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Abstract: - In this paper an Enhanced Teaching-Learning Based Optimization (ETLBO) algorithm is employed 

to design stable digital infinite impulse response (IIR) filter using Lp-norm error criterion. The original TLBO 

algorithm has been remodeled by merging the concept of opposition-based learning and migration for selection 

of good candidates and to maintain the diversity, respectively. The multiobjective IIR digital filter design 

problem considers minimizing the Lp-norm approximation error and minimizing the ripple magnitude 

simultaneously while satisfying stability constraints on the coefficients of the filter. Weighted sum method and 

p-norm method are applied to solve the multicriterion optimization problem . Best weight pattern is searched 

using evolutionary search method that minimizes the performance criteria simultaneously. The validity of the 

method is demonstrated for the design of low pass (LP), high pass (HP), band pass (BP) and band stop (BS) IIR 

filters. The comparison of simulation results with other existing methods show that the proposed ETLBO 

algorithm is superior in terms smaller L1-norm error, L2 -norm error and smaller pass band and stop band 

ripples. 
 

 

Key-Words: - IIR filter, TLBO, magnitude response, stability, Lp-approximation error. 

 

1 Introduction 
Filters are mainly used for extorting informative 

part of the signal and to remove undesirable 

component of the signal. Extorting of signal is 

required when a noise or some disturbance 

contaminates a signal [1]. Digital filters have 

attracted the attention of researchers due to large 

number of application like data communication, 

video processing, radar and optical communications, 

speech processing and many more. In terms impulse 

response, digital filters are widely categorized as 

infinite impulse response (IIR) and finite impulse 

response (FIR) filters [2]. The selection of digital 

filter for an application is a tedious task involving 

finding of optimum structure in order to satisfy 

certain parameters of frequency response, namely 

ripples in pass band, transition band width and 

attenuation in stop band. Digital IIR filters are 

preferred over FIR digital filters because of higher 

computational efficiency and accurate frequency 

selectivity. The two problems with the design of IIR 

digital filter are [3-4]: (i) tendency of the filter to 

become unstable (ii) filter error surface is 

multimodal in nature due to which conventional 

design optimization algorithms may stuck at local 

minima. The stability problem is handled by 

imposing stability constraints on the filter 

coefficients. Numerous evolutionary and meta-

heuristic optimization algorithms have been 

successfully applied to handle the non-differentiable 

and multimodal error surface of digital IIR filter. 

Some evolutionary optimization algorithms recently 

applied for digital IIR filter are: genetic algorithms 

[5-10], immune algorithm [11], particle swarm 

optimization [12-14], seeker-optimization-algorithm 

[15], predator-prey optimization [16], heuristic 

search method (HSM) [17], two-stage ensemble 

evolutionary algorithm [18], gravitation search 

algorithm [19] and many more.  

The main drawbacks of the above algorithms are 

slow convergence towards optimal solution and the 

requirement of algorithm specific controlling 

parameters in addition to regular controlling 

parameters like size of population, number of 

iterations, group size etc. In order to overcome the 

above drawbacks, teaching-learning based 

optimization (TLBO) algorithm developed by Rao 

et al. [20-21] has been applied to design the digital 

IIR filters. TLBO is a heuristic search method 

inspired by the learning behavior of the students in a 

class. There is no need to tune any algorithm 
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specific controlling parameters in order to 

implement TLBO, thus making it more robust. 

The intent of this paper is to introduce 

enhancement in original TLBO to improve its 

exploration and exploitation capabilities, by 

initializing with good candidates and maintaining 

the diversity. The concept of opposition-based 

learning is employed for initialization and evolution 

of population. Further migration has been applied to 

maintain the diversity and search space exploration, 

and avoid premature convergence. The unique 

combination of broad exploration and further 

exploitation yields a powerful option to solve 

multimodal optimization problems that designs IIR 

filters. The multicriterion optimization problem of 

digital IIR filter design is converted into scalar 

constrained optimization problem using weighting 

p-norm method. The weighting technique is used to 

generate non-inferior solutions, which allow explicit 

trade-off between conflicting objective levels. 

Evolutionary search technique is employed to search 

for the weightage pattern. The paper analyzes the 

performance of Enhanced TLBO (ETLBO) 

algorithm for designing digital IIR filters using Lp-

approximation error criterion and the obtained 

results are compared with hierarchical genetic 

algorithm (HGA) [8], hybrid taguchi genetic 

algorithm (HTGA) [10], taguchi immune algorithm 

(TIA) [11] and heuristic search method (HSM) [17] 

for the low-pass (LP), high-pass (HP), band-pass 

(BP), and band-stop (BS) filters for validation. 

The paper is structured as follows. The digital 

IIR filter design problem is formulated in Section 2. 

Section 3 elaborates the implementation of ETLBO 

algorithm for the digital IIR filter design. The 

performance of ETLBO is evaluated and compared 

with the design obtained by various researchers in 

Section 4. Finally, Section 5 concludes the 

outcomes of the work. 

 

 

2 Problem Formulation 
To design a digital IIR filter a set of optimum filter 

coefficients are searched in order to meet various 

objectives summarized below: 

 Minimize the absolute error L1-norm of 

magnitude response. 

 Minimize the squared error L2-norm of 

magnitude response.  

 Minimize the magnitude pass band ripples. 

 Minimize the magnitude stop band ripples. 

The IIR digital filter is denoted by the following 

transfer function:  
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where  

Vector X=[a11, b11,..., a1M, b1M, c11, c21, d11, d21,..., 

c1N, c2N, d1N, d2N, A]
T
 of dimension S×1, with 

S=2M+4N+1 denotes the filter coefficients. A 

represents the gain of the filter. The main goal of the 

design algorithm of digital IIR filter is to search for 

filter coefficients ak and bk such that the magnitude 

response error in terms of Lp-norm [10-11] and 

ripples in pass band and stop band are minimized. 

The magnitude response is specified at K evenly 

distributed discrete points of frequency in pass band 

and stop band. Absolute magnitude response error is 

represented by E1(x) and squared magnitude 

response error is denoted by E2(x): 
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Ideal magnitude response HI (ωi) of IIR digital 

filter is stated as: 
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The pass band and stop band ripples to be 

minimized are denoted by δp(x) and δs(x) 

respectively: 
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Accumulating all above mentioned criteria's, the 

multicriterion constrained optimization problem is 

formulated as below: 
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Subject to: the stability constraints 

)....,,2,1(01 1 Mlb l     (8b) 
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IIR digital filter design task is a multi-objective 

optimization problem (MOOP) because several 

objectives are optimized simultaneously as shown in 

Eq. (8a). The multiobjective constrained 

optimization task for the design of IIR digital filter 

is converted into a scalar constrained optimization 

problem by using weighting method as defined 

below: 


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Subject to: The satisfaction of stability 

constraints stated in Eqs. (8b) to (8f). 

where Fk (x) is the k
th
 objective function and αk is 

nonnegative real number called weight assigned to 

k
th
 objective function. This approach yields 

meaningful results when solved many times for 

different values of αk (k=1,2,...,L). The p-norm 

weighting patterns are either presumed on the basis 

of decision maker’s intuition or simulated with 

suitable step size variation. Weighted sum technique 

causes problem when the lower boundary of 

function space is not convex [22], because not every 

non-inferior solution will have a supporting hyper-

plane. In this paper weight Pattern search based on 

evolutionary search method is applied to search the 

normalized weights, αk (k=1,2,...,L) assigned to 

participating objectives. 

The digital IIR filter design requires the 

satisfaction of stability constraints. The stability 

constraints to be imposed on the coefficients of IIR 

digital filter as stated in Eqs. (8b) to (8f) are 

obtained by employing Jury method [23]. The value 

of filter coefficients are updated with a random 

variation as given below in order to satisfy the 

stability constraints The care is taken that the 

amount of variation is small enough so that it should 

not change the characteristic of the population. 
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where r is a uniform random number whose value 

varies between [0, 1]. 

 

 

3 IIR Filter Design Using ETLBO  
ETLBO based on the noble concept of teaching-

learning [20-21] is a recently developed population 

based optimization technique. The unique feature of 

ETLBO is that it requires to tune few control 

parameters. 

The growth of every society to a great extent is 

influenced and dependent upon the quality of 

teachers in the society. ETLBO efficiently explores 

the knowledge base of a teacher to increase the 

know-how of learners / students. A teacher puts his 

best effort in order to increase the mean score of all 

learners in each allotted subject towards its own 

mean score. So, the mean fitness of the class is 

increased by the teacher according to his / her own 

capability. The learners also further improve their 

knowledge base by interacting and sharing 

information with each other.  

In the implementation of ETLBO for the design 

of digital IIR filter NL the number of learners in a 

class represent the population and each learner has 

been assigned S subjects (filter coefficients). The i
th
 

learner is represented as  iSiii xxxX ,....., 21  and 

f(Xi) represent the fitness function for i
th
 learner. 
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 Intitialization of Class 

The marks for all the subjects of learners in a class 

are initialized with the help of random search. 

Global search is applied to explore the starting point 

and then the starting point is perturbed in local 

search space to record the best starting point. The 

search process is started by initializing the variable 
t

jix  using Eq. (11): 
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where 

R is a uniform random generated number between 

(0,1). 

S is number of subjects allotted to each learner. 

NL number of learners in a class. 

t is the iteration counter. 
max
jx and min

jx are the maximum and minimum values 

of j
th
 decision variable (filter coefficient) of vector 

X. 

 

 Opposition-based Learning 

The theory of opposition-based learning [24] is 

applied to enhance the convergence rate of ETLBO . 

The notion behind opposition-based learning is to 

select better current candidate solution by 

comparing the current population and its opposite 

population. The opposition-based learning is applied 

using Eq. (12) to record the alternative starting point 

and starting point 
t

jix is further explored using:  
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Out of 2×NL learners, best NL learners constitute 

a class to initiate the process. For the global search, 

best learner is selected out of class of learners. 

Further the opposition-based learning is also 

employed for generating new learners after the 

completion of learner phase using Eq. (13): 
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 Teacher Phase 

The best learner is selected among all the learners in 

a class based upon the fitness function value 

calculated using Eq. (9) and act as teacher xt
t
j for 

current iteration t. The mean (j) for S subjects 

allotted to the students is evaluated and a randomly 

weighted differential vector (Diffj) from current 

mean and various desired mean vectors [25] is 

calculated as shown below: 
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where 

t
j is mean of j

th
 subject for all learners of a class; xt

t
j 

is the score of the teacher in j
th
 subject; Tf is the 

teaching factor; R is a uniform generated random 

number between {0,1}. 

The teaching factor ( Tf ) is one of the vital aspect 

that facilitates the convergence of ETLBO. In this 

paper the value of Tf is heuristically selected as 1 or 

2 as shown below: 

))(0.1( RROUNDTf    (16) 

The weighted differential vector (Diffj) generated 

using Eq. (15) is added to current score of learners 

in different subjects to generate new learners: 
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The newly generated learner with a better fitness 

value replaces the existing learner in the class. 

 

 Learner Phase 

The knowledge acquired by the learners in teacher 

phase is further disseminated among learners 

themselves through sharing of notes, discussions 

and presentations. The second phase of ETLBO 

emulates this sharing of knowledge by learners 

among themselves. Two target learners namely i and 

m are selected randomly such that i ≠ m. The 

resultant new learners after sharing / exchange of 

know-how are generated as follows: 
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 Migration 

The decrease in the ability of exploration of search 

space by learners may lead to premature 

convergence. In order to increase the diversity of the 

learners random individuals are introduced into each 

generation from the global search space. In order to 

increase the exploration of the search space, it is 

randomly selected 0.3NL learners to start migration 

operation. The j
th
 subject score of i

th
 learner is 

randomly regenerated as: 
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where j=1,2,...,S, Gj is the global best marks, R and 

β are uniform random number. 

At the end of each iteration if the function value 

obtained by the best learner is better than the 

function value of global best than value of teacher is 

updated for next iteration. 

 

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Damanpreet Singh, J. S. Dhillon

E-ISSN: 2224-3410 12 Volume 12, 2015



 Evolutionary Weight Pattern Search 

The optimal weight pattern is obtained by 

performing evolutionary search. One weight 

assigned to an objective is considered dependent 

weight required to meet the equality constraint 

required to ensure normalized weight pattern and 

search is performed on rest of weights. So, in this 

method, 2
L-1

 feasible solutions are generated for (L-

1) weights assigned to participating objectives 

except weight assigned to dependent objective. A 

(L-1) dimensional hypercube of side Δi is formed 

around the point. C
iw represents weight pattern that 

is assigned to objectives from the current point in 

the hyperspace. The better feasible solution is 

obtained from objective function of the filter design 

performance index. Another hypercube is formed 

around the better point, to continue the iterative 

process. All the corners of the hypercube 

represented in binary (L-1) bits equivalent code, 

generated around the current set of assigned weight 

pattern of units, are explored for the desired 

solution, simultaneously. Table 1 shows the weight 

pattern for 4-objectives where 3 bits code is 

considered to represent the corners of the 3-

dimensional hypercube (Figure 1) because one 

weight is taken as dependent/slack weight. 

Serial numbers of hypercube corners in decimal 

are converted into their binary equivalent code. The 

deviation from the current centre point is obtained 

by replacing 0’s with -Δ and 1’s with +Δ in code 

associated with hypercube corners. 

As the number objectives are increased, the 

number of hypercube corners increases 

exponentially. The process of exploring the better 

solution from all corners of the hypercube becomes 

time consuming, which needs some efficient search 

technique that should explore all the corners of the 

hypercube with minimum number of function 

evaluations and comparisons. The weights are 

generated as given below: 
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The normalized weights are generated as described 

above and the best function value is designated as 

global best. The above procedure is repeated with 

incremented t value until the value of t reaches the 

maximum value of iterations specified. 

 

 

4 Results and Comparisons 
In this section LP and HP IIR digital filter design 

examples of HGA [8], HTGA [10] TIA [11] and 

HSM [17] are considered to investigate the 

performance of filter designed with ETLBO 

algorithm. The design specification in terms of pass 

band and stop band cut-off frequencies are 

considered as given in Table 2. The intent is to 

design the IIR digital filter by minimizing the 

objective function as given in Eq. (9) while meeting 

the stability constraints given by Eqs. (8b) to (8f).  

For the design of IIR digital filter 200 evenly 

distributed points are chosen in the frequency span 

[0,]. ETLBO considers L1-norm error, L2-norm 

error, pass band ripples and stop band ripples for 

designing IIR digital filter. In most of the cases the 

above mentioned criteria's are conflicting in nature. 

Depending upon the specification of the filter the 

weightage to be given to each criteria has to be 

decided by the designer. Weights are adjusted using 

evolutionary search method. In the purposed 

heuristic approach larger value of weights w3 and w4 

are chosen to obtain small ripple magnitude of both 

pass-band and stop-band. The weights w1, w2, w3 

and w4 are set to be 1, 1, 6.6, and 11.4, respectively, 

for the LP, HP, BP and BS filter. The results 

obtained by employing ETLBO are given and 

compared with HGA [8], HTGA [10], TIA [11] and 

HSM [17] in Tables 3-6. The magnitude response 

diagrams of LP, HP BP and BS digital IIR filters 

designed with the proposed ETLBO are presented in 

Figure 2. The optimized value of numerator and 

denominator coefficients of LP, HP, BP and BS 

filters, obtained by employing ETLBO are given by 

Eq. (25), Eq. (26), Eq. (27) and Eq. (28) 

respectively.  
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Table 1: Generation of weight pattern at hypercube corners for 4 - objectives 
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combinations of 3-

bits 

Distance of 

hypercube corners 

from centre point 
cc w,w,wc
321  

Pattern of weight generation vector at the 

hypercube corners 

C2 C1 C0 

0 0  0  0 321 
 11 cw

 22 cw
 33 cw

 

1 0  0  1 321 
 11 cw

 22 cw
 33 cw

 

2 0  1  0 321 
 11 cw

 22 cw
 33 cw

 

3 0  1  1 321 
 11 cw

 22 cw
 33 cw

 

4 1  0  0 321 
 11 cw

 22 cw
 33 cw

 

5 1  0  1 321 
 11 cw

 22 cw
 33 cw

 

6 1  1  0 321 
 11 cw

 22 cw
 33 cw

 

7 1  1  1 221 
 11 cw

 22 cw
 33 cw

 
 

 
Figure 1: Three dimensional hypercube representing filter coefficients 
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Table 2: Prescribed design conditions on LP, HP, BP and BS filters 

Filter type Pass-band Stop-band Maximum Value of ),( xH   

Low-Pass  2.00    3.0  1 

High-Pass  8.0   7.00   1 

Band-Pass  6.04.0   
 25.00   
 75.0  

1 

Band-Stop 
 25.00   
 75.0  

 6.04.0   1 

 

Table 3: Design results for LP filter employing minimization of )()()()( 21 XXXEXE sp    

Method Order 
L1-norm 

error 

L2-

norm 

error 

Pass-band performance 

(Ripple magnitude) 

Stop-band 

performance 

(Ripple magnitude) 

ETLBO 3 4.0482 0.4154 
0.9117 ≤│H(e 

jω
)│≤ 1.006 

(0.0943) 

│H(e 
jω

)│≤ 0.1217 

(0.1217) 

HSM [17] 3 4.1145 0.4107 
0.9246 ≤│H(e 

jω
)│≤ 1.011 

(0.0871) 

│H(e 
jω

)│≤ 0.1510 

(0.1238) 

TIA [11] 3 4.2162 0.4380 
0.9012 ≤│H(e 

jω
)│≤ 1.000 

(0.0988) 

│H(e 
jω

)│≤ 0.1243 

(0.1243) 

HTGA [10] 3 4.2511 0.4213 
0.9004 ≤│H(e 

jω
)│≤ 1.000 

(0.0996) 

│H(e 
jω

)│≤ 0.1247 

(0.1247) 

HGA. [8] 3 4.3395 0.5389 
0.8870 ≤│H(e 

jω
)│≤ 1.009 

(0.1139)  

│H(e 
jω

)│≤ 0.1802 

(0.1802) 

 

Table 4: Design results for HP filter employing minimization of )()()()( 21 XXXEXE sp    

Method Order 
L1-norm 

error 

L2-norm 

error 

Pass-band performance 

(Ripple magnitude) 

Stop-band 

performance 

(Ripple magnitude) 

ETLBO 3 4.4939 0.4478 
0.9894 ≤│H(e 

jω
)│≤ 1.004 

(0.0497) 

│H(e 
jω

)│≤ 0.1571 

(0.1571) 

HSM [17] 3 4.6635 0.4439 
0.9584 ≤│H(e 

jω
)│≤ 1.008 

(0.0504) 

│H(e 
jω

)│≤ 0.1477 

(0.1477) 

TIA [11] 3 4.7144 0.4509 
0.9467 ≤│H(e 

jω
)│≤ 1.000 

(0.0533) 

│H(e 
jω

)│≤ 0.1457 

(0.1457) 

HTGA [10] 3 4.8372 0.4558 
0.9460 ≤│H(e 

jω
)│≤ 1.000 

(0.0540) 

│H(e 
jω

)│≤ 0.1457 

(0.1457) 

HGA. [8] 3 14.5078 1.2394 
0.9224 ≤│H(e 

jω
)│≤ 1.003 

(0.0779) 

│H(e 
jω

)│≤ 0.1819 

(0.1819) 

 

Table 5: Design results for BP filter employing minimization of )()()()( 21 XXXEXE sp    

Method Order 
L1-norm 

error 

L2-norm 

error 

Pass-band performance 

(Ripple magnitude) 

Stop-band 

performance 

(Ripple magnitude) 

ETLBO 6 1.2762 0.1789 
0.9886 ≤│H(e 

jω
)│≤ 1.005 

(0.0171) 

│H(e 
jω

)│≤ 0.0525
 (0.0525) 

HSM [17] 6 1.4360 0.2052 
0.9896 ≤│H(e 

jω
)│≤ 1.004 

(0.0147) 

│H(e 
jω

)│≤ 0.0627
 (0.0627) 

TIA [11] 6 1.6119 0.2191 
0.9806 ≤│H(e 

jω
)│≤ 1.000 

(0.0194) 

│H(e 
jω

)│≤ 0.0658 

(0.0658) 

HTGA [10] 6 1.9418 0.2350 
0.9760 ≤│H(e 

jω
)│≤ 1.000 

(0.0234)
 

│H(e 
jω

)│≤ 0.0711 

(0.0711)
 

HGA. [8] 6 5.2165 0.6949 
0.8956 ≤│H(e 

jω
)│≤ 1.000 

(0.1044) 

│H(e 
jω

)│≤ 0.1772 

(0.1772) 
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Table 6: Design results for BS filter employing minimization of )()()()( 21 XXXEXE sp  
 

Method Order 
L1-norm 

error 

L2-norm 

error 

Pass-band performance 

(Ripple magnitude) 

Stop-band 

performance 

(Ripple magnitude) 

ETLBO 4 3.6000 0.4579 
0.9668 ≤│H(e 

jω
)│≤ 1.006 

(0.0429) 

│H(e 
jω

)│≤ 0.1107
 (0.1107) 

HSM [17] 4 3.7699 0.4532 
0.9652 ≤│H(e 

jω
)│≤ 1.008 

(0.0434) 

│H(e 
jω

)│≤ 0.1060
 (0.1060) 

TIA [11] 4 4.1275 0.4752 
0.9560 ≤│H(e 

jω
)│≤ 1.000 

(0.0440) 

│H(e 
jω

)│≤ 0.1164 

(0.1164) 

HTGA [10] 4 4.5504 0.4824 
0.9563 ≤│H(e 

jω
)│≤ 1.000 

(0.0437)
 

│H(e 
jω

)│≤ 0.1013 

(0.1013)
 

HGA. [8] 4 6.6072 0.7903 
0.8920 ≤│H(e 

jω
)│≤ 1.000 

(0.1080) 

│H(e 
jω

)│≤ 0.1726 

(0.1726) 

 

 
Figure 2: Magnitude response of LP, HP, BP and BS IIR filter using ETLBO approach employing 

)()()()( 21 XXXEXE sp   criterion. 

 
Figure 3: Pole-Zero of LP, HP, BP and BS IIR filter using ETLBO approach employing )()()()( 21 XXXEXE sp  

criterion 
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The scrutinizing of the results presented in Tables 3-

6 reveal that ETLBO obtains smaller L1-norm 

approximation errors, the smaller L2–norm 

approximation errors, and better magnitude 

performances in both pass-band and stop-band than 

HGA [8], HTGA [10], TIA [11] and HSM [17]. The 

designed LP, HP, BP and BS IIR digital filter with 

ETLBO are tested for stability by drawing pole-zero 

diagrams shown in Figure 3. It can be observed 

from Figure 3 that the designed filters follow the 

stability constraints imposed in the design procedure 

as all the poles lie inside the unit circle. The stability 

of filter is not influenced by the zeros lying outside 

the unit circle. 

 

 

5 Conclusion 
In this paper a heuristic algorithm ETLBO is 

successfully applied to design digital IIR filter and 

gives substantial improvement in terms of results 

and convergence. The performance of the original 

TLBO is enhanced with the introduction of the 

concept of opposition-based learning and migration 

for starting with good population of learners and 

maintain the diversity of the learners, respectively. 

ETLBO is very feasible to design the digital IIR 

filters, particularly when the complicated 

constraints, the design requirements, and the 

multiple criteria are all involved. The designed 

optimal filters meet the stability criterion, gives 

better performance in terms of Lp-approximation 

error for magnitude response and ripples in pass 

band and stop band in comparison to existing 

methods. The advantage of applied ETLBO 

algorithm is that it do not requires to tune any 

algorithm-specific parameters. 
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