
A Comparative Study of SVM Models for Learning Handwritten
Arabic Characters

MAHMOUD ZENNAKI, MAMOUN MAMOUNI, KADDOUR SADOUNI

Computer Science Department
University of Science and Technology Med Boudiaf of Oran

PO 1505 EL M’naoeur, Bir el Djir, Oran
ALGERIA

{mzennaki,mamouni_mamoun@yahoo.fr}, kaddour.sadouni@univ-usto.dz

Abstract: In order to select the best SVM model for a specific machine learning task, a comparative study of
SVM models is presented in this paper. We investigate the case of learning handwritten Arabic characters and
we make use of tabu search metaheuristic in order to scan a large space of SVM models including multi-class
scheme (one-against-one or one-against-all), SVM kernel function and kernel parameters. These parameters
have a great influence on final performance of the classifier and also on computation time. This work has
involved the creation of a complete offline system for learning handwritten Arabic characters, generating a
corpus of 4840 Arabic characters in their different positions (beginning, middle, end and isolated). Based on
some theoretical interpretations and simulation results, the effect of SVM model on prediction rate and CPU
time is discussed.

Key-Words: Character recognition, handwritten Arabic character recognition, Support Vector Machines, model
selection, tabu search.

1 Introduction
Handwriting recognition has been the subject of
intense research over the past twenty years, even if
research works on the Arabic script are fewer in
comparison with other types of writing (e.g. Latin or
Japanese). In addition, the Arabic script shows a
complex morphology of characters. This problem
leads to high inertia at various levels including the
choice of relevant primitives describing the
morphology of characters and the need for a robust
modeling and an efficient learning method to take
into account any morphological variations of the
Arabic script.

Among the techniques used for the recognition
of Arabic manuscripts, we find the support vector
machines (SVM) based on statistical learning theory
[1]. The SVM introduced in the early 90s [2], has
been very successful in almost all areas where they
have been applied particularly in the field of
handwriting recognition and has overcome many
other learning methods.

For this reason, several studies based on SVM
have been successfully achieved. Among them we
find in [3] a segmentation approach applied to
Arabic handwritten characters, which allows
rebuilding offline, a tracing path similar to the
online case. This approach uses a semi-
skeletonization technique for monitoring character
paths, and then applies a SVM classifier in the

classification phase. The experiments have reached
interesting recognition rate in reduced CPU time. In
[4] the author presents a complete offline system
using the SPIKE Neural Network (SNN) and SVM.
The rate of recognition he gets is 76% for SVM and
69% for the SNN.

There are other works based on SVM ([5], [6]),
but all these works share a well-known problem
when using this technique which is the selection of
the best SVM model, or in other words, the choice
of parameters called hyper-parameters leading to the
best prediction rate in reduced time. Hyper-
parameters generally include the regularization
parameter C and specific kernel function
parameters.

Moreover, recognition of Arabic characters leads
to “high” multi-class learning problem; in this case
classical schemes one-against-one and one-against-
all are commonly used to extend SVM (which are
basically bi-class) to multi-class contexts. But
considering a set of binary SVM to handle
multiclass data makes the model selection more
difficult; the number of hyper-parameters depends
not only on kernel function, but also on classifiers
dichotomies. This problem led us to propose an
automatic selection technique based on tabu search
metaheuristic rather than classical techniques like
cross validation [7] and grid search [8] in order to
achieve a comparative study of multi-class SVM

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Mahmoud Zennaki, Mamoun
Mamouni, Kaddour Sadouni

E-ISSN: 2224-3410 82 Issue 2, Volume 10, July 2013

models. The use of metaheuristics is motivated by
their ability to scan a large space of models and
avoid to be trapped in bad local optima.

The rest of this paper is organized as follows. In
section 2 we review support vector machines used
for learning handwritten Arabic characters focusing
on the main hyper-parameters used in SVM model
selection. Section 3 is devoted to model selection
techniques including the use of metaheuristics
followed in section 4 by a description of a tabu
search based algorithm for selecting SVM models.
Then we describe in section 5 the recognition offline
system we designed including primitive extraction
and corpus building. Section 6 is intended for the
comparative study based on simulation results and
some theoretical interpretations. Finally the
summary and conclusions of this work with some
future lines of research are presented in the last
section.

2 Support Vector Machines
Kernel Methods and particularly Support Vector
Machines (SVM) [2], introduced during the last
decade in the context of statistical learning, have
been successfully used for the solution of a large
class of supervised machine learning tasks such as
categorization, prediction, novelty detection,
ranking and clustering.

2.1 Basic notions
In general, the supervised learning problem can be
stated as follows. Given a set of labeled training
data or examples Z drawn from an unknown but
fixed probability distribution, the task is to construct
a decision rule that can predict future examples,
called validation data, with high probability. The
training set is Z={(x1,y1), (x2,y2),…,(xn,yn)} where xi
represent the ith example, and yi its label or class.
Using prior assumptions and by induction we can
learn an estimated function which can be efficiently
used to predict labels of future data (validation set).
Many approaches have been used to estimate the
decision rule such as neural networks, decision trees
and more recently kernel methods and particularly
the successful Support Vector Machines (SVM).

In their basic form SVMs are used in two-class
supervised learning, where labels of examples are
known to take only two values yi ∈ {-1,+1}. Linear
SVM finds a decision rule in the form of a
hyperplane which maximizes the Euclidian distance
to the closest training examples. This distance is
called the margin δ, as depicted in figure 1.

Fig. 1. Optimal plane maximizes margin.

SVM, in their general form, extend an optimal

linear decision rule or hypothesis, in terms of an
upper bound on the expected risk that can be
interpreted as the geometrical margin, to non linear
ones by making use of kernels k(.,.). Kernels
represent dissimilarity measures of pairs of objects
in the training set Z. In standard SVM formulations,
the optimal hypothesis sought is of the form:

h(x) = ∑αi k(x,xi) (1)
where αi are the components of the unique solution
of a linearly constrained quadratic programming
problem, whose size is equal to the number of
training patterns. The solution vector obtained is
generally sparse and the non zero αi’s are called
Support Vectors (SV’s). Clearly, the number of
SV’s determines the query time which is the time it
takes to predict novel observations and
subsequently, is critical for some real time
applications.

It is worth noting that in contrast to connectionist
methods such as neural networks, the examples need
not have Euclidean or fixed-length representation
when used in kernel methods. The training process
is implicitly performed in a Reproducing Kernel
Hilbert Space (RKHS) in which k(xi,xj) is the inner
product of the images of two examples xi, xj.
Moreover, the optimal hypothesis can be expressed
in terms of the kernel that can be defined for non
Euclidean data such biological sequences, speech
utterances etc. Popular positive kernels include (2,
3, 4, 5, 6):
Linear

k(xi,xj) = xi.xj (2)
Polynomial

k(xi,xj) = (axi.xj + b)d a > 0 (3)
Gaussian

k(xi,xj) = exp(-||xi – xj||²/σ²) (4)
Laplacian

k(xi,xj) = exp(-γ ||xi – xj||) γ > 0 (5)
Sigmoïd

k(xi,xj) = tanh(axi.xj + b) (6)

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Mahmoud Zennaki, Mamoun
Mamouni, Kaddour Sadouni

E-ISSN: 2224-3410 83 Issue 2, Volume 10, July 2013

The notion of kernel functions confers to SVMs
an important flexibility, a reasonable CPU time and
an ability to generalize even in the presence of an
important number of features. Particularly, the
Gaussian kernel functions are called radial (Radial
Basis Function or RBF) indicating that they depend
on the distance between examples.

2.2 SVM formulation
Given training vectors xi∈IRn, i=1,…,m, in two
classes, and a vector y∈IRm such that, yi∈{1,-1},
Support Vector Classifiers solve the following
linearly constrained convex quadratic programming
problem:

Maximize ∑i αi – 1/2 ∑i,j αi αj yi yj k(xi,xj)
Subject to 0 ≤ αi ≤ C ∀i and ∑i αiyi = 0 (7)

where C is a regularization parameter which
influences classifier generalization when classes are
strongly intertwined. The QP objective function
involves the problem Gram matrix K whose entries
are the similarities k(xi,xj) between the patterns xi
and xj. It is important to note, on one hand, that the
pattern input dimension is implicit and does not
affect to some extent the complexity of training,
provided that the Gram matrix K can be efficiently
computed for the learning task at hand. On the other
hand, the patterns representation is not needed and
only pair wise similarities between objects must be
specified. This feature makes SVM very attractive
for high input dimensional recognition problems and
for the ones where patterns cannot be represented as
fixed dimensional real vectors such as text, strings,
DNA etc.

2.3 Multi-class extensions
Support Vector Machines are inherently binary
classifiers and its efficient extension to multiclass
problems is still an ongoing research issue ([9], [10],
[11]). Several frameworks have been introduced to
extend SVM to multiclass contexts and a detailed
account of the literature is out of the scope of this
paper.

Typically multiclass classifiers are built by
combining several binary classifiers as depicted in
figure 2. The earliest such method is the one-
against-all (OVASVM) which constructs k
classifiers, where k is the number of classes. The kth
classifier is trained by labeling all the examples in
the kth class as positive and the remainder as
negative.

The final hypothesis is given by the formula:
hova(x) = arg maxi=1,…,k (hi(x)) (8)

Fig. 2. Multi-class SVM

Another popular paradigm, called one-against-

one, proceeds by training k(k-1)/2 binary classifiers
corresponding to all pairs of classes. The hypothesis
consists of choosing either the class with most votes
(voting) or traversing a directed acyclic graph where
each node represents a binary classifier (DAGSVM)
[12]. There was debate on the efficiency of
multiclass methods from statistical point of view.
Clearly, voting and DAGSVM are cheaper to train
in terms of memory and computer speed than
OVASVM. Hsu and Lin [13] investigated the
performance of several SVM multi-class paradigms
and found that the one-against-one achieved slightly
better results on some medium size benchmark
datasets.

2.4 SVM model parameters
The major difficulty related to the use of SVM
classifiers is the need to adjust variables
conditioning the learning process. These variables
are called hyper-parameters. The resolution of
support vector machines problem involves the
selection of several parameters; in addition to the
regularization parameter C, we have:

- Parameter σ for RBF kernel
- Parameter γ for Laplacian kernel
- Parameters a,b,d for polynomial kernel
- Parameters a,b for sigmoid kernel.

Several methods of model selection are possible
for selecting values of hyper-parameters. If the
model uses a single hyper-parameter, one can try a
finite number of values and choose the one that
maximizes the prediction rate. This technique is
however difficult to implement for two or more
hyper-parameters. Furthermore, when we make use
of one-against-one or one-against-all strategies in
multi-class SVM, the number of hyper-parameters

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Mahmoud Zennaki, Mamoun
Mamouni, Kaddour Sadouni

E-ISSN: 2224-3410 84 Issue 2, Volume 10, July 2013

increases considerably. For example, in one-against-
all strategy, there are n×k variables to be optimized
while in one-against-one strategy, we must consider
n×k×(k-1)/2 variables, assuming that the same
kernel function is used with each binary classifier (n
represent the number of hyper-parameters and k is
the number of classes).

3 SVM Model Selection Techniques
We present in this section the problem of hyper-
parameters optimization as a model selection
problem. We review the main techniques used in
SVM model selection particularly the case of multi-
class SVM.

3.1 Cross Validation
Probably the simplest and most widely used, cross-
validation is a technique for testing a learned model,
which can be achieved in several ways. The most
common method is the k-Fold with k ∈ [4,10].
Given a training set Ap={X1,…,Xp} containing p
elements, cross-validation can be achieved by the
following five steps:
1. Cut all examples into k disjoint subsets of size
p/k.
2. Learn the k-1 subsets.
3. Calculate the error on kth part.
4. Repeat the process k times.
5. Obtain the final error by calculating the average
of the k previous errors.

Cross-validation is simple to implement and use
all data. It provides an estimate of the generalization
error and can prevent over-fitting [7]. However, this
technique yields meaningful results only if the
validation and training sets are drawn from the same
population.

3.2 Search Grid Procedure
It is a classical method which discretizes the models
space. The limitation is the selection of models that
use few parameters (≤ 2). Despite this defect, this
method can draw surfaces corresponding to the
evolving SVM capacities of generalization based on
hyper-parameters values.

Many experiments in [8] show that the landscape
of the generalization error through the use of this
grid has many local minima, which shows that the
only SVM hyper-parameters selection is itself a
difficult problem.

These surfaces also show that the generalization
error remains stable when changes on hyper-

parameters are not important. The optimization of
generalization does not require the search for
precise values for these hyper-parameters. This
allows an efficient search with relatively large
discretization interval. For example, for a Gaussian
kernel, we seek for the best couple (C, σ). So we
will have exponential sequences C=2-5, 2-4,…,215 et
σ=2-15, 2-14,…23.

By using a heuristic we can avoid an exhaustive
search of all parameters combinations even if an
exhaustive search is still possible because the
parameters are independent and we can easily
parallelize the search [7].

3.3 Multi-class Model Selection
As we have already mentioned, the multi-class
model selection is more complex than the binary
case. Rather than fixing model parameters for all
binary SVMs, two approaches have been proposed
in the literature (see [14]) to deal with this problem,
one called “local optimization” and the other called
“global optimization”.

The local approach we have used in this paper is
to optimize each binary SVM classifiers for all
combinations of classes. At the end, each binary
SVM will have its own hyper-parameter values
optimizing all margins corresponding to k (one-
against-all strategy) or k×(k-1)/2 (one-against-one
strategy) pairs of classes.

In contrast to this approach, the global
optimization considers the set of all binary
classifiers simultaneously. Despite its effectiveness,
this approach is time consuming and cannot be used
when dealing with large datasets.

3.4 Optimization by Meta-heuristics
The selection of optimal values of parameters; σ and
C for a Gaussian kernel for example, consists to find
an optimal model θ ≡ (C,σ). The problem of finding
the model θ is a non-convex problem, so with
several local minima particularly in the case of
multi-class SVM. Among the proposed methods to
solve this problem, a subset of them using
metaheuristics is applied.

Metaheuristics are used in many areas of
machine learning, for example in the problem of
selecting a small subset of relevant attributes or
relevant examples [15]. The advantage of
metaheuristics methods is that they are generic and
can solve a wide range of different problems,
without need for deep changes in the algorithm
used.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Mahmoud Zennaki, Mamoun
Mamouni, Kaddour Sadouni

E-ISSN: 2224-3410 85 Issue 2, Volume 10, July 2013

4 Tabu Search for Model Selection

4.1 Tabu Search Metaheuristic
Motivated by the encouraging results obtained in the
solution of large scale of combinatorial optimization
problems, Tabu Search (TS) metaheuristic were
introduced in [16] and implemented later for NP-
Hard problems [17] such as the notorious traveling
salesman problem, vehicle routing problems etc.

Similar in spirit to many heuristics for solving
hard combinatorial problems, TS explores the space
of potential solutions by using a partial
neighborhood. A short-term memory is used to
prevent cycles regularly visiting the same local
optimum. The algorithm keeps track of two lists:
one contains candidate moves to be further
explored, and the second one contains the most
recent moves, called tabu, which are forbidden
under some restrictions (tabu restrictions). In the
case where a tabu move leads to a better solution,
the restrictions on the move are lifted (aspiration
criterion).

For more efficiency, intensification and
diversification strategies are implemented in order
to save computation time, both by speeding up the
search in case of being far from a local optima
(intensification), or by moving away the tabu search
to different regions in order to avoid being trapped
in local optima (diversification). The general
scheme of tabu search can be as follows:
1. Generate an initial solution.
2. Create a candidate list of moves.
3. Select the best candidate, based on tabu
restrictions and aspiration criterion (save the
solution only if it is the best).
4. Stop criterion. If continue, change tabu
restrictions and aspiration criteria, go to 2.
Otherwise apply intensification and diversification
strategies.

4.2 TS for SVM Model Selection
The experiments carried out in [18] show that model
selection with tabu search is more efficient and
faster than the search grid procedure. One advantage
of using metaheuristics is that it is easy to extend to
kernels with several parameters. In our recognition
system we used the principle of tabu search to select
kernel parameters. For example, for RBF kernel, the
possible move correspond to add or subtract ∆C and
∆σ respectively to the regularization parameter C
and the kernel width σ. So the parameters C and σ
are reduced or increased depending on whether the

move has increase or decrease the generalization
capabilities. The procedure stops when the
maximum number of iterations is reached.

Tabu search procedure for RBF kernel
1. Set tabu search parameters (tabu list size, number

of iterations).
2. Select initial values for RBF kernel parameters

(C and σ).
3. Add those values to tabu list.
4. Train and classify, T* = T (prediction rate).
5. Save parameters values and prediction rate in

a file F.
6. Select the best move M which is non tabu among:

M1 : C + ∆C and σ , M2 : C – ∆C and σ
M3 : C and σ + ∆σ , M4 : C and σ – ∆σ

7. Add parameters value to tabu list.
8. Train and classify

if T > T* then T* = T.
9. Add parameters values and T* to the file F.
10. Update the tabu list.
11. If the number of iterations is reached stop,

otherwise go to 6.

We should mention here that the tabu list is
managed as a FIFO list; the oldest tabu move is
removed from the list and become non tabu.

This tabu search algorithm is embedded in a
multi-class optimization process. We use for this the
local optimization approach described in [14] which
consists of optimizing each binary SVM classifiers
for all combinations of classes such that each binary
SVM is configured with its own hyper-parameters.

5 Recognition System of Handwritten
Arabic Characters
This work has involved the creation of a complete
offline system for learning handwritten Arabic
characters, generating a database of 4840 Arabic
characters. In this section we review first the corpus
generation then we describe the main components of
the system focusing on primitive extraction and
detection of diacritical points.

5.1 Corpus generation
When evaluating the performance of a recognition
system it is necessary to dispose of a consistent
corpus. We have built in our laboratory (SIMPA)
with the contribution of several researchers and
students, a database containing 4840 examples of
Arabic handwritten letters in different positions:
isolated, beginning, middle and end (Figure 3). For

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Mahmoud Zennaki, Mamoun
Mamouni, Kaddour Sadouni

E-ISSN: 2224-3410 86 Issue 2, Volume 10, July 2013

isolated letters, we have 100 x 28 = 2800 examples
and for the others there are 30 x 68 = 2040
examples. The number of classes is 28+68 = 96.
This corpus is divided into two datasets: training
dataset (3840 examples) and validation dataset
(1000 examples).

Fig. 3. Samples of our generated corpus

5.2 Description of the recognition system

5.2.1 Pretreatment
We performed in this phase the following
operations:
• Binarization and other techniques to eliminate

noise by thresholding.
• Expansion, done occasionally to enlarge the

thickness plot (we obtain very small thickness
while writing by graphics tablet).

• Erosion, used to remove noise (distant pixels)
and extract only the part that form the character.

• Recovery operations of the picture by rotations to
straighten the characters.

5.2.2 Normalization
Normalization is done in order to eliminate the size
difference of characters which can affect the final
results. However it may introduce a distortion of the
original shape of the image which negatively affects
recognition rates. Thus, the size of normalization
should be selected carefully. The framework
proposed in our system for the standardization of
characters, is of size (70 x 70) which is high enough
to prevent information loss [6].

5.2.3 Extraction of primitives
This phase is one of the most delicate and important
in OCR. The recognition of a character begins with
an analysis of its shape and extraction of its features
(primitives) that will be used for identification. In
our system, the extraction of primitives involves two
steps: construction of the distribution matrix and
detection of the diacritical point.

Distribution matrix
The construction of distribution matrix is an
important part of our system. For a distribution
matrix M of size N, the principle is to split the

picture of the letter in NxN frames [i] [j], then count
the number of black pixels in each frame and assign
that number to the cell M[i][j] of the distribution
matrix. We consider in figure 4 the distribution
matrix 5x5 of the letter 'jim', written in Arabic 'ج' in
its isolated form.

The different models of 'jim' must be as different
as possible to cover the widest range of 'jim', but
each one will still be closer to the class of 'jim'
rather than any other class of letters. For the
proposed system we used a distribution matrix of
size 7 x 7 while the character picture is of size 70 x
70 after normalization. The matrix size is
determined on the basis of experiments and
represents an acceptable compromise.

Fig. 4. Distribution matrix 5x5 of the letter “jim”

Detection of diacritical point
In Arabic, the existence of diacritical points is
crucial. There are more than half of Arabic
characters that have such point that is in many cases
the only difference between two characters (two
classes). That is why we have introduced in this
phase of our algorithm, the detection of the
diacritical point in the character and then add this
property to the feature vector.

It is clear that in the case of characters which
have similar shapes with the only difference being
the position of diacritical point like (ب) (ت) (ن), the
distribution matrix can differentiate these characters
since the entire shape is represented in this matrix.
Detection of diacritics points is an additional step to
emphasize this feature.

5.2.4 Building corpus
To allow direct use of multi-class SVM, the corpus
is built so that each character corresponds to a line
(or feature vector) in the corpus structured as
depicted in figure 5.

0 1 2 3 … 48 49 50 … 58 59

5 43 60 60 … 65 60 100 … 100 100

Fig. 5. Corpus structure

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Mahmoud Zennaki, Mamoun
Mamouni, Kaddour Sadouni

E-ISSN: 2224-3410 87 Issue 2, Volume 10, July 2013

The first value corresponds to the class of the

Arabic character, followed by the values of the
distribution matrix and the last ten values reflect the
diacritical point. It is represented by the value VP
repeated ten times and determined as follows.
VP=100 if there is a diacritical point in the
character, 0 otherwise. This value is repeated 10
times in order to give more consideration to this
characteristic.

6 Experiments and Results
Our goal is to perform a series of experiments to
select the best SVM model consisting of the type of
classification one-against-one or one-against-all, the
kernel function and kernel parameters, that give the
best results in terms of prediction rate and CPU
time. To achieve this goal, a comparative study is
done between kernel function hyper-parameters for
both multi-class learning schemes one-against-one
and one-against-all.

First we split our corpus in two sets, one for
training containing 3840 pictures (training dataset)
and the other for test containing 1000 images (test
dataset). For the model selection we have
implemented our search strategy based on tabu
search by varying and testing the SVM hyper-
parameters for each binary SVM used in the multi-
class learning. We begin by presenting the
experiment results and we discuss these results
based on some theoretical interpretations about the
importance of the regularization parameter C, the
number of support vectors, the initialization of
kernel parameters as well as the problem of over-
fitting. We also show that the optimization of SVM
parameters leads not only to minimize the
classification error, but also reduce the classifier
complexity through the number of support vectors.

6.1 SVM one-against-all
We present here the experimental results using the
type of SVM one-against-all. For each kernel, the
corresponding parameters are considered and the
last line of each table represents the best result that
we found for each kernel.

Table 1. polynomial kernel one-vs-all results
Param.

C
Param.

d coef
Training

CPU time
(s)

Test
CPU

time (s)

Prediction
rate

1000 3 0 12,45 1,46 95,3 %
1000 10 10 11,46 1,12 95,5 %

1 3 0 12,71 1,39 96,0 %
1 3 1 12,20 1,18 96,4 %

Table 2. Gaussian kernel one-vs-all results

Param.
C

Param.

Training
CPU time

(s)

Test
CPU time

(s)

Prediction
rate

1000 1,92 E-05 8,82 1,14 96,6 %
100 1,92 E-05 9,50 1,14 96,9 %
100 1,83 E-05 9,73 1,12 97,0 %

Table 3. Laplacian kernel one-vs-all results

Param.
C

Param.

Training
CPU time

(s)

Test
CPU

time (s)

Prediction
rate

1000 1,92 E-05 16,09 1,68 95,9 %
100 1,02 E-07 12,98 1,57 96,4 %

1000 1,02 E-07 12,93 1,57 96,6 %

Table 4. Sigmoïd kernel one-vs-all results
Param

C
Param.

coef

Training
CPU

time (s)

Test
CPU

time (s)

Prediction
rate

1000 1,92 E-05 -10 13,21 2,15 58,5 %
1000 1,92 E-06 0 13,17 1,29 93,7 %
100 1,92 E-06 0 11,21 1,46 94,1 %
307 1,68 E-06 0 13,34 1,15 94,7 %

Table 5. Linear kernel one-vs-all results

Param.
C

Training
CPU time (s)

Test
CPU time (s)

Prediction
rate

5 10,81 0,78 90,8 %
1 11,84 0,76 91,0 %

6.2 SVM one-against-one
We present here experimental results using the type
of SVM one-against-one

Table 6. Polynomial kernel one-vs-one results
Param.

C
Param.

d coef
Training

CPU
time (s)

Test
CPU

time (s)

Prediction
rate

1000 10 0 23,59 1,48 91,7 %
10 3 0 23,37 1,50 95,2 %

1000 3 10 22,93 1,53 97,0 %

Table 7. Gaussian kernel one-vs-one results
Param.

C
Param.

Training
CPU

time (s)

Test
CPU

time (s)

Prediction
rate

1000 1,02 E-05 22,87 1,43 97,1 %
10 1,92 E-05 24,50 1,50 97,4 %

1000 1,83 E-05 23,78 1.48 97,9 %

Table 8. Laplacian kernel one-vs-one results
Param.

C
Param.

Training
CPU time

(s)

Test
CPU

time (s)

Prediction
rate

10 1,92 E-05 28,28 1,82 95,0 %
1000 1,02 E-05 27,39 1,79 96,2 %

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Mahmoud Zennaki, Mamoun
Mamouni, Kaddour Sadouni

E-ISSN: 2224-3410 88 Issue 2, Volume 10, July 2013

1000 1,92 E-05 28,40 1,85 96,3 %
Table 9. Sigmoïd kernel one-vs-one results

Param
C

Param.

coef
Training

CPU
time (s)

Test
CPU

time (s)

Prediction
rate

1000 1,92 E-05 1 22,23 1,82 58,6 %
1000 1,92 E-05 0 22,75 1,71 65,2 %
100 1,92 E-05 0 22,42 1,84 68,4 %

1000 1,00 E-06 0 22,81 1,54 97,2 %

Table 10. Linear kernel one-vs-one results
Param.

C
Training

CPU time (s)
Test

CPU time (s)
Prediction

rate
10 22,23 1,28 96,9 %

1000 22,14 1,34 96,9 %

6.3 Discussion
The experiments show the effectiveness of our
system and particularly the effectiveness of our
strategy for selecting hyper-parameters values based
on tabu search by scanning a large area of
parameters value. This choice has a great influence
on the performance of the final classifier, and also
on computation time.

We can notice first that the value of the
regularization parameter C does not have a large
influence on the results, though this parameter is
quite critical for other problems where some of the
data is not linearly separable even with using kernel
functions.

The representation of letters we detailed in
section 5.2.4. appears to be efficient. Indeed, even if
the corpus contain some letters with many
similarities like 'ح' ,'ج' and 'خ', the prediction rates
we obtained are very satisfying. The additional
representation of diacritical points associated with
data of distribution matrix has reduced considerably
the misclassification rate.

As expected, SVM one-against-one strategy
leads to better results than SVM one-against-all
even if the CPU time is greater. We also found that
the RBF kernel is best suited to the recognition of
Arabic manuscripts. Indeed, this kernel gave better
results than other kernels and has a recognition rate
of 97.0% (for SVM one-against-all, σ=1.83E-05)
and a recognition rate equal to 97.9% (for the SVM
one-against-one, σ=1.83E-05).

We also notice that linear kernel gives significant
results in one-against-one strategy. This kernel is
stable, while sigmoid kernel is sensitive to any
change of the parameter σ and requires an extensive
search for good results. For the polynomial kernel,
the parameter coef must be different from zero for
best results, and has no importance for the sigmoid
kernel. Laplacian kernel gives similar results

between the two approaches one-against-one and
one-against-all.

It is interesting to notice the improvement of
prediction rates compared to those obtained with
manual selection of SVM model. This improvement
is due to the efficiency of automatic selection based
on the local approach combined with tabu search
metaheuristic to optimize the parameters of each
binary SVM instead of assigning the same value for
all binary SVM used in multi-class learning.

Another point is to emphasize and concerns the
importance of kernel parameter initialization.
Indeed, inadequate values often lead to over-fitting
as outlined in [14], or may impede the convergence
of SVMs due to a reduced ability of the classifier,
particularly when the value of regularization
parameter C is set to 1000 (when misclassifications
are strongly penalized).

Finally, we note through numerous experiments
performed that optimal selection of SVM models
leads not only to minimize classification error, but
also reduces the classifier complexity through the
number of support vectors. The following table
shows that the total number of support vectors
obtained with automatic selection is about three
times smaller than that obtained with manual
selection.

Table 11. Comparison of total number of SVs

Kernel Manual selection Automatic selection
Polynomial 2432 1076
RBF 1621 679
Laplacian 1799 788
Sigmoïd 1832 845
Linear 2945 1311

7 Concluding Remarks
SVM is one of the machine learning techniques that
has the greatest impact on pattern recognition by
providing a theoretical framework. In this paper, we
propose a system for recognizing handwritten
Arabic letters based on SVM. The system was tested
on a corpus containing 4840 examples and has given
very good results in terms of recognition rate; it
shows the effectiveness of the method for the
extraction of primitives and the strategy used for
SVM multi-class model selection based on tabu
search. The system allowed us to make a
comparative study of different SVM models used in
the recognition of Arabic characters.
Future extensions are possible:
• Use a corpus generated from the segmentation of

Arabic words datasets.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Mahmoud Zennaki, Mamoun
Mamouni, Kaddour Sadouni

E-ISSN: 2224-3410 89 Issue 2, Volume 10, July 2013

• Check other types of features to improve the
recognition rate.
Finally, note the need to have a common

protocol for validation of results between different
approaches in recognition of handwritten Arabic
script.

References:
[1] Vapnik V. N., “Statistical learning theory”.

Wiley, New York, 1998.
[2] Boser B., Guyon I., and Vapnik V., “A training

algorithm for optimal margin classifiers”. In
Fifth Annual Workshop on Computational
Learning Theory, Pittsburg,1992.

[3] Zaïz F., “SVM pour la reconnaissance de
caractères manuscrits arabes”, LESIA
Laboratory, Computer Science Department,
University Mohamed Khider Biskra, Algeria,
2010.

[4] Kadri M., “Méthode de reconnaissance de
l’écriture arabe manuscrite en utilisant les
réseaux neuronaux”, Master Thesis, USTO
MB, Oran, Algeria, 2010.

[5] Bouslimi R., “Système de reconnaissance hors-
ligne des mots manuscrits arabes pour multi-
scripteurs”, Master thesis, USTOMB, Oran,
Algeria, 2006.

[6] Lebrun G., “Sélection de modèles pour la
classification supervisée avec des SVM
(Séparateurs à Vaste Marge). Application au
traitement et analyse d’images”. Phd Thesis,
University of Caen/Basse-Normandie, 2006.

[7] Hsu C.W., Chang C.C., and Lin C.J., “A
practical guide to support vector
classification”. Technical Report, National
Taiwan University, 2009.

[8] Lee J. and Lin C., “Automatic Model Selection
for Support Vector Machines”, Technical
Report.
csie.ntu.edu.tw/˜cjlin/papers/modelselect.ps.gz,
2000.

[9] Friedman J. H., “Another approach to Polycho-
tomous classification”. Technical report,
Department of Statistics, Stanford University,
1996.

[10] Knerr S., Personnaz L., and Dreyfus G..
“Single-layer learning revisited: a stepwise
procedure for building and training a neural
network”. In Neuro-computing: Algorithms,
Architectures and Applications, J. Fogelman,
editor, Springer-Verlag, 1990.

[11] Kreßel U. H. G., “Pairwise classification and
support vector machines”. In B. Schölkopf, C.
J. C. Burges, and A. J. Smola, editors,

Advances in Kernel Methods Support Vector
Learning, pages 255-268, The MIT Press,
Cambridge, 1999.

[12] Platt J., Cristianini N., and J. Shawe-Taylor.
“Large margin DAGs for multi-class
classification”. Advances in Neural
Information Processing System, 12, MIT Press.
2000.

[13] Hsu C. W. and Lin C. J., “A comparison of
methods for multi-class support vector
machines”, IEEE Transactions on Neural
Networks, Vol. 13 415–425, 2002.

[14] Ayat N.E., Cheriet M., and Suen C.Y.,
“Optimization of the SVM kernels using an
empirical error minimization scheme”. In S.W.
Lee and A. Verri, editors, Pattern Recognition
with Support Vector Machines, volume 2388 of
LNCS, pages 354–369. Berlin Heidelberg, July
2002.

[15] Dréo J., Petrowski A., Siarry P., and Taillard
E., “Métaheuristiques pour l’optimisation
difficile”. Eyrolles Group, 2003.

[16] Glover F., “Tabu search: part I”. In On
Computing, 1(3), pages 190–206, 1989.

[17] Glover F., “Tabu search: part II”. In On
Computing, 2(1), pages 4–32, 1989.

[18] Cawley G. C., “Model Selection for Support
Vector Machines via Adaptive Step-Size Tabu
Search”. In ICANNGA, 2001.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Mahmoud Zennaki, Mamoun
Mamouni, Kaddour Sadouni

E-ISSN: 2224-3410 90 Issue 2, Volume 10, July 2013

