
Evolving Paper-Based Activities Approach (EPAA) to Promote Interest

in Software Engineering Education

SHAHIDA SULAIMAN
1
, SARINA SULAIMAN

1
, SHARIFAH MASHITA SYED-MOHAMAD

2
,

WAHIDAH HUSAIN
2

Faculty of Computing
1

Universiti Teknologi Malaysia

81310 Skudai, Johor

MALAYSIA

*shahidasulaiman@utm.my, sarina@utm.my

School of Computer Sciences
2

Universiti Sains Malaysia

11800 USM, Penang

MALAYSIA

mashita@cs.usm.my, wahidah@cs.usm.my

*corresponding author

Abstract: - Software engineering education is vital as an introductory course in computer science or

information technology undergraduate programmes. However, it seems to be dull to some educators to teach

the concepts as compared to teach courses like programming and database. This phenomenon causes educators

to have lack of interest in teaching and in turn affect the interest of learners to grasp the concepts better and

relate it with other courses in computer science or information technology. This paper proposes an evolving

paper-based activities approach (EPAA) to promote interest in software engineering education among both

educators and learners. The approach aims to make software engineering education to be more interesting,

engaging and integrated so that learners can appreciate why they learn software engineering course in computer

science or information technology programmes. Two groups of students who took the related courses gave the

positive feedbacks that the approach increased their interest in learning software engineering mainly in

understanding the concept in object-oriented analysis and design using Unified Modeling Language.

Key-Words: - Engineering education; object-oriented analysis and design; Unified Modeling Language

1 Introduction
Software engineering education (SEE) has gained a

lot of attention in computer science or information

technology programmes. Related schools or

faculties in universities normally offer software

engineering either as a programme itself or as a

specialisation of a computer science or information

technology programmes. Over the years, the

demand in SEE among undergraduates has

increased in tandem with job opportunities for

software engineering graduates [1].
 However, SEE seems to be theoretical in nature

that covers the topics based on stages in software

development life cycles (SDLC) mainly planning,

analysis, design, implementation, and maintenance.

Common courses that universities offer as

recommended by IEEE CS and ACM [2] include

Project Management (PM), System Analysis and

Design (SAD), Software Design and Architecture

(SDA) and Software Quality Assurance and Testing

(SQAT). The practical part may include the

introduction of Computer Aided Software

Engineering (CASE) tools in relation to the courses

either a complete suite or workbenches (commercial

or research prototype tools) for each stage.

However, educators can meet learning objectives

without even introducing any tools, as the main

concerns is to understand concepts or theories. The

practical parts mostly cover related courses such as

programming and databases. This makes SEE seems

to be less attractive among educators and learners.

 With the emergence of object-oriented (OO)

paradigm and the ubiquitous modelling language

that is Unified Modelling Language (UML), SEE

mostly adopts OO paradigm in related courses such

as SAD and SDA. OO that promotes abstraction

requires certain level of thinking among learners to

grasp the concepts. The complexity increases with

the introduction of many types of views provided by

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Shahida Sulaiman, Sarina Sulaiman, Sharifah
Mashita Syed-Mohamad, Wahidah Husain

E-ISSN: 2224-3410 1 Volume 11, 2014

UML in representing the abstractions using many

notations. This aspect causes SEE to be even more

difficult in both teaching and learning process.
 Therefore, there is a need to promote a better

approach in teaching SEE in order to make it

becoming more interactive and engaging. There are

many works that propose better approach in

teaching OO concepts [3][4][5][6][7][8] that mainly

focus on OO programming. Some works adopt

Problem-Based Learning (PBL) [4][9] besides some

works focus on UML [10], requirement engineering

[11], software design [12] and at the broader aspect

is in software engineering [13]. There is still lack of

attention in the issues related to object-oriented

analysis and design (OOAD) that are mostly

covered in SAD and SDA courses. Hence, this paper

proposes an evolving paper-based activities

approach (EPAA) that aims to make SEE to be more

interesting, engaging, and integrated to both

educators and learners.

 The organization of this paper is as follows.

Section II describes the proposed approach (EPAA),

Section III reports the two case studies, and

students’ feedbacks involving SAD and SDA

courses, Section IV explains the related work in

SEE and finally Section V concludes the work.

2 Evolving Paper-Based Activities

Approach (EPAA)

Evolving Paper-Based Activities Approach (EPAA)

has the following main objectives in teaching and

learning OOAD related courses using UML

notations:
 Increase the interest among educators in

teaching such courses that in turn increase the

interest among learners.

 Promote the interest among learners in learning

such courses that in turn increase the capability

of learners in grasping the theoretical concepts.

EPAA requires educators to be creative in using

papers of different colors in A4 size during the

activities. This means they must plan to spend at

least fifty percent of their lectures for the activities

and provide a problem that is applicable throughout

the semester. The problem must fit to the

requirements in the whole activities. In addition, the

activities must be relevant from one topic to another

using the given color papers that continuously

accumulate from one activity to another.

At the end of the course, students will have a big

picture of what they have learned in relation to the

activities. Fig. 1 shows the overview of EPAA. It

suggests that each topic of a course to include a

number of related activities depending on the

extensiveness of the coverage in each topic.

Fig. 1: The overview of EPAA

3 Case Study
This section includes the two case studies that

adopted EPAA. It covers two courses: SDA and

SAD conducted at the School of Computer

Sciences, Universiti Sains Malaysia (USM).

3.1 Case Study 1: Using EPAA in SDA
The first case study involved second year students

under Bachelor of Computer Science (Hons.) in

Semester II, Session 2009/2010 who took SDA

course. Twenty-eight students who must take the 3-

unit course under software engineering

specialization participated in the study.

 Appendix A summarizes the examples of

activities conducted in SDA during approximately

fifty percent of each lecture hour. Lecturers must

conduct all activities as a group work of two to three

members. This is ideal when such group is located

in a small tutorial room with round tables.

 Fig. 2 shows the students working on the color

papers given by the lecturer to meet the

requirements in each activity. The lecturer took the

attendance of the students to ensure they

participated in all activities set in the case study.

This could eliminate the threat in the analysis as we

could ensure all students really participated as a

group.

 However, it is still possible to adopt EPAA in a

bigger group of lectures such as in the case study 2

that is in the next sub-section.

Topic 1

Topic 2

Topic n

Activity

1

Activity

2

Activity

3

Activity

n

Activity

1

Activity

2

Activity

3

Activity

n

Activity

1

Activity

2

Activity

3

Activity

n

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Shahida Sulaiman, Sarina Sulaiman, Sharifah
Mashita Syed-Mohamad, Wahidah Husain

E-ISSN: 2224-3410 2 Volume 11, 2014

Fig. 2: Students working in groups for each activity

during lectures

Each activity relates from one another. After

each lecture, students must keep the color papers

used in a particular activity to be further refined and

referred to in the following activity. As each student

must suggest a subsystem, they were responsible to

create their own related tasks during each activity.

This will promote active participant from each

member of a group as they have a subsystem to

work on once they move to Topic 2.

This approach inculcates a team building culture

among students that are important in software

industry. At the same time, they learn from each

other and co-operate in completing the tasks. Co-

operation is a key mainly in this course. For

example in Activity 2.2: Architectural Style students

should suggest two possible packages to group

classes in each subsystem. Then they have to

determine their relationship based on data flow.

This activity requires students to co-operate in

order to determine the relationships among different

packages of different subsystems. Hence, this also

promotes communication skill among students, as

they have to discuss and project their ideas among

group members. In fact, this approach allows

students to simulate a real industry need in

communication aspect. This is also one of the ways

to encourage students to speak at least in a smaller

audience before they present to the whole class.

Thus, the outcome of each activity will be

evolving throughout the semester. These activities

equipped them with similar structure of

requirements in their group and individual

assignments. Indirectly, educators can identify

whether students manage to grasp the theory taught

or not that they should further adopt when doing the

given assignments. Fig. 3 is an example of the final

outcome from all the activities.

Fig. 3: Students’ group work submitted based on

series of activities

For the course, there was compulsory lab slot

allocated every two weeks to expose students with

implementing components using Java. The

Integrated Development Environment (IDE) chosen

was NetBeans. There were two assignments: (i)

Designing and architecting software and (ii) Using

Beans in Java Server Page (JSP).

The first assignment required students to choose

from the given suggested topic of projects. Based on

the chosen project, they indicated the title of the

project, its background, objectives, expected

benefits, and impact to community. Students must

suggest two to three subsystems (each member

should work on one subsystem), draw its class

diagram and architecture diagram. Then they

proposed software structure, its architectural style,

and design pattern (one structural and one

behavioral) to solve any part of design problem in

the project.

In the second assignment, each student must

implement individually the proposed subsystem by

creating Bean in JSP. They must continue from the

same proposed project in the first assignment. Each

team member produced a prototype by

implementing the selected package in the proposed

subsystem under each member’s responsibility.

Students were able to refine their design to allow

they learn to correct their proposed design during

the prototyping process. They must develop Bean

components and the corresponding JSP files for the

chosen package with the minimum two related

classes. Then they should explain how to reuse the

Bean components in future.

The first case study shows that EPAA managed

to increase the interest among educators despite that

SDA course is highly theoretical. This is because

EPAA suggests fifty percent of the lecture should be

activity-based. Thus, lecturers reduce one-way

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Shahida Sulaiman, Sarina Sulaiman, Sharifah
Mashita Syed-Mohamad, Wahidah Husain

E-ISSN: 2224-3410 3 Volume 11, 2014

talking, instead they can have more break during

lectures by letting the students to have discussion

among them during the activity sessions.

This in turn increases the interest of learners in

understanding each topic and how they solve the

given problem, relate the solution with the activity,

and further relate them with future activities in the

following topics. The increase of interest among

learners creates a more conducive environment for

them to sharpen their capability in grasping the

theories in such theoretical courses in a more

engaging way. Besides, through such activities,

educators can detect students’ level of

understanding in each topic during the activities.

Hence, educators can assist them much earlier

which in may assist students to complete their

assignments as required.

In addition, the group-based activities could

increase students’ confidence in giving their ideas

and solutions to others. Such activities also promote

teamwork spirit among students besides learning

from each other’s feedback and opinions. This is

vital in real software industry setting.

3.2 Case Study 2: Using EPAA in SAD
The second case study involved second year

students under Bachelor of Computer Science

(Hons.) of four-year programme in Semester II of

Session 2010/2011. Previously, the programme was

in three years as in the first case study. The subject

was the first cohort of the four-year programme

intake who should take SAD as the common core

course.

 The case study involved a 2-hour guest lecture as

the main researcher or the main author of this paper

did not teach the course in the stated semester. Fifty-

five students attended the guest lecture for the case

study. The students were in the second half of their

semester that means the contents discussed during

the guest lecture were not new to them.

 Thus, the activities planned were quite different

from that of the first study with the main aim to pick

certain topics that are crucial in SAD and then

receive students’ feedbacks on the approach at the

end of the guest lecture. Table 1 summarizes the

activities involved both individually and in-group

together with the instructor’s note. During the

lecture, other support materials related to SAD were

available to make students understanding the whole

picture of system analysis and design. Hence, the

activities would complement what they derive from

the materials theoretically and how they could

remember them through EPAA.

Table 1: Activities for SAD Course

Activity Instructor’s Note

Activity 1 (5 min.
individually): Describe

Design using 10 words –

Draw a mind map on a

blank paper.

Every student has its own

interpretation – highlight

design is a creative

activity. Ask how many

has “creative” as one of

its descriptions.

Activity 2 (5 min.

individually): Flip an A4

color paper into 2 parts

vertically, and into 3 parts

horizontally. There will

be 6 parts. Cut into 6

parts. For each part, write

the phases in software

development life cycle.

Then arrange them in

sequence.

Highlight to students the

naming could be different

in different reference

books but the basic must

be PADIM (Planning,

Analysis, Design,

Implementation,

Maintenance).

Activity 3 (20 min. in

group): Flip an A4 color

paper into 2 parts

vertically, and into 3 parts

horizontally. There will

be 6 parts. Cut into 6

parts. Each group

member must take 2 to 3

parts depending on the

number of members. For

each part, flip into 3 parts.

Draw a line on each flip

mark in order to get 3

divided parts.

Students should know

why the 3 divided parts

are important to represent

different types of view in

analysis and design stage

as the communications to

stakeholders of a system.

Based on the project

suggested, each member

must think of an object

and write the class name

in the 1
st
 part, attributes in

the 2
nd

 part and methods

in the 3
rd

 part. The classes

must be different among

group members. Then,

indicate how each class

can relate with other

classes. Place all classes

on a blank paper. Draw

the relationship.

Students should know

how to link all classes

(objects sending

messages to get service).

Now take an A4 color

paper of different color

than that of classes. Cut

the top part to get a

folder-like paper

horizontally. This folder

represents the package.

Students should know

how to name the system.

Expose students to

subsystems and its needs.

Highlight the importance

of a package diagram.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Shahida Sulaiman, Sarina Sulaiman, Sharifah
Mashita Syed-Mohamad, Wahidah Husain

E-ISSN: 2224-3410 4 Volume 11, 2014

In the case study, students should sit with their

group based on the group assignment given by the

course lecturer. The individual activities attempt to

study basic understanding of SEE among students

before starting with the group work using EPAA. In

this study, students used the problem that they had

to solve in their project assignment in the course.

This could save the time as compared to starting

with a new problem. Hence, this study could detect

their understanding and misunderstanding in solving

the earlier given problem.

In addition, students had to answer two quizzes

that could test their knowledge on SAD from the

first half of the semester. The quizzes were

conducted in between the activities. The first quiz

tested on the basic concepts in static model that are

class, object, and use cases. The second quiz tested

their knowledge in dynamic model focusing on

sequence diagrams.

As the group size was quite large and the lecture

was in a big lecture hall, there was a limitation in

term of space to work on the given papers during the

activities. However, having a group of two to three

members sitting together during a lecture would

enable educators to conduct EPAA even in a large

group, in a large venue.

Educators can make a round of check during

each activity and interact with students. However,

having a larger group reduces the amount of

interaction between educators and students.

Nevertheless, students still gain the same mood of

learning as compared to smaller groups based on the

observation made between the first and the second

case studies.

The possibility of conducting activities in a large

lecture is a good idea among educators mainly in

such courses that involve many theories. Lecturers

normally read their lecture slides in a huge lecture

hall and stuck to the wired microphones. Hence, the

fact that group-based activities could enlighten

educators’ teaching process and students’ learning

process should motivate more educators to teach

theoretical subjects as compared to database and

programming courses.

Fig. 4 shows an example of how students could

work together during an activity session in a lecture

hall. This reflects that group-based activity is still

possible in a bigger size of lecture even though it

would not be as effective as those in a small group

as in the first case study.

Fig. 4: Students sitting in a group of three members

in the lecture hall

The feedbacks derived at the end of the lecture

attempted to study students’ perspectives before and

after the lecture in term of the benefits of SAD,

appreciation of the role of SAD in SDLC, its

relevance with the other courses of the same level

involving programming and database courses.

Students also gave the feedbacks in term of the

benefit in the guest lecture, what do they like most

in the lecture, whether or not the activities could

help them understand the concepts, and suggestions

for improvement the lecture.

Fig. 5 illustrates that there is at least 25% of

students could only see the benefits of SAD after

this 2-hour lecture while 7% stated “not sure”. This

probably reflects the fact that students require

different approach of teaching in order to show the

benefits of mainly in such theoretical courses. This

indirectly reflects that educators should open

students’ mind in order for the students to appreciate

why they study certain courses by stressing on the

benefits. This will also increase students’ interest in

learning theoretical courses, which they should link

with other practical courses like database and

programming.

Fig. 5: Knowledge on the benefits of SAD

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Shahida Sulaiman, Sarina Sulaiman, Sharifah
Mashita Syed-Mohamad, Wahidah Husain

E-ISSN: 2224-3410 5 Volume 11, 2014

Fig. 6 shows the balance between those who can

appreciate the role of SAD before and after listening

to the guest lecture, while 2% still could not

appreciate and 7% were not sure. The feedback

indirectly deduces that in fact more students did not

appreciate the role of SAD only until a different

approach of teaching used in making them

understanding the concept and its role as the whole

in SDLC. Once they can appreciate the role, then

they can be more realistic in studying the course that

in turn can promote their interest and increase their

understanding. More importantly, when educators

can increase learners’ interest, the educators will be

motivated to teach theoretical courses.

Fig. 6: Appreciation towards the role of SAD in

SDLC

Fig. 7 indicates that less than 50% of students

could see the relevance of SAD in other related

course that is Java development course. In addition,

17% stated “no” while 15% stated “not sure” even

after the guest lecture. This reflects the fact that

educators need to explain the big picture so that

students can relate one course with another under

the computer science or information technology

programme. This feedback is also expected as the

activity did not cover up to transforming the

diagram to implementation that could relate with the

Java development course.

Fig. 7: See the relevance between SAD and Java

development course

The next question on the relevance of database

course with SAD, Fig. 8 depicts that more than half

of the students (67%) could see the relevance even

before the guest lecture. On the other hand, 22%

stated only after listening to the lecture.

Surprisingly, 5% stated “no” while another 5%

stated “not sure”. Indirectly, the findings show that

related activities with appropriate explanation to

recall students’ experience in other related courses

would be helpful to promote better understanding.

Hence, students can appreciate more that they

should adopt the theories they learn in SAD when

doing the practical in the related courses such as the

database course.

Fig. 8: See the relevance between SAD and database

course

From Fig. 9, it shows that the majority or 87% of

the students believed that they gain the benefits of

the guest lecture. 4% stated “no” while 9% stated

“not sure”. With more activities in such courses,

those under the category of “no” or “not sure” can

be eliminated.

Fig. 9: Benefits of the guest lecture

Table 2 and 3 provide the subjective feedback

from 18 students (out of 55) with regard to what the

students liked most in the lecture and their feedback

on whether the activities could help them in

understanding the concepts respectively.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Shahida Sulaiman, Sarina Sulaiman, Sharifah
Mashita Syed-Mohamad, Wahidah Husain

E-ISSN: 2224-3410 6 Volume 11, 2014

Table 2: Students’ feedback on their interest in

the lecture

What do they like most in the lecture

Appropriate examples.

I was able to stay awake throughout the lecture.

The activities were fun.

Creative.

Friendly.

The way the lecturer interacted with the students.

The interaction with students.

The interactive way of teaching instead of just

reading from the slides.

The differences of teaching method.

Creative lectures.

Quiz 1. Because I know how to do.

Learning in an interactive way.

Interesting, unusual approach, analogy

understanding.

A very interesting way to teach SAD.

She provides the creative way to conduct the class.

It's likely with interactive activities.

Yes, I like the creative way in teaching by the

lecturer.

About Quiz 2, it makes me clear about the

sequence diagram.

Majority of the students liked the interactive

activities and the different approach used during the

lecture, which they referred as creative, friendly,

and interesting. From all the feedback, four students

gave the response as “no”, “depends”, “not so sure”,

and “not really” when asking whether the activities

could help understanding the concepts (see the last

four feedbacks in Table 3). The rest including those

not listed in the table stated “yes”.

Considering the guest lecture was in two hours,

the positive feedbacks received from the students

reflected that students showed more interest in SAD

as the approach used could help them understanding

the concepts better. This is of course with the

support of other materials such as the big picture of

analysis stage and the two quizzes that could help

them to make self-assessments upon receiving

answers during the lecture itself.

Table 3: Students’ feedback on their experience

in using EPAA

Whether the activities could help understanding

the concepts

Yes, good use of appropriate examples.

No comment.

Yes, understood.

Yes, I can see clearly the concepts from the

activities.

Yes, I can apply the activities in the system that I

want to do.

Yes, the lecturer summarized the important parts.

Yes, interactive is very impressive.

Yes, I can have a better and clearer picture of the

concepts.

Yes, because I implemented it on the spot.

Yes, simplify the concepts to give an overall

understanding.

Yes, the activities link the concepts together to

show the overall big picture.

Yes, because we learn through "physical activities"

and it is quite interesting instead of sitting and

listening to lectures.

Yes, because the concept of “do and learn”.

Yes, I can pay more attention because of the visual

and analogies.

No, the instruction and explanation unclear.

Depends on the activity as some only refresh

memories.

Not so sure, cannot get what the lecture try to

conceive.

Not really, because I think that giving a detail

explanation would be better.

4 Related Work
The study in how to improve teaching in computer

science mostly focus on programming classes

specifically to learn the concept of object-oriented

programming [3][4][5][6][7][8]. However, there is

still lack of motivation to improve teaching in

theoretical courses such as SAD and SDA.

Many studies also report the use of PBL such as

those in teaching object-oriented concept [4] and

programming [9]. It still focuses on practical course

and does not highlight how to increase interest in

theoretical courses in particular. However, PBL is

very labour intensive. Thus, it is not suitable for a

large group of students.

There are also works that concerns on UML such

as that of Nasar [10]. Some works use tools such as

Alice [8] that is more suitable in teaching

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Shahida Sulaiman, Sarina Sulaiman, Sharifah
Mashita Syed-Mohamad, Wahidah Husain

E-ISSN: 2224-3410 7 Volume 11, 2014

programming but such tools may not be suitable for

theoretical based lectures such as SAD and SDA. In

addition, Rosca [11] focuses on an

active/collaborative approach in teaching

requirement engineering that focuses on analysis

scope only. While Jia and Tao [12] focus on

teaching software design using a case study.

The recent work by Jia [13] reports how to use a

case study in teaching the broader scope that is

software engineering itself. Our proposed work

focuses on OOAD mainly UML diagrams to teach

SAD and SDA in either small or large group of

students.

Although a numerous work promotes e-learning

nowadays [14][15] and the way to evaluate such

work [16], paper-based teaching and learning is still

relevant especially when we have activities during

lectures. This is vital, as theoretical courses mainly

comprise mass lectures that do not involve any

hands-on which could cause boredom among

students. Most importantly, educators should also

have the interest in teaching such courses, which

actually involve a lot of engagement in real industry

environment. For instance, system analysis involves

communication with users and other stakeholders

while design mainly requires communication among

development team members.

Hence, our work aims to highlight the need for

such innovation in teaching despite the trend in e-

learning to teach engineering-based subjects that

require a lot of visualisations and diagrams using

computers. This highlights that creativity does not

limit to when we have computers and the Internet in

front of students. Instead, we could make students

becoming more engaging through a simple approach

of teaching called EPAA in the selected software

engineering related courses that are commonly not

favoured among both educators and learners.

5 Conclusion and Future Work
We propose a simple approach using papers that

should evolve based on group activities from one

topic to another in a semester lecture either in a

small or large group of students. The motivation of

the study was due to the lack of interest in teaching

courses in SEE that are mostly theoretical among

educators that in turn affect students’ interest and

appreciation in learning such courses. The proposed

simple approach is called EPAA.

 We evaluated the approach in two case studies of

a small and large group respectively. Both case

studies received positive feedback from the students

that we expect could meet our objectives to increase

the interest among educators in teaching such

courses that in turn increase the interest among

learners, and to promote the interest among learners

in learning such courses that in turn increase the

capability of learners in grasping the theoretical

concepts. Hence, the reported case studies could be

a motivation among educators to adopt EPAA in

their teaching in order to increase their interest in

teaching theoretical courses. In fact EPAA is not

limited to only software engineering courses. The

concept in this approach can also be adopted in any

theoretical courses not limited to computer science

or software engineering field.

 Future work may include conducting an

empirical evaluation to see how much EPAA could

improve students’ understanding in term of speed

and correctness in answering related questions as

compared to a control group. This may include

specific study among selected educators of software

engineering related courses.

6 Acknowledgement
We acknowledge the participation and feedback

from the students in both case studies.

References:

[1] E. Wulhost, “Survey: Software engineers top

list of best jobs”, Money Magazine, April 13,

2006.

[2] IEEE CS and ACM, Software Engineering

2004, Curriculum Guidelines for

Undergraduate Degree Programs in Software

Engineering, Aug. 23, 2004.

[3] D. J. Bagert, B. A. Calloni, “Using an Iconic

Design Tool to Teach the Object-Oriented

Paradigm”, Proc. 27
th
 Teaching and Learning

in an Era of Change, Frontier in Education

Conference, 1997, p. 861.

[4] J. Ryoo, F. Fonseca, D. S., Janzen, “Teaching

Object-Oriented Software Engineering through

Problem-Based Learning in Context of Game

Design”, Proc. IEEE 21
st
 Conference on

Software Engineering Education and Training,

2008, pp. 137-144.

[5] J. Ryoo, F. Fonseca, D. S. Janzen, “Teaching

Object-Oriented Software Engineering through

Problem-Based Learning in the Context of

Game Design”, Proc. IEEE 21
st
 Conference on

Software Engineering Education and Training,

2008, pp. 137-144.

[6] I. Douglas, “Instructional Design Based on

Reusable Learning Objects: Applying Lessons

of Object-Oriented Software Engineering to

Learning Systems Design, Proc. 31
st
 Annual

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Shahida Sulaiman, Sarina Sulaiman, Sharifah
Mashita Syed-Mohamad, Wahidah Husain

E-ISSN: 2224-3410 8 Volume 11, 2014

Frontiers in Education Conference, 2001, Vol.

3, pp. F4E-1-F4E-5.

[7] K. Johnsgard and J. McDonald, “Using Alice in

Overview Courses to Improve Success Rates in

programming I”, Proc. IEEE 21
st
 Conference

on Software Engineering Education and

Training, 2008, pp. 129-136.

[8] R. Klump, “Understanding Object-Oriented

Programming Concepts”, Proc. IEEE Power

Engineering Society Summer Meeting, 2001,

Vol. 2, pp. 1070-1074.

[9] E. El-Sheikh, “A Conceptual Problem-Based

Learning Environment for Teaching

Introductory Programming”, 33
rd

 Annual

Frontiers in Education (FIE 2003), 2003, Vol.

1, p. T4C-28.

[10] M. Nasar, “VUML: a Viewpoint Oriented

UML Extension,” Proc. 18
th
 IEEE

International Conference on Automated

Software Engineering, 2003, pp. 373-376.

[11] D. Rosca, “An Active/Collaborative Approach

in Teaching Requirement Engineering”, Proc.

30
th
 Annual Frontiers in Education Conference,

2000, Vol. 1, pp. T2C-9-T2C-12.
[12] Y. Jia and Y. Tao, “Teaching Software Design

Using a Case Study on Model Transformation”,

Proc. 6
th
 International Conference on

Information Technology, 2009, pp. 702-706.

[13] Y. Jia, “Improving Sofware Engineering

Courses with Case Study Approach”, Proc. 5
th

International Conference on Computer Science

and Education (ICCSE), 2010, pp. 1633-1636.

[14] R. Din et al., “Hybrid e-Training Assessment

Tool for Higher Education”, WSEAS

Transactions on Advances in Engineering

Education, Issue 2, Vol. 9, April 2012, pp. 52-

61.

[15] M. Teichmann and J. Ilvest Jr., “Human

Factors Engineering: Digital Teaching Tools

and Paper-Free Handouts for Lecture Notes”,

WSEAS Transactions on Advances in

Engineering Education, Issue 2, Vol. 9, April

2012, pp. 31-41.

[16] R. Rahamat et al., “Measuring Learners’

Perceived Satisfaction towards e-Learning

Material and Environment”, WSEAS

Transactions on Advances in Engineering

Education, Issue 3, Vol. 9, July 2012, pp. 72-

83.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Shahida Sulaiman, Sarina Sulaiman, Sharifah
Mashita Syed-Mohamad, Wahidah Husain

E-ISSN: 2224-3410 9 Volume 11, 2014

Appendix A: Activities in EPAA for SDA Course

Topic and Activity in Group

Topic 1: Software architecture

Activity 1.1: Software Architecture

 Ask students to list the facilities of a large web-based application that they have been using.

 Identify the architecture and then draw the architecture diagram.

Activity 2.1: Architectural View

 Represent the architecture of the same web application using Kruchten 4+1 views.

 Use UML notation to represent the process view for one of the facilities provided.

Topic 2: Software structure and architecture

Activity 2.1: Architectural Structure and Viewpoint

 Assume students have to develop a new system to replace the existing Web application.

 Indicate 2 to 3 subsystems (each student suggests one subsystem of two classes).

 Represent software architecture including the classes.

 Explain the software structure in term of platform, programming language, database, COTS.

Activity 2.2: Architectural Style

 Suggests two possible packages to group classes in each subsystem.

 Determine their relationship based on data flow.

 Choose the best architectural style and draw the diagram. Justify the choice.

Topic 3: Software design issues

Activity 3.1: Identify Design Errors

 Identify attributes and operations of each class.

 Identify relationships among classes in a subsystem and inter-subsystems.

 Indicate the data to be passed among the classes.

 Find any flaws or errors in the design then exchange with the other group to check.

Activity 3.2: Identify Types of Classes

 Observe the proposed classes.

 Indicate whether they are concrete nouns or abstract nouns.

Activity 3.3: Coupling and Cohesion

 Indicate any classes without any relationships with other classes.

 Indicate any classes within a package that have any relationship among them.

 Indicate any classes in a subsystem that have any relationship with other class in other subsystem.

 Identify which relationships are coupling or cohesion.

Activity 3.4: Design Principles

 Based on each description referring to the Web application, indicate the design principles.

Activity 3.5: Control and Handling of Event

 Identify a transaction that involves control and handling of events.

 Draw the state machine diagram.

Topic 4: Software design quality analysis and evaluation

Activity 4.1:

 Create a scenario in which an internal user discussed with the developer informally about the Web

application beta version.

 Discuss lessons learned.

Topic 5: Software design notations

Activity 5.1:

 Provide attributes and operations of each class.

Activity 5.2:

 Choose a class and then identify responsibilities and collaboration using CRC card.

Topic 6: Software design strategies and methods

 Use stepwise refinement strategy in designing the Web application.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Shahida Sulaiman, Sarina Sulaiman, Sharifah
Mashita Syed-Mohamad, Wahidah Husain

E-ISSN: 2224-3410 10 Volume 11, 2014

