Usability compliance 1 Compatibility
4 Communicativeness 1 Configurability
4 Operability 1 Extensibility
4 Training 1 Installability
3 Functionality Capabilities 1 Localizability
3 Feature sets 1 Maintainability
3 Generality 1 Portability
3 Security 1 Serviceability
3 Accuracy 1 Testability
3 Functionality

compliance
1 Understandability Conciseness

3 Interoperability 1 Consistency
3 Security 1 Legibility
3 Suitability 1 Structuredness

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Rudite Cevere, Sandra Sproge

E-ISSN: 2224-3410 30 Volume 12, 2015

