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Abstract: - Catastrophic events are characterized by three main points: there are relatively rareness, there are 
statistical unexpected and there have huge impact on the whole society. Insurance or reinsurance is one way of 
reducing the economic consequences of catastrophic events. Risk management of insurance and reinsurance 
companies have to have available relevant information for estimation and adjusting premium to cover these 
risks. The aim of this article is to present two of the useful methods – block maxima method and peaks over 
threshold method. These methods use information from historical data about insured losses of natural 
catastrophes and estimates future insured losses. These estimates are very important for actuaries and for risk 
managers as one of the bases for calculating and adjusting premiums of products covering these types of risks. 
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1 Introduction 
The catastrophic events have a huge impact for a 
whole society. This impact is deep and long. Two 
next points characterize these events too. There are 
relatively rare and statistically unexpected. 

The catastrophic events are divided into two 
groups according to their cause. By the Emergency 
Events Database (EM-DAT) [1] the first group are 
natural catastrophes caused by the natural influences 
such as the effects of natural influences such as 
geological disasters (i.e. earthquake, mass 
movement, volcanic activity), meteorological 
disasters (i.e. extreme temperature, fog, storm), 
hydrological disasters (i.e. flood, landslide, wave 
action), climatological disasters (i.e. drought, glacial 
lake outburst, wildfire), biological disasters (i.e. 
epidemic, insect infestation, animal accident) and 
extra-terrestrial disasters (i.e. impact, space 
weather). 

The second group consists of catastrophic events 
caused by human activity, i.e. man-made disasters, 
such as industrial accident (i.e. chemical spill, 
collapse, explosion, fire, gas leak, poisoning, 
radiation, oil spill and other), transport accident (i.e.  
air, road, rail, water) and miscellaneous accident 
(i.e. collapse, explosion, fire and other). 

Fig. 1 shows the number of catastrophic events 
in the period 1970-2017. We can see growing trends 
in number of man-made disasters and in number of 
natural catastrophes too. In terms of Sigma Swiss 

Re criteria (Table 1), there were 301 catastrophes 
worldwide in 2017, less than the number 329 in 
2016. There were 183 natural catastrophes 
(compared with 192 in 2016), and 118 man-made 
disasters (compared with 137 in 2016). [2] 

 

 
Source: Sigma Swiss Re, [2]  

Fig. 1. Number of catastrophic events, 1970-2017 
 
Fig. 2 shows the total economic losses by 

catastrophes. When we talk about total economic 
losses that means the sum of insured and uninsured 
loses. 

Fig. 2 shows the difference between insured and 
economic losses during time period 1970-2017. This 
figure shows 10-year moving average of total 
economic losses and insurance losses too. We can 
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see increasing trend in both cases but we can see 
also increasing differences in these trends. 

 

 
Source: Sigma Swiss Re, [2] 

Fig. 2. Insured vs uninsured losses, 1970 – 2017, in 
USD billion at 2017 prices 

 
To classify event as a catastrophe according to 

Sigma criteria [2]-[5], the economic losses, insured 
claims or casualties associated with an event must 
exceed one of the thresholds, which are shown in 
Table 1 for year 2017. 

 
 

Table 1. Sigma event selection criteria for catastro-
phic events for 2017 

Insured losses  
(in USD million) 

 
 

Maritime disasters 
 

20.3 

Aviation 
 

40.7 

Other losses 
 

50.5 
or Total economic losses  
(in USD million)  

 
101.0 

    or Casualties 

Dead or missing 
 

20 

Injured 
 

50 

Homeless 
 

2000 
Source: Sigma Swiss Re, [2]-[5] 

 
 

In Fig. 3 we can see the major insured losses 
suffered mainly due to natural influences in the 
period 1970-2017. The highest insured catastrophe 
losses caused by hurricanes Katrina, Rita and Wilma 
were occurred in 2005, in 2011 there were 
especially the devastating consequences of the 
earthquakes in Japan and New Zealand and of the 
flood in Thailand and in 2017 catastrophic event 
caused by hurricanes Harvey, Irma and Maria. The 
highest man-made catastrophes in the period 1970-
2017 were terrorist attacks on September 2001 in 
the USA. [2]  

 

 
Source: Sigma Swiss Re, [2] 

Fig. 3. Insured losses in the period 1970-2017 
 
 
 

2 Problem Formulation 
Catastrophe modelling helps insurers and reinsurers 
better assess the potential losses caused by natural 
and man-made catastrophes. Natural catastrophe 
models have been developed for a wide range of 
catastrophic risks and geographic territories 
worldwide. The Pareto model is very often used for 
description of the random behavior of extremal 
losses [6]. Especially quantile methods provide an 
appropriate and flexible approach to the probability 
modelling needed to obtain well-fitted tails [7]-[8]. 
Application of quantile modelling methods has its 
foundation in the Order statistics theory [9].  

Extreme value theory (EVT) [10]-[12] is a 
promising class of approaches to modelling 
catastrophe losses. These methods although 
originally utilized in other fields such as hydrology 
or operational risk [13].  There are two main types 
of models in EVT: block maxima models and peaks 
over threshold (POT) models. The more traditional 
are Block maxima models, which are collected from 
the largest observations of large samples of 
historical data. The whole sample is divided into 
equal non-overlapping time intervals and the biggest 
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value from each interval is used for modelling [14]-
[20]. In the more modern approach using POT 
model (or the threshold exceedances model) the 
large enough threshold is determined and the 
observations above this threshold are considered for 
extremal losses modelling [21]-[24]. The Extreme 
value methods do not predict the future with 
certainty, but they do offer models for explaining 
the extreme events in the past. These models are not 
arbitrary but based on rigorous mathematical theory 
concerning the behavior of extrema [25]-[27].  

For the objective of this article the Block 
maxima model and the Peaks over threshold model 
have been chosen for catastrophe modeling based on 
real data of insured losses of natural catastrophes 
published by Swiss Re Sigma [2]-[5].  

 
 

2.1 Using methods for modelling 
 
2.1.1 The Block maxima model 

The block maxima models are models for the 
largest observations collected from large samples of 
identically distributed observations. 

The Fisher-Tippett theorem [25] is the 
fundamental result of the Extreme Value Theory 
(EVT) and can be considered the same important as 
the central limit theorem for statistical inference. 
The theorem describes the limiting behavior of 
appropriately normalized sample maxima.  

Suppose catastrophe losses are  independent, 
identically distributed random variables denoted by 
X1, X2, …, whose common distribution function is 
is FX(x) = P(X ≤ x), where x ˃ 0. 

Extreme Value Theorem [10]: Suppose X1, X2, … 
are independent, identically distributed with 
distribution function FX(x). If there exist constants 
cn > 0 and dn ∈  R such that 

 
𝑀𝑀𝑛𝑛 − 𝑑𝑑𝑛𝑛

𝑐𝑐𝑛𝑛
→ 𝑌𝑌,    𝑛𝑛 → ∞ 

 
where Mn = max (X1, …, Xn), Y is non-degenerate 
with distribution function G. Then G is of one the 
following types: 

 
Gumbel  

Λ(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒{−𝑒𝑒𝑥𝑥𝑒𝑒−𝑥𝑥},          𝑥𝑥 ∈ 𝑅𝑅 
 
Frechet 

Φ𝛼𝛼(𝑥𝑥) = �0                             𝑥𝑥 ≤ 0
𝑒𝑒𝑥𝑥𝑒𝑒{−𝑥𝑥−𝛼𝛼}          𝑥𝑥 > 0

� 

 
Weibull 

Φ𝛼𝛼(𝑥𝑥) = �𝑒𝑒𝑥𝑥𝑒𝑒{−𝑥𝑥−𝛼𝛼}         𝑥𝑥 < 0
0                            𝑥𝑥 ≥ 0

� 
 
These three types of limiting distribution there 

are in standard form. We can parameterize them 
within the location and scale families: 

 
Gumbel 

Λ(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑒𝑒𝑥𝑥𝑒𝑒 �− �
𝑥𝑥 − 𝑑𝑑
𝑐𝑐

��� ,       𝑥𝑥 ∈ 𝑅𝑅 
 
Frechet 

Φ𝛼𝛼(𝑥𝑥) = �
0                                              𝑥𝑥 ≤ 𝑑𝑑

𝑒𝑒𝑥𝑥𝑒𝑒 �−�
𝑥𝑥 − 𝑑𝑑
𝑐𝑐

�
−𝛼𝛼

�             𝑥𝑥 > 𝑑𝑑
� 

  
Weibull 

Φ𝛼𝛼(𝑥𝑥) = �𝑒𝑒𝑥𝑥𝑒𝑒 �−�
𝑥𝑥 − 𝑑𝑑
𝑐𝑐

�
−𝛼𝛼

�          𝑥𝑥 < 𝑑𝑑

0                                            𝑥𝑥 ≥ 𝑑𝑑

� 

 
The generalized Gumbel, Frechet and Weibull 

families can be combined into a single family of the 
Generalized extreme value distributions (GEV) in 
the form  

 

𝐺𝐺(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒 �− �1 + 𝜉𝜉 �𝑥𝑥−𝜇𝜇
𝜎𝜎
��
−1/𝜉𝜉

�        (1) 

     
where  

1 + 𝜉𝜉 �
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

� > 0 
 
It is straightforward to check the result by letting: 
 

𝛼𝛼 = 1
𝜉𝜉
                                                    

𝑑𝑑 = 𝜇𝜇 − 𝜎𝜎
𝜉𝜉

                                             

𝑐𝑐 = �

𝜎𝜎
𝜉𝜉

              if   𝜉𝜉 > 0

−𝜎𝜎
𝜉𝜉

             if   𝜉𝜉 < 0   
�             

 (2) 

 
 

2.1.2 The Peaks over threshold model 
The modelling using the Peaks over threshold 
method follows the assumptions and conclusions in 
Generalized Pareto Distribution (GPD) Theorem. 
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Suppose 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛  are raw independent 
observations from a common distribution F(x). 
Given a high threshold u, assume 𝑥𝑥(1), 𝑥𝑥(2), … , 𝑥𝑥(𝑛𝑛) 
are observations that exceed threshold u. Here we 
define the ascendances as 𝑥𝑥𝑖𝑖 = 𝑥𝑥(𝑖𝑖) − 𝑢𝑢 for i = 1, 2, 
…, k. 

Then for a large enough threshold u by the GPD 
Theorem [27] the generalized Pareto distribution (3) 
is the limiting distribution for the distribution of the 
excesses, as the threshold tends to the right 
endpoint.  
The conditional distribution function of variable 
Y = (X – u / X > u) is approximately 

  

𝐻𝐻(𝑥𝑥) = 1 − �1 + 𝜉𝜉𝑥𝑥
𝜎𝜎�
�
−1
𝜉𝜉  (3) 

     
defined on 
{𝑥𝑥: 𝑥𝑥 > 0 and (1 + 𝜉𝜉𝑥𝑥 𝜎𝜎� > 0⁄ )}, where 
 𝜎𝜎� = +𝜉𝜉(𝑢𝑢 − 𝜇𝜇) 

 
The family of distributions defined by equation 

(3) is called the generalized Pareto family (GPF). 
For a fixed high threshold u, the two parameters are 
the shape parameter ξ and the scale parameter 𝜎𝜎�. For 
simpler notation, we may just use σ for the scale 
parameter if there is no confusion. 

By GPD Theorem 𝑥𝑥𝑖𝑖  may be regarded as 
realization of independently random variable, which 
follow a generalized Pareto family with unknown 
parameters ξ and σ. In case 𝜉𝜉 ≠ 0 the likelihood 
function can be obtained directly in the from  

 

( )( )
1 1

1

1, 1
k

i

i

x
L

− ξ−

=

 ξ ξ σ = +  σ σ   
∏x  (4) 

   
 

 
3 Problem Solution 
 
3.1 Data and exploratory analysis 
For modelling by Block maxima model and Peaks 
over threshold model were used the real data. The 
analysis focus on 479 insured losses (in USD 
million) of natural catastrophes in time period from 
January 2010 to December 2016, published in Swiss 
Re Sigma 2011-2017 [2]-[5]. The time series plot 
(Fig.4) allows us to identify the most extreme losses 
and their approximate times of occurrences. 
 

 
 

Fig. 4. Chronologically arranged the insured losses 
of natural catastrophes in USD million 

Source: Own processing by Sigma Swiss Re, [2]-[5] 
 

Table 2 shows the summary statistics of insured 
losses caused by natural catastrophes using our real 
data. In this table we can see that for example 
average, which is equal to 827.02, is higher than 
median which is equal to 300. The value of 
skewness is bigger than 10 and for example the 
value of kurtoses is really high – its value is equal 
130.45.   

 
Table 2. Summary statistics for insured losses of 
natural catastrophes 

Count 479 

Average 827.02 

Median 300 

Standard deviation 2 577.56 

Coefficient of variation 311.67 

Skewness 10.46 

Kurtosis 130.45 

Upper quartile 100 

Lower quartile 649 

Source: Own calculations 
 
Box plot (Fig. 5) shows that there are many small 

losses and a few very large values of losses. The 
conclusion is that we need to find some long tail 
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distribution that provides a suitable model for the 
variation amongst the catastrophe losses data. 

 Median = 300
 25%-75% 
= (100, 649)
 Scope no-outlying 
= (1, 1460)
 Outlying
 Extreme0

5000

10000

15000

20000

25000

30000

35000

40000

In
su

re
d 

lo
ss

es

  
Fig. 5. Box plot of using data 

Source: Own calculations 
 
 

3.2 Block maxima model - results  
The catastrophe insured losses data presented by 
Fig. 4 have been divided into n blocks (Table 3) of 
essentially equal size N. For this part of modelling 
have been used spreadsheet MS Excel. 
 
 
Table 3. Number of blocks and values in the blocks 

Number of blocks  
(n) 

Number of values 
in the block  

(N) 

5 95 

10 47 

15 31 

20 23 

25 19 

30 15 

Source: Own calculations 
 
For modelling of these blocks of data has been 

used generalized extreme value distribution (GEV) 
in statistical package Statistica 12. Estimated values 
of parameters of GEV distribution by formulas (1) 
and (2) for different blocks of data shows Table 4. 

In Table 4 we can see p-values of Kolmogorov-
Smirnov tests. We can see the highest p-value for 

blocks for 25 values: p = 0.9097. This model 
represents the best fit of our data with the GEV 
model. 

 
 
Table 4. Results of block maxima modelling 

 
n 

Parameter 
ξ 

Parameter 
μ 

Parameter 
σ 

p-value of 
Kolmogo-

rov-
Smirnov 

test 

5 0.6806 963.42 843.67 0.2474 

10 0.6685 1614.34 1348.23 0.5305 

15 0.7188 2016.51 1681.28 0.5504 

20 0.7887 2603.81 1915.22 0.4894 

25 0.7121 3168.59 2432.64 0.9097 

30 0.8909 3037.96 2405.69 0.8257 

Source: Own calculations 
 
The Figure 6 shows GEV distribution together 

with empirical distribution function with 95% 
confidence interval. We can see good fit of these 
distributions models of block maxima dataset.  

 
 

Empirical distr. function for n=25
Mean = 7943,157895, Std.dev.= 10054,708158, N = 19

 Empirical distribution function
 GEV
 95% lower confidence interval
 95% upper confidence interval
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Fig. 6. GEV distribution fitted to block maxima for 

n = 25 
Source: Own processing 

 
To verify the quality of the GEV model we have 

used graphical analysis including Q-Q plot. Q-Q 
plot compares quantiles of theoretical and observed 
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probability distribution. Fig. 7 shows Q-Q plot 
against the GEV distribution fitted to block maxima 
for n = 25. We can see the good fit of theoretical 
GEV model and the real data. 

 
 

Q-Q plot for n=25
GEV

-5000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Theoretical quantile
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Fig. 7. Q-Q plot against the GEV distribution fitted 

to block maxima for n = 25 
Source: Own processing 

 
 
For the best estimated GEV model for n = 25 we 

can calculate selected quantiles. Some of these 
quantiles shows Table 5. By these value we can 
estimate, that for example 50% insurance extreme 
losses of natural catastrophes exceed value 4 632.03 
million USD and 1% exceed value 39 104 million 
USD. 

 
 

Table 5. Quantiles of fitted GEV of block maxima 
for n = 25 

Quantiles GEV 

0.50 4 632.03 

0.75 9 586.18 

0.90 17 118.30 

0.95 23 344.90 

0.99 39 104.00 

Source: Own processing 
 
 
 

 
 

3.3 Peaks over threshold model - results  
As the second method for modelling of insured 
losses of natural catastrophes from the period 2010-
2016 according to the sub-chapter 2.1.2 have been 
used Peaks over threshold method. As a fitting 
distribution have been used a generalized Pareto 
distribution with maximum likelihood method of 
parameters estimation on the data above thresholds 
of u = 1 600, u = 2 600, u = 3 600 and u = 4 600. 
Table 6 contains the maximum likelihood estimated 
parameters of fitted generalized Pareto distributions 
on the data above four different thresholds.  
 
 
Table 6. Parameters of GPD for different thresholds  
Threshold 

u 1600 2600 3600 4600 

Parameter 
ξ 1908.57 782.01 3741.66 8402.54 

Parameter 
σ -0.4546 -0.9479 -0.6534 -0.1849 

Source: Own calculations 
 
 
Table 7 contains the number of values exceed 

appropriate threshold and the results of 
Kolmogorov-Smirnov goodness of fit test for GPD 
for four different thresholds. Using  p-values in 
Table 7 we can indicate the best fit model in the 
case of threshold u = 3 600 by because p = 0.9138 is 
the biggest one.  

 
 

Table 7. Results of Kolmogorov-Smirnov goodness 
of fit test for GPD for different thresholds 

Threshold 
u 1600 2600 3600 4600 

n 46 37 13 9 

p-value 0.0138 0.0045 0.9138 0.6985 

Source: Own calculations 
 
 
Fig. 8 shows the good fit of GEV distribution 

and empirical distribution function on 13 losses 
above the threshold u = 3 600. This visual form 
confirm good fit of these distribution and so 
relevance of the model.  
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Empirical distr. function for u=3600

 Empirical. distr. function
 GPD
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 Source: Own processing 
Fig. 8. GPD distribution fitted by peaks over 

threshold u = 3 600 
 
 
The Q-Q plot on Fig.9 also confirm good fit of 

estimated GPD distribution on the losses over 
threshold u = 3 600. 

 
 

Q-Q plot for u=3600
GPD
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 Source: Own processing 
Fig. 9. QQ-plot of goodness of fit of the GPD on the 

losses over threshold u = 3 600  
 
 
For the best fitted GPD model of the losses 

above threshold u = 3 600 we can calculate 
quantiles. Some of these quantiles are shown in 
Table 8. By these values we can estimate, that for 
example 50% insured extreme losses of natural 
catastrophes exceed 6 239.5 million USD and 1% 
exceed value 39 055 million USD.  
 
 

Table 8. Quantiles of fitted GPD by Peaks over 
threshold method for u = 3 600 

Quantiles GPD 

0.50 6 239.5 

0.75 10 814.4 

0.90 22 374.0 

0.95 38 778.7 

0.99 39 055.0 

Source: Own processing 
 

 
4 Conclusion 
Catastrophic events have a huge impact on society 
as a whole. We can observe a growing trend in both 
the number of catastrophic events as well as in total 
and insured losses. Insurance and reinsurance 
undertakings must be prepared to pay for insured 
losses as a result of catastrophic events. A number 
of methods are used to help estimate and refine 
future claims cover. The block maxima method and 
peaks over threshold method are two of these 
methods.  

This article presents application of both methods 
on real data of insured losses caused by natural 
catastrophes during time period 2010-2016. Have 
been found probability models with good fit on 
these data, by block maxima methods the 
generalized extreme value distribution - GEV model 
and by peaks over threshold method the generalized 
Pareto distribution - GPD model with parameters 
estimated by maximum likelihood method. This 
models have been used to calculate the selected 
quantiles.  

By the values of quantiles of GEV model the 
insurance and reinsurance companies can expect 
50% of insured catastrophe losses above 4 632.03 
million USD, 10% of the insured losses above 
17 118.3 million USD and 1% above 39 104 million 
USD. In case of the GPD model 50% of insured 
catastrophe losses exceed 6 239.5 million USD, 
10% exceed 22 374.0 million USD and 1% exceed 
39 055.0 million USD. This information is useful 
for actuaries and risk managers of insurance and 
reinsurance companies. 
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