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Abstract: In order to select the best SVM model for a specific machine learning task, a comparative study of 
SVM models is presented in this paper. We investigate the case of learning handwritten Arabic characters and 
we make use of tabu search metaheuristic in order to scan a large space of SVM models including multi-class 
scheme (one-against-one or one-against-all), SVM kernel function and kernel parameters. These parameters 
have a great influence on final performance of the classifier and also on computation time. This work has 
involved the creation of a complete offline system for learning handwritten Arabic characters, generating a 
corpus of 4840 Arabic characters in their different positions (beginning, middle, end and isolated). Based on 
some theoretical interpretations and simulation results, the effect of SVM model on prediction rate and CPU 
time is discussed. 
 
Key-Words: Character recognition, handwritten Arabic character recognition, Support Vector Machines, model 
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1 Introduction 
Handwriting recognition has been the subject of 
intense research over the past twenty years, even if 
research works on the Arabic script are fewer in 
comparison with other types of writing (e.g. Latin or 
Japanese). In addition, the Arabic script shows a 
complex morphology of characters. This problem 
leads to high inertia at various levels including the 
choice of relevant primitives describing the 
morphology of characters and the need for a robust 
modeling and an efficient learning method to take 
into account any morphological variations of the 
Arabic script. 

Among the techniques used for the recognition 
of Arabic manuscripts, we find the support vector 
machines (SVM) based on statistical learning theory 
[1]. The SVM introduced in the early 90s [2], has 
been very successful in almost all areas where they 
have been applied particularly in the field of 
handwriting recognition and has overcome many 
other learning methods. 

For this reason, several studies based on SVM 
have been successfully achieved. Among them we 
find in [3] a segmentation approach applied to 
Arabic handwritten characters, which allows 
rebuilding offline, a tracing path similar to the 
online case. This approach uses a semi-
skeletonization technique for monitoring character 
paths, and then applies a SVM classifier in the 

classification phase. The experiments have reached 
interesting recognition rate in reduced CPU time. In 
[4] the author presents a complete offline system 
using the SPIKE Neural Network (SNN) and SVM. 
The rate of recognition he gets is 76% for SVM and 
69% for the SNN. 

There are other works based on SVM ([5], [6]), 
but all these works share a well-known problem 
when using this technique which is the selection of 
the best SVM model, or in other words, the choice 
of parameters called hyper-parameters leading to the 
best prediction rate in reduced time. Hyper-
parameters generally include the regularization 
parameter C and specific kernel function 
parameters. 

Moreover, recognition of Arabic characters leads 
to “high” multi-class learning problem; in this case 
classical schemes one-against-one and one-against-
all are commonly used to extend SVM (which are 
basically bi-class) to multi-class contexts. But 
considering a set of binary SVM to handle 
multiclass data makes the model selection more 
difficult; the number of hyper-parameters depends 
not only on kernel function, but also on classifiers 
dichotomies. This problem led us to propose an 
automatic selection technique based on tabu search 
metaheuristic rather than classical techniques like 
cross validation [7] and grid search [8] in order to 
achieve a comparative study of multi-class SVM 
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models. The use of metaheuristics is motivated by 
their ability to scan a large space of models and 
avoid to be trapped in bad local optima. 

The rest of this paper is organized as follows. In 
section 2 we review support vector machines used 
for learning handwritten Arabic characters focusing 
on the main hyper-parameters used in SVM model 
selection. Section 3 is devoted to model selection 
techniques including the use of metaheuristics 
followed in section 4 by a description of a tabu 
search based algorithm for selecting SVM models. 
Then we describe in section 5 the recognition offline 
system we designed including primitive extraction 
and corpus building. Section 6 is intended for the 
comparative study based on simulation results and 
some theoretical interpretations. Finally the 
summary and conclusions of this work with some 
future lines of research are presented in the last 
section. 
 
 
2 Support Vector Machines 
Kernel Methods and particularly Support Vector 
Machines (SVM) [2], introduced during the last 
decade in the context of statistical learning, have 
been successfully used for the solution of a large 
class of supervised machine learning tasks such as 
categorization, prediction, novelty detection, 
ranking and clustering.  
 
 
2.1 Basic notions 
In general, the supervised learning problem can be 
stated as follows. Given a set of labeled training 
data or examples Z drawn from an unknown but 
fixed probability distribution, the task is to construct 
a decision rule that can predict future examples, 
called validation data, with high probability. The 
training set is Z={(x1,y1), (x2,y2),…,(xn,yn)} where xi 
represent the ith example, and yi its label or class. 
Using prior assumptions and by induction we can 
learn an estimated function which can be efficiently 
used to predict labels of future data (validation set). 
Many approaches have been used to estimate the 
decision rule such as neural networks, decision trees 
and more recently kernel methods and particularly 
the successful Support Vector Machines (SVM). 

In their basic form SVMs are used in two-class 
supervised learning, where labels of examples are 
known to take only two values yi ∈ {-1,+1}. Linear 
SVM finds a decision rule in the form of a 
hyperplane which maximizes the Euclidian distance 
to the closest training examples. This distance is 
called the margin δ, as depicted in figure 1. 

 
Fig. 1. Optimal plane maximizes margin. 

 
SVM, in their general form, extend an optimal 

linear decision rule or hypothesis, in terms of an 
upper bound on the expected risk that can be 
interpreted as the geometrical margin, to non linear 
ones by making use of kernels k(.,.). Kernels 
represent dissimilarity measures of pairs of objects 
in the training set Z. In standard SVM formulations, 
the optimal hypothesis sought is of the form: 

h(x) = ∑αi k(x,xi)   (1) 
where αi are the components of the unique solution 
of a linearly constrained quadratic programming 
problem, whose size is equal to the number of 
training patterns. The solution vector obtained is 
generally sparse and the non zero αi’s are called 
Support Vectors (SV’s). Clearly, the number of 
SV’s determines the query time which is the time it 
takes to predict novel observations and 
subsequently, is critical for some real time 
applications. 

It is worth noting that in contrast to connectionist 
methods such as neural networks, the examples need 
not have Euclidean or fixed-length representation 
when used in kernel methods. The training process 
is implicitly performed in a Reproducing Kernel 
Hilbert Space (RKHS) in which k(xi,xj) is the inner 
product of the images of two examples xi, xj. 
Moreover, the optimal hypothesis can be expressed 
in terms of the kernel that can be defined for non 
Euclidean data such biological sequences, speech 
utterances etc. Popular positive kernels include (2, 
3, 4, 5, 6):  
Linear  

k(xi,xj) = xi.xj    (2) 
Polynomial  

k(xi,xj) = (axi.xj + b)d    a > 0  (3) 
Gaussian 

k(xi,xj) = exp(-||xi – xj||²/σ²)  (4) 
Laplacian 

k(xi,xj) = exp(-γ ||xi – xj||)   γ > 0  (5) 
Sigmoïd 

k(xi,xj) = tanh(axi.xj + b)  (6) 
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The notion of kernel functions confers to SVMs 
an important flexibility, a reasonable CPU time and 
an ability to generalize even in the presence of an 
important number of features. Particularly, the 
Gaussian kernel functions are called radial (Radial 
Basis Function or RBF) indicating that they depend 
on the distance between examples. 
 
 
2.2 SVM formulation 
Given training vectors xi∈IRn, i=1,…,m, in two 
classes, and a vector y∈IRm  such that, yi∈{1,-1}, 
Support Vector Classifiers solve the following 
linearly constrained convex quadratic programming 
problem:  
 
Maximize ∑i αi – 1/2 ∑i,j αi αj yi yj k(xi,xj) 
Subject to 0 ≤ αi ≤ C ∀i  and ∑i αiyi = 0  (7) 
 
where C is a regularization parameter which 
influences classifier generalization when classes are 
strongly intertwined. The QP objective function 
involves the problem Gram matrix K whose entries 
are the similarities k(xi,xj) between the patterns xi 
and xj. It is important to note, on one hand, that the 
pattern input dimension is implicit and does not 
affect to some extent the complexity of training, 
provided that the Gram matrix K can be efficiently 
computed for the learning task at hand. On the other 
hand, the patterns representation is not needed and 
only pair wise similarities between objects must be 
specified. This feature makes SVM very attractive 
for high input dimensional recognition problems and 
for the ones where patterns cannot be represented as 
fixed dimensional real vectors such as text, strings, 
DNA etc. 
 
 
2.3 Multi-class extensions 
Support Vector Machines are inherently binary 
classifiers and its efficient extension to multiclass 
problems is still an ongoing research issue ([9], [10], 
[11]). Several frameworks have been introduced to 
extend SVM to multiclass contexts and a detailed 
account of the literature is out of the scope of this 
paper.  

Typically multiclass classifiers are built by 
combining several binary classifiers as depicted in 
figure 2. The earliest such method is the one-
against-all (OVASVM) which constructs k 
classifiers, where k is the number of classes. The kth 
classifier is trained by labeling all the examples in 
the kth class as positive and the remainder as 
negative.  

The final hypothesis is given by the formula: 
hova(x) = arg maxi=1,…,k (hi(x))  (8) 

 
Fig. 2. Multi-class SVM 

 
Another popular paradigm, called one-against-

one, proceeds by training k(k-1)/2 binary classifiers 
corresponding to all pairs of classes. The hypothesis 
consists of choosing either the class with most votes 
(voting) or traversing a directed acyclic graph where 
each node represents a binary classifier (DAGSVM) 
[12]. There was debate on the efficiency of 
multiclass methods from statistical point of view. 
Clearly, voting and DAGSVM are cheaper to train 
in terms of memory and computer speed than 
OVASVM. Hsu and Lin [13] investigated the 
performance of several SVM multi-class paradigms 
and found that the one-against-one achieved slightly 
better results on some medium size benchmark 
datasets. 
 
 
2.4 SVM model parameters 
The major difficulty related to the use of SVM 
classifiers is the need to adjust variables 
conditioning the learning process. These variables 
are called hyper-parameters. The resolution of 
support vector machines problem involves the 
selection of several parameters; in addition to the 
regularization parameter C, we have:  

- Parameter σ for RBF kernel 
- Parameter γ for Laplacian kernel 
- Parameters a,b,d for polynomial kernel 
- Parameters a,b for sigmoid kernel. 

Several methods of model selection are possible 
for selecting values of hyper-parameters. If the 
model uses a single hyper-parameter, one can try a 
finite number of values and choose the one that 
maximizes the prediction rate. This technique is 
however difficult to implement for two or more 
hyper-parameters. Furthermore, when we make use 
of one-against-one or one-against-all strategies in 
multi-class SVM, the number of hyper-parameters 
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increases considerably. For example, in one-against-
all strategy, there are n×k variables to be optimized 
while in one-against-one strategy, we must consider 
n×k×(k-1)/2 variables, assuming that the same 
kernel function is used with each binary classifier (n 
represent the number of hyper-parameters and k is 
the number of classes). 
 
 
3 SVM Model Selection Techniques 
We present in this section the problem of hyper-
parameters optimization as a model selection 
problem. We review the main techniques used in 
SVM model selection particularly the case of multi-
class SVM. 
 
 
3.1 Cross Validation 
Probably the simplest and most widely used, cross-
validation is a technique for testing a learned model, 
which can be achieved in several ways. The most 
common method is the k-Fold with k ∈ [4,10]. 
Given a training set Ap={X1,…,Xp} containing p 
elements, cross-validation can be achieved by the 
following five steps: 
1. Cut all examples into k disjoint subsets of size 
p/k. 
2. Learn the k-1 subsets. 
3. Calculate the error on kth part. 
4. Repeat the process k times.  
5. Obtain the final error by calculating the average 
of the k previous errors. 

Cross-validation is simple to implement and use 
all data. It provides an estimate of the generalization 
error and can prevent over-fitting [7]. However, this 
technique yields meaningful results only if the 
validation and training sets are drawn from the same 
population. 
 
 
3.2 Search Grid Procedure 
It is a classical method which discretizes the models 
space. The limitation is the selection of models that 
use few parameters (≤ 2). Despite this defect, this 
method can draw surfaces corresponding to the 
evolving SVM capacities of generalization based on 
hyper-parameters values.  

Many experiments in [8] show that the landscape 
of the generalization error through the use of this 
grid has many local minima, which shows that the 
only SVM hyper-parameters selection is itself a 
difficult problem. 

These surfaces also show that the generalization 
error remains stable when changes on hyper-

parameters are not important. The optimization of 
generalization does not require the search for 
precise values for these hyper-parameters. This 
allows an efficient search with relatively large 
discretization interval. For example, for a Gaussian 
kernel, we seek for the best couple (C, σ). So we 
will have exponential sequences C=2-5, 2-4,…,215 et  
σ=2-15, 2-14,…23.  

By using a heuristic we can avoid an exhaustive 
search of all parameters combinations even if an 
exhaustive search is still possible because the 
parameters are independent and we can easily 
parallelize the search [7]. 
 
 
3.3 Multi-class Model Selection 
As we have already mentioned, the multi-class 
model selection is more complex than the binary 
case. Rather than fixing model parameters for all 
binary SVMs, two approaches have been proposed 
in the literature (see [14]) to deal with this problem, 
one called “local optimization” and the other called 
“global optimization”.  

The local approach we have used in this paper is 
to optimize each binary SVM classifiers for all 
combinations of classes. At the end, each binary 
SVM will have its own hyper-parameter values 
optimizing all margins corresponding to k (one-
against-all strategy) or k×(k-1)/2 (one-against-one 
strategy) pairs of classes.  

In contrast to this approach, the global 
optimization considers the set of all binary 
classifiers simultaneously. Despite its effectiveness, 
this approach is time consuming and cannot be used 
when dealing with large datasets. 
 
 
3.4 Optimization by Meta-heuristics 
The selection of optimal values of parameters; σ and 
C for a Gaussian kernel for example, consists to find 
an optimal model θ ≡ (C,σ). The problem of finding 
the model θ is a non-convex problem, so with 
several local minima particularly in the case of 
multi-class SVM. Among the proposed methods to 
solve this problem, a subset of them using 
metaheuristics is applied.   

Metaheuristics are used in many areas of 
machine learning, for example in the problem of 
selecting a small subset of relevant attributes or 
relevant examples [15]. The advantage of 
metaheuristics methods is that they are generic and 
can solve a wide range of different problems, 
without need for deep changes in the algorithm 
used. 
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4 Tabu Search for Model Selection 
 
 
4.1 Tabu Search Metaheuristic 
Motivated by the encouraging results obtained in the 
solution of large scale of combinatorial optimization 
problems, Tabu Search (TS) metaheuristic were 
introduced in [16] and implemented later for NP-
Hard problems [17] such as the notorious traveling 
salesman problem, vehicle routing problems etc.  

Similar in spirit to many heuristics for solving 
hard combinatorial problems, TS explores the space 
of potential solutions by using a partial 
neighborhood. A short-term memory is used to 
prevent cycles regularly visiting the same local 
optimum. The algorithm keeps track of two lists: 
one contains candidate moves to be further 
explored, and the second one contains the most 
recent moves, called tabu, which are forbidden 
under some restrictions (tabu restrictions). In the 
case where a tabu move leads to a better solution, 
the restrictions on the move are lifted (aspiration 
criterion).  

For more efficiency, intensification and 
diversification strategies are implemented in order 
to save computation time, both by speeding up the 
search in case of being far from a local optima 
(intensification), or by moving away the tabu search 
to different regions in order to avoid being trapped 
in local optima (diversification). The general 
scheme of tabu search can be as follows:  
1. Generate an initial solution. 
2. Create a candidate list of moves. 
3. Select the best candidate, based on tabu 
restrictions and aspiration criterion (save the 
solution only if it is the best). 
4. Stop criterion. If continue, change tabu 
restrictions and aspiration criteria, go to 2. 
Otherwise apply intensification and diversification 
strategies. 
 
 
4.2 TS for SVM Model Selection 
The experiments carried out in [18] show that model 
selection with tabu search is more efficient and 
faster than the search grid procedure. One advantage 
of using metaheuristics is that it is easy to extend to 
kernels with several parameters. In our recognition 
system we used the principle of tabu search to select 
kernel parameters. For example, for RBF kernel, the 
possible move correspond to add or subtract ∆C and 
∆σ respectively to the regularization parameter C 
and the kernel width σ. So the parameters C and σ 
are reduced or increased depending on whether the 

move has increase or decrease the generalization 
capabilities. The procedure stops when the 
maximum number of iterations is reached. 

Tabu search procedure for RBF kernel 
1. Set tabu search parameters (tabu list size, number 

of iterations). 
2. Select initial values for RBF kernel parameters 

(C and σ). 
3. Add those values to tabu list. 
4. Train and classify, T* = T (prediction rate). 
5. Save parameters values and prediction rate in  

a file F. 
6. Select the best move M which is non tabu among: 

M1 : C + ∆C and σ  ,   M2 : C – ∆C and σ 
M3 : C and σ  + ∆σ  ,  M4 : C and σ  – ∆σ 

7. Add parameters value to tabu list. 
8. Train and classify 

if T > T* then T* = T. 
9. Add parameters values and T* to the file F. 
10. Update the tabu list. 
11. If the number of iterations is reached stop, 

otherwise go to 6. 
 

We should mention here that the tabu list is 
managed as a FIFO list; the oldest tabu move is 
removed from the list and become non tabu.  

This tabu search algorithm is embedded in a 
multi-class optimization process. We use for this the 
local optimization approach described in [14] which 
consists of optimizing each binary SVM classifiers 
for all combinations of classes such that each binary 
SVM is configured with its own hyper-parameters. 
 
 
5 Recognition System of Handwritten 
Arabic Characters 
This work has involved the creation of a complete 
offline system for learning handwritten Arabic 
characters, generating a database of 4840 Arabic 
characters. In this section we review first the corpus 
generation then we describe the main components of 
the system focusing on primitive extraction and 
detection of diacritical points. 
 
 
5.1 Corpus generation 
When evaluating the performance of a recognition 
system it is necessary to dispose of a consistent 
corpus. We have built in our laboratory (SIMPA) 
with the contribution of several researchers and 
students, a database containing 4840 examples of 
Arabic handwritten letters in different positions: 
isolated, beginning, middle and end (Figure 3). For 
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isolated letters, we have 100 x 28 = 2800 examples 
and for the others there are 30 x 68 = 2040 
examples. The number of classes is 28+68 = 96. 
This corpus is divided into two datasets: training 
dataset (3840 examples) and validation dataset 
(1000 examples). 
 

 
Fig. 3. Samples of our generated corpus 

 
 
5.2 Description of the recognition system 
 
5.2.1 Pretreatment 
We performed in this phase the following 
operations: 
• Binarization and other techniques to eliminate 

noise by thresholding. 
• Expansion, done occasionally to enlarge the 

thickness plot (we obtain very small thickness 
while writing by graphics tablet). 

• Erosion, used to remove noise (distant pixels) 
and extract only the part that form the character. 

• Recovery operations of the picture by rotations to 
straighten the characters.  

 
5.2.2 Normalization 
Normalization is done in order to eliminate the size 
difference of characters which can affect the final 
results. However it may introduce a distortion of the 
original shape of the image which negatively affects 
recognition rates. Thus, the size of normalization 
should be selected carefully. The framework 
proposed in our system for the standardization of 
characters, is of size (70 x 70) which is high enough 
to prevent information loss [6]. 
 
5.2.3 Extraction of primitives 
This phase is one of the most delicate and important 
in OCR. The recognition of a character begins with 
an analysis of its shape and extraction of its features 
(primitives) that will be used for identification. In 
our system, the extraction of primitives involves two 
steps: construction of the distribution matrix and 
detection of the diacritical point. 
 
Distribution matrix 
The construction of distribution matrix is an 
important part of our system. For a distribution 
matrix M of size N, the principle is to split the 

picture of the letter in NxN frames [i] [j], then count 
the number of black pixels in each frame and assign 
that number to the cell M[i][j] of the distribution 
matrix. We consider in figure 4 the distribution 
matrix 5x5 of the letter 'jim', written in Arabic 'ج' in 
its isolated form. 

The different models of 'jim' must be as different 
as possible to cover the widest range of 'jim', but 
each one will still be closer to the class of 'jim' 
rather than any other class of letters. For the 
proposed system we used a distribution matrix of 
size 7 x 7 while the character picture is of size 70 x 
70 after normalization. The matrix size is 
determined on the basis of experiments and 
represents an acceptable compromise. 

 

 
Fig. 4. Distribution matrix 5x5 of the letter “jim” 

 
Detection of diacritical point 
In Arabic, the existence of diacritical points is 
crucial. There are more than half of Arabic 
characters that have such point that is in many cases 
the only difference between two characters (two 
classes). That is why we have introduced in this 
phase of our algorithm, the detection of the 
diacritical point in the character and then add this 
property to the feature vector. 

It is clear that in the case of characters which 
have similar shapes with the only difference being 
the position of diacritical point like (ب) (ت) (ن), the 
distribution matrix can differentiate these characters 
since the entire shape is represented in this matrix. 
Detection of diacritics points is an additional step to 
emphasize this feature. 
 
5.2.4 Building corpus 
To allow direct use of multi-class SVM, the corpus 
is built so that each character corresponds to a line 
(or feature vector) in the corpus structured as 
depicted in figure 5. 
 

0 1 2 3 … 48 49 50 … 58 59 

5 43 60 60 … 65 60 100 … 100 100 

 
Fig. 5. Corpus structure 
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The first value corresponds to the class of the 

Arabic character, followed by the values of the 
distribution matrix and the last ten values reflect the 
diacritical point. It is represented by the value VP 
repeated ten times and determined as follows. 
VP=100 if there is a diacritical point in the 
character, 0 otherwise. This value is repeated 10 
times in order to give more consideration to this 
characteristic. 
 
 
6 Experiments and Results 
Our goal is to perform a series of experiments to 
select the best SVM model consisting of the type of 
classification one-against-one or one-against-all, the 
kernel function and kernel parameters, that give the 
best results in terms of prediction rate and CPU 
time. To achieve this goal, a comparative study is 
done between kernel function hyper-parameters for 
both multi-class learning schemes one-against-one 
and one-against-all. 

First we split our corpus in two sets, one for 
training containing 3840 pictures (training dataset) 
and the other for test containing 1000 images (test 
dataset). For the model selection we have 
implemented our search strategy based on tabu 
search by varying and testing the SVM hyper-
parameters for each binary SVM used in the multi-
class learning. We begin by presenting the 
experiment results and we discuss these results 
based on some theoretical interpretations about the 
importance of the regularization parameter C, the 
number of support vectors, the initialization of 
kernel parameters as well as the problem of over-
fitting. We also show that the optimization of SVM 
parameters leads not only to minimize the 
classification error, but also reduce the classifier 
complexity through the number of support vectors. 
 
 
6.1 SVM one-against-all 
We present here the experimental results using the 
type of SVM one-against-all. For each kernel, the 
corresponding parameters are considered and the 
last line of each table represents the best result that 
we found for each kernel. 
 

Table 1. polynomial kernel one-vs-all results 
Param. 

C 
Param. 

d coef 
Training  

CPU time 
(s) 

Test  
CPU 

time (s) 

Prediction  
rate 

1000 3 0 12,45 1,46 95,3 % 
1000 10 10 11,46 1,12 95,5 % 

1 3 0 12,71 1,39 96,0 % 
1 3 1 12,20 1,18 96,4 % 

 
Table 2. Gaussian kernel one-vs-all results 

Param. 
C 

Param. 
 

Training  
CPU time 

(s) 

Test  
CPU time 

(s) 

Prediction  
rate 

1000 1,92 E-05 8,82 1,14 96,6 % 
100 1,92 E-05 9,50 1,14 96,9 % 
100 1,83 E-05 9,73 1,12 97,0 % 

 
Table 3. Laplacian kernel one-vs-all results 

Param. 
C 

Param. 
 

Training  
CPU time 

(s) 

Test  
CPU 

time (s) 

Prediction  
rate 

1000 1,92 E-05 16,09 1,68 95,9 % 
100 1,02 E-07 12,98 1,57 96,4 % 

1000 1,02 E-07 12,93 1,57 96,6 % 
 

Table 4. Sigmoïd kernel one-vs-all results 
Param  

C 
Param. 

 
coef 

Training  
CPU 

time (s) 

Test  
CPU 

time (s) 

Prediction  
rate 

1000 1,92 E-05 -10 13,21 2,15 58,5 % 
1000 1,92 E-06 0 13,17 1,29 93,7 % 
100 1,92 E-06 0 11,21 1,46 94,1 % 
307 1,68 E-06 0 13,34 1,15 94,7 % 

 
Table 5. Linear kernel one-vs-all results 

Param.  
C 

Training  
CPU time (s) 

Test  
CPU time (s) 

Prediction  
rate 

5 10,81 0,78 90,8 % 
1 11,84 0,76 91,0 % 

 
 
6.2 SVM one-against-one 
We present here experimental results using the type 
of SVM one-against-one 
 

Table 6. Polynomial kernel one-vs-one results 
Param. 

C 
Param. 

d coef 
Training  

CPU 
time (s) 

Test  
CPU 

time (s) 

Prediction  
rate 

1000 10 0 23,59 1,48 91,7 % 
10 3 0 23,37 1,50 95,2 % 

1000 3 10 22,93 1,53 97,0 % 
 

Table 7. Gaussian kernel one-vs-one results 
Param. 

C 
Param. 

 

Training  
CPU 

time (s) 

Test  
CPU 

time (s) 

Prediction  
rate 

1000 1,02 E-05 22,87 1,43 97,1 % 
10 1,92 E-05 24,50 1,50 97,4 % 

1000 1,83 E-05 23,78 1.48 97,9 % 
 

Table 8. Laplacian kernel one-vs-one results 
Param. 

C 
Param. 

 

Training  
CPU time 

(s) 

Test  
CPU 

time (s) 

Prediction  
rate 

10 1,92 E-05 28,28 1,82 95,0 % 
1000 1,02 E-05 27,39 1,79 96,2 % 
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1000 1,92 E-05 28,40 1,85 96,3 % 
Table 9. Sigmoïd kernel one-vs-one results 

Param
C 

Param. 
 

coef 
Training  

CPU 
time (s) 

Test  
CPU 

time (s) 

Prediction  
rate 

1000 1,92 E-05 1 22,23 1,82 58,6 % 
1000 1,92 E-05 0 22,75 1,71 65,2 % 
100 1,92 E-05 0 22,42 1,84 68,4 % 

1000 1,00 E-06 0 22,81 1,54 97,2 % 
 

Table 10. Linear kernel one-vs-one results 
Param. 

C 
Training  

CPU time (s) 
Test  

CPU time (s) 
Prediction  

rate 
10 22,23 1,28 96,9 % 

1000 22,14 1,34 96,9 % 
 
 
6.3 Discussion 
The experiments show the effectiveness of our 
system and particularly the effectiveness of our 
strategy for selecting hyper-parameters values based 
on tabu search by scanning a large area of 
parameters value. This choice has a great influence 
on the performance of the final classifier, and also 
on computation time. 

We can notice first that the value of the 
regularization parameter C does not have a large 
influence on the results, though this parameter is 
quite critical for other problems where some of the 
data is not linearly separable even with using kernel 
functions.  

The representation of letters we detailed in 
section 5.2.4. appears to be efficient. Indeed, even if 
the corpus contain some letters with many 
similarities like 'ح' ,'ج' and 'خ', the prediction rates 
we obtained are very satisfying. The additional 
representation of diacritical points associated with 
data of distribution matrix has reduced considerably 
the misclassification rate. 

As expected, SVM one-against-one strategy 
leads to better results than SVM one-against-all 
even if the CPU time is greater. We also found that 
the RBF kernel is best suited to the recognition of 
Arabic manuscripts. Indeed, this kernel gave better 
results than other kernels and has a recognition rate 
of 97.0% (for SVM one-against-all, σ=1.83E-05) 
and a recognition rate equal to 97.9% (for the SVM 
one-against-one, σ=1.83E-05). 

We also notice that linear kernel gives significant 
results in one-against-one strategy. This kernel is 
stable, while sigmoid kernel is sensitive to any 
change of the parameter σ and requires an extensive 
search for good results. For the polynomial kernel, 
the parameter coef must be different from zero for 
best results, and has no importance for the sigmoid 
kernel. Laplacian kernel gives similar results 

between the two approaches one-against-one and 
one-against-all. 

It is interesting to notice the improvement of 
prediction rates compared to those obtained with 
manual selection of SVM model. This improvement 
is due to the efficiency of automatic selection based 
on the local approach combined with tabu search 
metaheuristic to optimize the parameters of each 
binary SVM instead of assigning the same value for 
all binary SVM used in multi-class learning. 

Another point is to emphasize and concerns the 
importance of kernel parameter initialization. 
Indeed, inadequate values often lead to over-fitting 
as outlined in [14], or may impede the convergence 
of SVMs due to a reduced ability of the classifier, 
particularly when the value of regularization 
parameter C is set to 1000 (when misclassifications 
are strongly penalized).  

Finally, we note through numerous experiments 
performed that optimal selection of SVM models 
leads not only to minimize classification error, but 
also reduces the classifier complexity through the 
number of support vectors. The following table 
shows that the total number of support vectors 
obtained with automatic selection is about three 
times smaller than that obtained with manual 
selection. 

 
Table 11. Comparison of total number of SVs 

Kernel Manual selection Automatic selection 
Polynomial 2432 1076 
RBF 1621 679 
Laplacian 1799 788 
Sigmoïd 1832 845 
Linear 2945 1311 

 
 
7 Concluding Remarks 
SVM is one of the machine learning techniques that 
has the greatest impact on pattern recognition by 
providing a theoretical framework. In this paper, we 
propose a system for recognizing handwritten 
Arabic letters based on SVM. The system was tested 
on a corpus containing 4840 examples and has given 
very good results in terms of recognition rate; it 
shows the effectiveness of the method for the 
extraction of primitives and the strategy used for 
SVM multi-class model selection based on tabu 
search. The system allowed us to make a 
comparative study of different SVM models used in 
the recognition of Arabic characters. 
Future extensions are possible: 
• Use a corpus generated from the segmentation of 

Arabic words datasets. 
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• Check other types of features to improve the 
recognition rate. 
Finally, note the need to have a common 

protocol for validation of results between different 
approaches in recognition of handwritten Arabic 
script. 
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