
Regression detection in software controlling industrial systems

Sébastien Salva
University Clermont Auvergne

LIMOS laboratory
Campus des Cézeaux, Aubière,

FRANCE
sebastien.salva@uca.fr

William Durand
University Clermont Auvergne

LIMOS laboratory
Campus des Cézeaux, Aubière,

FRANCE
william.durand@fr.michelin.com

Abstract: In the industry, testing production systems, i.e., systems transforming raw materials into products, is
usually performed manually and is a long and error-prone task. The automation of the testing process could be
initiated with the use of models. But, for this kind of system that has a long life span, models, when they exist,
are seldom up-to-date. In this paper, we do not presume the availability of any model and we propose a method
to automatically test the CIM2 level of production systems i.e., the software controlling them, by combining two
approaches: model inference and passive testing. Using a set of events collected from a production system, our
approach combines the notions of expert system, formal models and machine learning to infer symbolic models
while preventing over-generalisation (i.e., the models should not capture more behaviours than those possible in
the real system). These models are then used as specifications to passively test the conformance of other production
systems. We define conformance with two complementary implementation relations. The first relation is based
upon the classical trace-preorder relation. The second one is a weaker relation, less strict on the parameter values
found in the traces of the system under test. With the collaboration of the manufacturer Michelin, we evaluated
our approach on a real production system and show that it can be used in practice to quickly generate models and
to test new production systems.

Key–Words: Software engineering, Maintenance, Model generation , Passive testing , Industrial systems

1 Introduction
In this paper, we study formal testing applied to in-
dustrial systems such as those of our partner Miche-
lin, one of the three largest tire manufacturers in the
world. We focus on production systems, made up
of heterogeneous devices (machines, tools, sensors,
robots etc.), interconnected with robust networks and
controlled by a software in a factory. To avoid damag-
ing the devices of a production system, the software
controlling the devices is often tested manually with
simulations, which replicate machine behaviours or
human operations. This testing phase usually requires
a long period of time, from some weeks up to some
months.

A lot of works already deal with the test of (dis-
tributed) event-based systems and propose to auto-
mate partially or completely the testing stage. There-
fore, why is it difficult to abandon manual testing with
this kind of system? Active testing is the conven-
tional way to test the conformance of black-box sys-
tems [25, 8]. This approach requires a tester that stim-
ulates the system under test with test cases to observe
its reactions. To automate the testing process (espe-
cially when the system includes many different sce-
narios), test cases are generated from a (formal) model

to be later executed by the tester. Active testing faces
limitations though, particularly in the manufacturing
context:

• to stimulate the system, it must be shut-down, in-
terrupted or reset for some time. Resetting such
a system is difficult and often long. Furthermore,
frequent interruptions may lead the devices to ab-
normal functioning up to make them break down,

• another important drawback of active testing lies
in the basic need of a specification. Writing a
specification is known as a long and error-prone
task. Furthermore, production systems belong to
the specific category of systems that have a life
span of many years, (sometimes up to 20 years).
These systems are incrementally updated (phys-
ical devices, applications), but usually not the
models. The latter become out-dated in the long
run and can no more be used for testing. This is
a common problem with documentation in gen-
eral, and it often implies rather under-specified or
not documented systems that become awkward
to maintain because of lack of understanding.

This paper tackles the problem of testing such
systems, without disturbing them, and without hav-

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 330 Volume 14, 2017

ing any specification. We focus on the second level
of the CIM approach (Computer Integrated Manufac-
turing [40]), which corresponds to the software con-
trolling the physical devices of a production system.
We firstly propose a pragmatic and theoretically well-
founded method for inferring models from production
systems. These models are then considered as refer-
ence specifications and can be used to test the same
updated system or new ones.

Specifically, given a running production system,
we start by generating models by means of the ob-
servations collected among devices and the applica-
tions controlling them. We call these observations
production events. These models describe the func-
tional behaviours of the system, and may serve differ-
ent purposes, e.g., testing a production system. Sev-
eral model inference methods can be found in the liter-
ature, but most build over-approximated models, i.e.,
models capturing more behaviours than those possible
in the real system. In our context, we want to prevent
the generation of over-approximated models as their
use for testing often increases the risk to make emerge
false positive results (wrong detections of errors). As
a consequence, we propose our own model inference
method, based upon an expert system to materialise
the knowledge of experts of the system and model
transformations. From a production event set, we gen-
erate formal models called Symbolic Transition sys-
tems (STSs, [19]), by means of inference rules, which
can be adapted to match different kinds of systems. In
addition, as production systems can produce millions
of events on a daily basis, we made a scalable model
inference engine, which builds models in reasonable
time.

Afterwards, we use these models to passively test
the conformance of another production system. Gen-
erally speaking, passive testing represents an alterna-
tive approach to check the reliability (in terms of con-
formance, robustness, security, etc.) of implementa-
tions, without altering their normal functioning, i.e.,
by passively observing their behaviours. It has been
applied for protocol testing [24, 5, 12], runtime ver-
ification [18], etc. In our context, we devised a pas-
sive tester, which checks whether the observed ex-
ecutions of a (second) production system under test
adhere to the behaviours of a model inferred from a
first system. The passive tester collects the execution
traces (sequences of events) of the system under test
by reusing the building blocks of the model generation
engine. It produces a set of traces having the same
level of abstraction as those considered for inferring
the model and uses them to check whether the system
under test conforms to the model. Conformance is
defined without ambiguity with two implementation
relations. Although several classical implementation

Figure 1: Simplified representation of a workshop

relations could be considered, our relations are writ-
ten to take into account the use of under-approximated
(partial) models. The passive tester algorithm imple-
ments these relations.

Our approach has been implemented in a frame-
work called Autofunk (for Automatic Functional test-
ing tool), which combines both model generation and
testing engines. In the remainder of this paper, we
present the theoretical background that we considered
to devise Autofunk and preliminary results on real
production systems of Michelin.

Paper organisation:
The paper is structured as follows: Section 2 intro-
duces the background of the production systems of
Michelin. We propose an overview of the different
flavours of model inference and passive testing tech-
niques. We also discuss our motivations. Section 3
presents an overview of our approach. We describe the
practical assumptions that guided the design of Auto-
funk. Then, the three next sections present the the
theoretical aspects of Autofunk: we recall some ba-
sic concepts and definitions about the STS formalism
in Section 4, Section 5 describes the model inference
stage and Section 6 the passive testing stage. We in-
troduce an evaluation of some experiments made on a
real production system, in Section 7. We conclude the
paper and outline some perspectives in Section 8.

2 Background
2.1 Michelin production systems

Michelin is a worldwide tire manufacturer and de-
signs most of its factories, production systems, and re-
lated software. Like many other industrial companies,
Michelin follows the Computer Integrated Manufac-

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 331 Volume 14, 2017

turing (CIM) approach, using computers and software
to control the entire manufacturing process and ac-
quire data. The CIM approach segments the manufac-
turing process and production strategies into several
hierarchical levels: CMI1 is the device level, CMI2
includes all the applications that monitor and control
devices. Levels 3 and 4 focus on the factory manage-
ment.

A factory includes workshops, each devoted to a
step of the tire building process, e.g., tire assembling
(assembling the components onto a tire drum) or cur-
ing (applying pressure on assembled tires in molds
to give their final shapes). A workshop gathers de-
vices, branch points, conveyor belts and human oper-
ators that perform specific actions (removal of prod-
ucts to assess their qualities, etc.). A workshop is
controlled by a set of CIM2 applications (except for
the operators): every order (move, stop, change state,
etc.), product modifications or alerts passing among
industrial devices and software are materialised with
messages that we call production events. These appli-
cations are continuously updated and sometimes re-
placed, for instance when the physical configuration
of the workshop is modified, when new machines are
added, when bugs are detected, or when it is decided
that applications are too old and are no more main-
tainable.

As depicted in Figure 1, at the workshop level, we
observe a continuous stream of products following as-
sembly lines from specific entry points to exit points,
i.e., where products go to reach the next step of the
manufacturing process. Some factories produce over
30,000 tires a day, resulting in thousands of produc-
tion events at the CIM2 level, which are collected and
persisted in databases.

Production systems are tested when they are set
up and every time they are updated with new applica-
tions and parameters, new devices, etc. We do not fo-
cus on the device level here (CIM1), but on the CIM2
level (although physical devices are tested too). For
readability, when we refer to production systems in
the remainder of the paper, we actually focus on the
software of the CIM2 level, which acquires and sends
production events to the devices.

For testing a production system, Michelin engi-
neers firstly build simulations by mocking most of the
devices. Then, they run hundreds of scenarios com-
posed of production events, collect all the observable
production events and manually inspect them to de-
tect abnormal behaviours. As simulations are not suf-
ficient to run all the possible scenarios, production
events are again collected when the system is running,
and events are scrutinised every time an issue is de-
tected. This manual testing process can be followed
for a long period time, depending on the modifica-

tions made on the system (up to 6 months). Michelin
wished to partially automate this phase to:

• quicker detect potential regressions when CIM2
applications are modified or when devices are re-
placed to ensure that they are interoperable with
the current application versions,

• test an updated system, different from the origi-
nal one (hence composed of new applications) to
get its set of traces expressing new behaviours.
Michelin engineers could later focus on them and
seek for potential faults,

• reduce the testing delay,

• get exact models in the sense that they do not
capture more behaviours than those possible in
the real system. These models could be studied
to diagnose issues of the production system.

The main problem faced by Michelin lies in the
lack of up-to-date documentation. Indeed, the aver-
age lifetime of the applications deployed in their fac-
tories is 20 years. During this long lifetime, applica-
tions are updated many times independently in every
factory all over the world, potentially highlighting dif-
ferent behaviours and features. Initially, these appli-
cations are documented with models, which become
outdated in the long run. Furthermore, even if a lot of
effort is put into standardising applications and devel-
opment processes, different programming languages
and frameworks are still used by development teams,
making difficult to focus on a single technology. This
application set appears too disparate and insufficiently
documented to apply conventional testing techniques.
This is why our industrial partner firstly needs a safe
way to infer up to date models, regardless of the un-
derlying technical details, and without having to rely
on any existing documentation.

In addition, Michelin engineers need of a scalable
tool since a production system produces thousands of
tires a day, along with thousands of production events.
When an issue is detected in a production system or
when the latter is getting jammed, they are interested
in getting models as quickly as possible to help them
diagnose failure causes.

2.2 Related work and motivation

Our approach is mainly founded upon two research
fields, model inference and passive testing. Several
papers dealing with these domains were issued in the
last decade. We present some of them related to our
work, and introduce some key observations.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 332 Volume 14, 2017

Model inference

Model inference originates from approaches dedi-
cated to language learning started in the 1970’s with
Gold [20]. Model inference can be defined as a set
of methods that infer a specification by gathering and
analysing system executions and concisely summaris-
ing the frequent interaction patterns as state machines
that capture the system behaviour ([1]). These mod-
els, even if partial, can be examined by a engineer,
to refine the specification, to identify errors, or can
be considered for different kinds of analyses, etc.
The model generation can be performed from differ-
ent kinds of data samples such as affirmative/negative
answers ([3]), execution traces ([22]), documentation
([43]), source code ([32, 31]) or network traces ([4]).
After reviewing the literature, we observed that two
main categories of methods emerge, which we call ac-
tive and passive methods. The first category contains
methods that repeatedly query systems or humans to
collect positive or negative observations. These are
analysed to build models and eventually to perform
other queries. Many active inference techniques have
been conceived upon two concepts, the L∗ algorithm
of [3] and incremental learning (e.g., [15]).

In the context of production systems, this active
functioning requires a lot of effort to be practical
though. The sending of queries or the use of active
testing techniques on production systems usually re-
quires to frequently reset it, which is a long and costly
process. This is why we prefer focusing on the pas-
sive inference category. It includes techniques that in-
fer models from a given set of samples, e.g., a set of
execution traces. Since there is no interaction with the
system to model, these techniques are said passive or
offline. Models are often constructed by representing
sample sets with automata whose equivalent states are
later merged. A substantial part of the papers cover-
ing this topic propose approaches either based upon
event sequence abstraction or state-based abstraction
to infer models.

With event sequence abstractions, the detail level
of the models is raised by merging the states having
the same event sequences. This process stands on
two main algorithms: kTail [7] and kBehavior [29].
kTail generates models from trace sets with two steps.
First, it builds a Prefix Tree Acceptor (PTA), which is
a tree whose edges are labelled with the events found
in traces. Then, kTail transforms the PTA into a Fi-
nite State Automaton (FSA) by merging every pair of
states if they exhibit the same future of length k, i.e.,
if they have the same set of event sequences having
the maximum length k, accepted by the two states.
kBehavior generates FSA from a set of traces by tak-
ing one trace after one and by completing the FSA

such that it accepts the trace. More precisely, when-
ever a new trace is submitted to kBehavior, it identifies
the sub-traces that are accepted by sub-automata in
the current FSA (the sub-traces must have a minimal
length k, otherwise they are considered too short to
be relevant). Then, kBehavior extends the model with
the addition of new transitions that suitably connect
the identified sub-automata, producing a new version
of the model, which now accepts the entire trace. Both
Algorithms were enhanced to support events com-
bined with data values [28].

The approaches, which use state-based abstrac-
tion, adopted the generation of state invariants to de-
fine equivalence classes of states that are combined
together to form final models. The Daikon tool [17]
were originally proposed to infer invariants composed
of data values and variables found in execution traces.
An invariant is a property that holds at a certain point
or points in a software. An invariant generator mines
the data found in traces, and then reports properties
that are always true. Several works were proposed to
infer models from traces produced by software com-
ponents ([38, 22]) or source codes ([42]).

Passive testing

Observing the behaviour of an implementation and
testing if it adheres to a given user-provided specifi-
cation has been referred under different names such
as passive testing or runtime verification. With run-
time verification, specifications are usually written
with CTL or LTL properties, which is out of the scope
of the paper. We prefer referring to [26] for introduc-
ing runtime verification. Passive testing (and runtime
verification) offers the advantage to not disturb the im-
plementation under test by collecting observations or
samples and by checking if these meet a specification
or properties. Several works, dealing with the passive
testing of protocols or components, have also been
proposed over the last decade. We propose to group
some of them related to our work in two different cat-
egories:

• Invariant satisfiability: invariants represent
properties that are always true. An invariant
is constructed by hand, and later checked on a
set of traces collected from an implementation.
This approach is very similar to runtime verifi-
cation and allows the test of complex and formal
properties. It gave birth to several works, e.g.,
[11, 10, 6, 30]. For instance, the passive testing
method presented in [11] aims to test the satis-
fiability of invariants on Mobile ad-hoc network
(MANET) routing protocols. Different steps are
required: definition of invariants, extraction of

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 333 Volume 14, 2017

execution traces with sniffers, verification of the
invariants on the trace set. Other works focused
on Component-based System Testing: in this
case, passive methods are usually used for con-
formance or security testing. Andrès et al. pre-
sented another methodology to perform the pas-
sive testing of timed systems [2]. The paper gives
two algorithms, which check whether timed in-
variants hold on logs recorded from an imple-
mentation under test;

• Forward checking: implementation reactions are
observed by a tester, which detects incorrect be-
haviours by covering a model every time a new
event is collected [24, 37]. For instance, Lee et
al. proposed some methods dedicated to wired
protocols in [24]. Protocols are modelled with
Event-driven Extended Finite State Machines
(EEFSM), which are specialised FSM composed
of variables and constraints over these variables.
Several algorithms on the EEFSM model are pro-
vided as well as their applications on the proto-
cols TCP and Open Shortest Path First (OSPF).

2.2.1 Key observations and motivations

After having studied both research fields and dis-
cussing with our industrial partner, it quickly turned
out that passive inference appeared to be a good
fit. Nevertheless, the proposed approaches still re-
flect some limitations that plague the final quality of
the models. Most of the model inference techniques
are over-approximating system behaviours, i.e., mod-
els often admit more behaviours than those observed.
When models are employed for verification or test-
ing, over-approximated models often bring false pos-
itives. Indeed, infeasible test cases can be generated
from these models, i.e., test cases that cannot be ex-
ecuted or that expect observations the system cannot
produce. Such test cases give incorrect verdicts. We
observed that over-approximation often comes from
the state merging process, which combines the states
having the same properties. Specifically, this issue
comes from the state equivalence relations (k-future,
congruence equivalences, etc.) that raise the abstrac-
tion level of the model. Furthermore, most of the
above algorithms have a complexity polynomial in
time with respect to the model size or require a poly-
nomial number of queries. However, we observed that
only few methods [42, 31] focus on scalability and
propose algorithms that can take huge event sets as
inputs and still infer models quickly. To do so, these
use a context-specific state merging process.

Based on these observations, we chose to devise a
(context-specific) model inference approach that aims

at recovering models as Symbolic Transition Systems
(STS [19]) from production event sets. As models
are used for testing, we want to prevent (control) their
over-generalisations. This approach is hence initially
based upon trace abstraction and model compression
to avoid the construction of models composed of over-
approximations. Then, we remove the information re-
lated to products, which we call normalisation. The
originality of the model construction resides in the
combination of an expert system to encode expert
knowledge (given by Michelin engineers or found in
documentation) and of transition systems to embrace
formal tools. This means that the STS transformations
and compression, called STS reduction, are defined
with inference rules thanks to the STS theory, and are
triggered by the same expert system. The STS reduc-
tion, is based on an event sequence abstraction. We
also show that our approach is scalable: it can take
millions of production events and still build models
quickly thanks to our specific state merging process.

Concerning passive testing, we noticed that the
above techniques assume having either complete
specifications encoding all the correct behaviours,
or invariants. The implementation relations are not
specifically tailored to support partial inferred models,
which are neither complete specifications nor proper-
ties. The passive testing technique that we propose is
founded on two complementary implementation rela-
tions to define conformance while taking into consid-
eration the use of under-approximated (partial) mod-
els. The first relation is based upon the classical pre-
order relation but only applied on the ”filtered” traces
of the system under test. The second one is a weaker
relation less strict on the parameter values found in
the traces. The tester algorithm is based upon these
relations. Additionally, it reuses several blocks of the
model generation step to build the traces of the system
under test.

Finally, we introduced in [16] a premise of this
passive testing method. This paper extends it by re-
visiting the theoretical aspects of model inference and
passive testing. We give new definitions and proposi-
tions on the two implementation relations to give one
tester algorithm using both and to prepare the proof of
its soundness. We also evaluate the implementation of
our approach on a real manufacturing system.

3 Approach overview
After several discussions with people at the Miche-
lin company and after having studied the functioning
of a factory, production system log files and internal
documentation, we concluded that the applications of
the CIM2 level, used to operate a production system,

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 334 Volume 14, 2017

continuously produce raw data adequately rich to de-
duce the system behaviours. Indeed, the messages
found in log files carry a lot of interesting information
(labels, parameters) that can be interpreted to under-
stand how a whole industrial system behaves. Miche-
lin engineers are actually able to read them to infer
high level actions. These messages are not tied to any
programming language or framework. Furthermore,
these are exchanged over a network layer that guar-
antees (synchronous) ordering and delivery. Study-
ing the behaviours of production systems at this level
makes some assumptions emerge that have been con-
sidered in the design of our framework:

• Black-box systems: production systems are seen
as black-boxes from which a large set of pro-
duction events can be passively collected at the
CIM2 level. Such systems are compound of as-
sembly lines fragmented into several devices and
sensors, synchronised by a global clock. A pro-
duction system has one or more entry and one or
more exit points;

• Production events: a production event of the
form a(α) includes a distinctive label a along
with a parameter assignment α. Two produc-
tion events a(α1) and a(α2) having the same la-
bel a must own assignments over the same pa-
rameter set. Network protocols guarantee syn-
chronous communications and the event ordering
with timestamps assigned to a parameter denoted
time, which takes values from a global clock.
A specific parameter, denoted point, stores the
physical location of devices. For instance, the
parameter point can be assigned to coordinates
or to device identifiers;

• Traces identification: execution traces are se-
quences of production events a1(α1)... ak(αk).
A trace is identified by a specific parameter that
is included in all the event assignments of a trace.
In this paper, this identifier is denoted with pid
and identifies products, e.g., tires at Michelin.
At the same time, we cannot have two different
traces (for two products) having the same pid;

• Event delivery: network protocols guarantee the
event delivery and an assembly line is conceived
in such a way that it does not have deadlock
states except when a product exits the line.

We present in this section an overview of our ap-
proach called Autofunk. The next sections will detail
every step briefly mentioned here. Autofunk, takes as
inputs the production events of a first production sys-
tem to infer its model and then passively tests a sec-
ond production system to ensure that it is conforming

Figure 2: Autofunk overall architecture

to the model. These two parts are depicted in Figure 2
(model inference with solid lines, passive testing with
dashed lines).

In this paper, we focus on models called Sym-
bolic Transition Systems (STS). The STS formalism
is widely used in the verification and testing areas
to describe large and complex event-driven systems.
Other models, e.g., the EFSM model [13] bring inter-
esting features but STSs offer another advantage with
this work. We can indeed benefit from the well estab-
lished testing theory given in [36, 19] and hence define
inference rules to express STS operations and trans-
formations. This last aspect helps combine the two
different areas we consider in this paper to infer mod-
els: formal models and expert systems. Indeed, hu-
man expert knowledge is materialised with inference
rules applied on knowledge bases (production events,
traces, STSs) e.g., to filter out production events. In
the same way, STS transformations are given with in-
ference rules applied on the same knowledge bases.
The same inference engine is called whatever the pur-
pose of the rules.

Autofunk recovers models (solid lines in Figure
2), which represent the functional behaviours of a sys-
tem under analysis denoted Sua. This step is mainly
framed upon an inference engine to build formal mod-
els from production events by means of successive
transformations. Initially, Autofunk takes log files,
composed of messages, collected from Sua. The
CIM2 level and the network protocols used in Miche-
lin’s factories guarantee that the messages can be col-
lected by a log server while preserving the message or-
dering. These messages are formatted as a set of pro-
duction events of the form a(α) with a a label, and α a
parameter assignment. Production events are filtered

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 335 Volume 14, 2017

to produce a first set of traces denoted Traces(Sua).
Products could stay in a workshop for days and even
weeks, i.e., longer than the time period considered
for collecting production events. From our point of
view, this means that we can likely collect incomplete
traces in Traces(Sua), that is the traces that are not
obtained from an entry point of the production sys-
tem or that not end in one of its exit points. Such
traces express incorrect behaviours in the sense that
they do not reflect the complete functioning of assem-
bly lines. Furthermore, we observed that the CIM2 ap-
plications may send the same request multiple times to
physical devices until they get an acknowledgement.
Repetitions of sequence of events, that we call repet-
itive patterns of events, may happen a multitude of
times, depending on the use of the load of the devices.
Most of these repetitive patterns of events are con-
sidered as noise by the Michelin engineers because
these events do not represent new behaviours of an as-
sembly line. This is why Autofunk detects repetitive
patterns, provides them to an engineer so that it may
chose to keep some of them as desired. The traces
including the other repetitive patterns (those not cho-
sen) are filtered out. The same process shall be ap-
plied for testing. Traces(Sua) is therefore filtered to
only keep the filtered traces of Traces(Sua), denoted
FTraces(Sua), namely the traces related to products
not composed of repetitive patterns, which are ob-
tained from an entry point of the production system
to one of its exit points.

The number of entry or exit points depends on the
configuration of the assembly lines and may varies
among the factories. Entry and exit points can be
given by an expert of the system (especially when the
collected set of production events is too small). But,
as the set of production events is usually large, we
have chosen to apply a machine learning technique
on the production events to automatically deduce the
entry and exit points. The technique employed here
is K-means [21] on the occurrences of every poten-
tial entry point (found in every first event of the trace
of Traces(Sua)) and exit points (found in every last
event of the traces). Section 5.2 gives more details
about this step, which helps automate the model infer-
ence process at the most, without being time consum-
ing.

The set FTraces(Sua) is then partitioned into
subsets (ST1, ..., STn) , one set for each entry point
of the system, to later build in parallel one model
per entry point. We construct the model S, which
is composed of the list of STSs (S1, ..., Sn) (with n
the number of detected entry points). Here, we also
remove all the parameter assignments related to prod-
ucts (product id, timestamps) to express more general
behaviours (not related to products). We call this step

STS normalisation. Usually, it turns out that S has a
(very) large set of transitions, which could negatively
influence the complexity of the testing stage. That is
why our framework adds a reduction step, aiming at
diminishing the first model S into a second one, de-
noted R(S).

The second part of Autofunk relates to the test-
ing phase (dashed lines in Figure 2). It takes a model
R(S) inferred from the reference system Sua and pro-
duction events collected from another system under
test Sut. Sut can refer to the same production system
as Sua, which has been updated. In this case, test-
ing comes down to check that changes have not intro-
duced new faults (regression testing). Sut can also be
a new system in a new factory, which should behave as
Sua. We have chosen to formally define conformance
with two implementation relations between Sut and
R(S). The first one, denoted ≤ft checks whether
the filtered traces of Sut, in FTraces(Sut), belong
to TracesPass(R(S)), which is the set of traces of
R(S) expressing correct behaviours. As R(S) is a
partial model that does not necessarily encode all the
possible behaviours of Sua, this relation may reject
some potential correct implementations. This is why
we define a complementary implementation relation,
denoted ≤mft, which means that Sut is correct iff for
each execution trace t, all its parameter assignments
can be found into several traces of TracesPass(R(S))
having the same sequence of events as t (instead
of only one trace with the first relation). The pas-
sive tester reuses some modules of the model infer-
ence step (event formatting, trace filtering) to build
FTraces(Sut) and implements these two relations.
It produces the verdicts ”Pass≤ft”, ”Pass≤mft” if the
relations hold. Additionally, when a faulty implemen-
tation is detected, it returns its possibly failure traces
i.e., the traces of Sut that cannot be extracted from
the model R(S). Here, we talk about possibly fail-
ure traces because our models are partial and do not
necessarily encode all the possible correct behaviours.
Hence, these traces should be later inspected to ensure
whether they capture wrong behaviours.

Before covering the formal aspects of the model
generation and the testing of production systems, we
recall some notations and definitions about the STS
model.

4 Model Definition and Notations

In this paper, we focus on models called Symbolic
Transition Systems (STS) ([19]) to represent how pro-
duction systems behave.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 336 Volume 14, 2017

4.1 Symbolic Transition Systems

A STS is a kind of symbolic automaton compound of
states called locations. Transitions between locations
are labelled with events including a label and param-
eters. One can also find guards and variable assign-
ments.

Definition 1 (Variable assignment) We assume that
there exist a finite domain of values denoted D and a
variable set X taking values in D. The assignment of
variables in Y ⊆ X to elements of D is denoted with
a mapping α : Y → D.
We denote DY the assignment set over Y . For y ∈ Y ,
α(y) returns the assignment of the y variable. We also
denote idY the identity assignment over Y .

For instance, α = {x := 1, y := 3} is a vari-
able assignment of D{x,y}. α(x) = {x := 1} is the
variable assignment related to the variable x.

Definition 2 (STS) A Symbolic Transition System
(STS) is a tuple (L, l0, V, V 0, I, Λ,→), where:

• L is the finite location set, with l0 being the initial
one,

• V is the finite set of internal variables, I is the
finite set of parameters,

• V0 is the initial condition, a predicate with vari-
ables in V ,

• Λ is the finite set of symbolic events a(p), with
p = 〈p1, ..., pk〉 a finite tuple of parameters in
Ik(k ∈ N),

• → is the finite transition set. A transition
(li, lj , a(p), G,A), from the location li ∈ L to

lj ∈ L, also denoted li
a(p),G,A−−−−−→ lj , is labelled

by:

– an event a(p) ∈ Λ, with p = 〈p1, ..., pk〉,
– a guard G, which is a predicate with vari-

ables in V ∪ {p1, ..., pk} that restricts the
firing of the transition. For simplicity (and
since this is sufficient in our context), we re-
strict to the guards of the form:
G→ PG | G op G,
PG→ V ariable == Constant,
op→ ∧ | ∨,

– internal variables are updated with the as-
signment function A of the form (x :=
Ax)x∈V , Ax is an expression over V ∪
{p1, ..., pk}.

Below, we define some notations on STSs. In par-
ticular, we use the notion of projection on guards, de-
noted ProjX(G), which aims to only keep the equal-
ities of G using the variables of the set X . A projec-
tion comes down to eliminate the equalities using the
variables in (I ∪ V)\X . For the definition of variable
elimination (a.k.a. forgetting), we refer to [23, 39].
For instance, in propositional logic, removing a literal
l from a formula F , is given by ForgetLit(F, {l}) =
Fl←1 ∨ (¬l ∧ F) [23].

Definition 3 Given a STS S = (L, l0, V, V 0, I,Λ,→
) and l, l′ ∈ L, we use the following notations:

• l1
(a1,G1,A1)...(an,Gn,An)−−−−−−−−−−−−−−−→ ln+1 =def

∃li, li+1, ai, Gi, Ai

(1 ≤ i ≤ n) : l1
a1,G1,A1−−−−−→ l2, ...,

ln
an,Gn,An−−−−−−→ ln+1;

• l is a deadlock location iff ¬∃l′, a(p), G,A :

l
a(p),G,A−−−−−→ l′;

• l
a(p),G−−−−→ l′ =def ∃, a(p), G,A = idV :

l
a(p),G,idV−−−−−−→ l′;

• ProjX(G), the projection of the guard G over
the variable set X ⊆ I ∪ V , which eliminates
from G the equalities on the variables of (I ∪
V)\X .

The use of symbolic variables helps describe in-
finite state machines in a finite manner. This po-
tentially infinite behaviour is represented by the se-
mantics of a STS, given in terms of Labelled Tran-
sition System (LTS). The LTS semantics can be as-
similated to a valued automaton, which is often infi-
nite: the LTS states are labelled by internal variable
assignments, and transitions are labelled by valued
events, composed of parameter assignments. The se-
mantics of a STS S = (L, l0, V, V 0, I,Λ,→) is the
LTS ||S|| = (Q, q0,

∑
,→) composed of valued states

in Q = L×DV , q0 = (l0, V0) is the initial one,
∑

is
the set of valued events, and→ is the transition rela-
tion.

The complete definition of the relation between a
STS and its LTS semantics is given in [19]. For sim-
plicity, we only give its insight in this paper. For a

STS transition l
a(p),G,A−−−−−→ l′, we have LTS transitions

of the form (l, v)
a(p),α−−−−→ (l′, v′) with v an assignment

over the internal variable set if there exists a param-
eter value set α such that the guard G evaluates to
true with v ∪ α. Once the transition is fired, the in-
ternal variables are assigned with v′ derived from the
assignment A(v ∪ α).

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 337 Volume 14, 2017

From the LTS semantics, one can derive runs and
traces, which reflect the concrete functioning of the
system modelled with S and ||S||:

Definition 4 (Runs and traces) Let S be a STS and
||S|| = (Q, q0,

∑
,→) be its LTS semantics.

• A run q0a0(α0)...qk−1ak−1(αk−1)qk is an alter-
nate sequence of states and valued events such

that: ∃qi, qi+1, ai, αi(0 ≤ i ≤ k−1) : q0
a0(α0)−−−−→

q1... qk−1
ak(αk)−−−−→ qk ∈→∗.

Runs(S) = Runs(||S||) is the set of runs found
in ||S||.
RunsF (S) is the set of runs that end in a state q
of F ×DV with F ⊆ L.

• the trace of a run r =
q0a0(α0)...qk−1ak−1(αk−1)qk, denoted
Trace(r) is the sequence a0(α0)...ak−1(αk−1).
TracesF (S) = TracesF (||S||) = {Trace(r) |
r ∈ RunsF (S)}.

4.2 Production system models

Intuitively, our STS generation is performed by retro-
engineering a production system from its traces by re-
ferring to the above definitions: traces are collected
from production systems, then filtered out, and trans-
formed into runs. From these, we construct STSs.

For simplification and to later help in the paralleli-
sation of the model inference process, we have cho-
sen to segment a production system model into several
STSs, one STS per entry point. In production events,
the parameter point stores device locations and can
be used to describe entry and exit points. Addition-
ally, we observed that devices may query CIM2 ap-
plications multiple times until they get an acknowl-
edgement. As stated earlier, we call these sequence
of events, repetitive patterns of events. With all these
characteristics, it is now possible to propose a defini-
tion of a production system model:

Definition 5 (Production system) A production sys-
tem S is a n-tuple (n > 0) S = (S1, . . . , Sn) with
Si = (LSi , l0Si , VSi , V 0Si , ISi ,ΛSi ,→Si) (1 ≤ i ≤ n)

such that ∀ l0Si
a(p),G,A−−−−−→ l ∈→Si : Proj{point}(G) =

(point == v), (point := v) ∈ Entry(S).
Entry(S) (resp. Exit(S)) denotes the set

of assignments on the variable point modelling
the entry points (resp. the exit points) of S.
Card(Entry(S)) = n.

Pattern(S) is the set of repetitive patterns of S,
Pattern(S) = {a1(α1) . . . ak(αk) | ∀(1 ≤ j ≤
k), aj(pj) ∈

⋃
1≤i≤n

ΛSi and αj ∈ Dpj}.

We also denote Traces(S) =
⋃

1≤i≤n
Traces(Si).

We are now ready to expose how to infer pro-
duction system models from collections of production
events.

5 Model inference of production sys-
tems

The model inference part aims at recovering models
representing the functional behaviours of a system un-
der analysis. To reason about this system, we now
assume that it can be modelled by a (unknown) LTS,
denoted Sua. This assumption allows to later denote
its trace set with Traces(Sua) and so on.

The originality of the model inference part lies in
the combination of the notion of expert system with
the STS formalism. Our framework uses an expert
system adopting a forward chaining. Such a system
separates the knowledge base, a.k.a. facts, from the
reasoning: the former is expressed with data and the
latter is defined with inference rules that are applied
on the facts. All information handled by Autofunk
(events, traces, transitions, models) are then modelled
with bases of facts. We rely upon two kinds of infer-
ence rules to infer STSs. On the one hand, we have
rules capturing the knowledge of a human expert or
found in documentation. These are expressed with
rules of the form When condition, Then action(s) ap-
plied on facts. On the other hand, the remaining rules
relate to STS transformations, which can be formally
defined with inference rules as well. The possibility
to change rules for matching other kinds of systems
is a manifest benefit of using inference rules to infer
models. Nevertheless, such rules have to be conceived
with care. Indeed, they have to be triggered a finite
number of times to ensure the model inference termi-
nation and must always give identical results with the
same bases of facts. To reach that purpose, we as-
sume that inference rules and knowledge bases meet
these hypotheses:

Model inference assumptions:

1. inference rules are Modus Ponens (simple im-
plications that lead to sound facts if the original
facts are true);

2. the facts in knowledge bases have an Horn form
(facts with at most one positive literal, e.g., sim-
ple facts).

These assumptions guarantee that the resolution
of the inference rules (based on Modus Ponens) with

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 338 Volume 14, 2017

Figure 3: Model inference detailed steps

17−Jun−2016 2 3 : 2 9 : 5 9 . 0 0 | INFO |New F i l e
17−Jun−2016 2 3 : 2 9 : 5 9 . 5 0 | 1 7 0 1 1 |MSG IN
[nsys : 1] [n sec : 8] [p o i n t : 1] [p i d : 1]
17−Jun−2016 2 3 : 2 9 : 5 9 . 6 1 | 1 7 0 2 1 |MSG OUT
[nsys : 1] [n sec : 8] [p o i n t : 3] [t p o i n t : 8] [p i d : 1]
17−Jun−2016 2 3 : 2 9 : 5 9 . 7 0 | 1 7 0 1 1 |MSG IN
[nsys : 1] [n sec : 8] [p o i n t : 2] [p i d : 2]
17−Jun−2016 2 3 : 2 9 : 5 9 . 9 2 | 1 7 0 2 1 |MSG OUT
[nsys : 1] [n sec : 8] [p o i n t : 4] [t p o i n t : 9] [p i d : 2]

Figure 4: Production event examples

a knowledge base (in Horn form) is sound and com-
plete. These assumptions will be used to discuss about
the soundness and complexity of the model inference
step in Section 5.5.

The model inference steps followed by Autofunk
are depicted in Figure 3. Each grey box in the figure
is detailed one after the other below.

5.1 Trace collecting

Autofunk starts by collecting production events from
databases gathering the events passing through the
network of the system under analysis. In this way,
Sua is not disrupted since production events are col-
lected by its logging system. A production event is
mainly compound of a label along with kinds of vari-
able assignments.

An example of log file is given in Figure 4. It
includes simplified production events similar to those
extracted from the Michelin logging system. INFO,
7011 and 17021 are labels that are accompanied with
assignments of variables, e.g., nsys that indicates an
industrial device number or point that gives the de-
vice position in a workshop. With real events, there

r u l e ”Remove INFO e v e n t s ”
when :
$a : ValuedEvent (a s s i g n m e n t . va lueOf (” t y p e ”) ==

TYPE INFO)
t h e n
r e t r a c t ($a)
end

Figure 5: Inference rules example for filtering

are around 20 parameters. Such a format is specific
to Michelin but other kinds of events could be consid-
ered by updating the Autofunk parsing module.

Production events are stored in a knowledge base
and formatted as valued events a(α), with a a label
and α a parameter assignment. Thereafter, this base
is filtered to remove the production events that are
considered as unnecessary to describe the functional
behaviours of Sua. These are filtered by means of
inference rules of the form: When a(α), condition on
a(α), Then retract(a(α)). Figure 5 shows a rule exam-
ple applied on Michelin systems. This rule is written
with the Drools 1 formalism. Drools is a rule-based
expert system using knowledge bases expressed with
Java objects. This rule removes the production events
that hold the INFO label. Indeed, experts confirmed us
that it does not worth keeping this kind of event since
they do not express a system behaviour, but network
status.

From this filtered production event base, we
construct traces by linking together the production
events a(α) holding the same trace identifier pid,
and by ordering them with respect to their times-
tamps assignments. We call the resulting trace set
Traces(Sua):

Definition 6 (Traces(Sua)) Given a system under
analysis Sua, Traces(Sua) denotes its trace set.

Traces(Sua) includes finite traces i.e., fi-
nite sequences of production events of the form
a1(α1)....ak(αk) such that: ∃ unique v ∈ D,∀αi(1 ≤
i ≤ k) : αi(pid) = (pid := v).

5.2 Trace segmentation and filtering

Products could stay in a workshop for days and even
weeks. Sometime, some products are manually re-
moved from the production system for different pur-
poses, e.g., assessing if they meet quality require-
ments. This involves that incomplete traces may be
included in Traces(Sua), i.e., the traces that are not

1http://www.drools.org/

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 339 Volume 14, 2017

obtained from an entry point of the production sys-
tem or that not end in one of its exit points. We con-
sider that these traces neither express the system nor-
mal functioning nor express failures. Hence, it has
been chosen to filter them out. This can been done by
means of the parameter point, which stores the phys-
ical locations of devices.

The detection of the entry and exit points of
Sua, denoted Entry(Sua) and Exit(Sua) is au-
tomatically performed with machine learning, and
more precisely by using an outlier detection ([21])
on Traces(Sua). An outlier is an observation that
deviates so much from the other observations as to
arouse suspicions that it was generated by a differ-
ent mechanism. More precisely, we chose to use the
K-means clustering method, a machine learning algo-
rithm, which does not need to be trained before be-
ing effectively used (that is called unsupervised learn-
ing) and which is considered as one of the most ro-
bust and efficient clustering algorithm [41]. K-means
clustering aims to partition N observations into K
clusters. Here, observations are represented by the
assignments of the variable point present in each
trace of Traces(Sua), which captures device loca-
tions. To detect the entry points, we collect all the
assignments found in the first production events of the
traces. As we want to group the outliers together (the
entry points), and leave the others in another cluster,
we use K = 2. The same step is followed to get the
exit points, except that we collect the assignment of
the last events of the traces. This method is suitable
for production systems because they hold physical as-
sembly lines where almost all the products flow from
real entry and exit points. Hence, on sufficiently large
production event sets, we should observe high ratios
of products moving from the same (entry) points to
the same exit points. Using K-means helps automate
this step, but, as explained in Section 7, when there
are only few production events, we need an expert to
provide them.

The devices may successively perform the same
request several times with repetitive patterns of
events. We have also chosen to remove the traces
including repetitive patterns in order to reduce the
final model size. The detection of repetitive pat-
terns in traces is highly facilitated by firstly re-
moving the variable assignments related to products
since these assignments are always different among
the traces. We call this step normalisation. For
Michelin systems, the variables related to products
are pid (product identifier) and time, which is as-
signed to a timestamp value. We define the opera-
tor NormY , with Y the variable set related to prod-
ucts, to normalise traces. Autofunk tries to detect
repetitive patterns in this way: if it finds a trace t

of the form t1p...pt2 and another trace t′1p
′t′2 such

that NormY (t1) = NormY (t′1), NormY (t2) =
NormY (t′2) and NormY (p) = NormY (p′), then
NormY (p) is designated as a repetitive pattern and t
is removed from Traces(Sua) since we suppose that
t does not express a new and interesting behaviour.

Traces are completely removed rather than clean-
ing them by deleting the repetitive patterns to prevent
from encoding behaviours not observed from Sua.
An algorithm, which detects repetitive patterns is pro-
vided in [33]. Here, we prefer giving the definition of
the filtered trace set, denoted FTraces(Sua), derived
from Traces(Sua). We also define the trace normal-
isation with Norm and denote the detected repetitive
pattern set with Pattern(Sua):

Definition 7 (Filtered traces) Let Traces(Sua) be
the trace set of the production system under analy-
sis Sua = (Q, q0,Σ,→). Entry(Sua), Exit(Sua)
denote its (physical) entry and exit point sets re-
spectively. Let also a1(α1)...ak(αk) be a trace of
Traces(Sua).

1. P = {x | αi(1 ≤ i ≤ k) ∈ DX and x ∈ X}.
Y ⊆ P is the set of variables related to products
found in P ;

2. NormY (a1(α1)...ak(αk)) =def a1(α
′
1)...

an(α′k) with α′i = αi(P \ Y)(1 ≤ i ≤ k);

3. R = {t1p...pt2 ∈ Traces(Sua) | t′1p′t′2 ∈
Traces(Sua), NormY (p1) = NormY (p′1),
NormY (p2) = NormY (p′2), NormY (p) =
NormY (p′)};

4. Pattern(Sua) =def {NormY (t) | t1p...pt2 ∈
R};

5. FTraces(Sua) =def {a1(α1)...ak(αk) ∈
Traces(Sua) | α1(point) ∈ Entry(Sua)
αk(point) ∈ Exit(Sua)} \R.

The trace set FTraces(Sua) only includes the
traces capturing executions started from an entry point
of Sua and ending to one of its exit points such that
the traces do not contain several successive repetitive
patterns of events. Traces in FTraces(Sua) capture
some behaviours of Sua but do not express more be-
haviours. Trace inclusion with Traces(Sua) is pre-
served:

Proposition 8 FTraces(Sua) ⊆ Traces(Sua).

With the example of production events given
in Figure 4, we obtain the following filtered
trace set: FTraces(Sua) = {17011(nsys :=
1, nsec := 8, point := 1, pid := 1) 17021(nsys :=

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 340 Volume 14, 2017

1, nsec := 8, point := 3, tpoint := 8, pid :=
1), 17011(nsys := 1, nsec := 8, point :=
2, pid := 2) 17021(nsys := 1, nsec := 8, point :=
4, tpoint := 9, pid := 2)}.

Finally, FTraces(Sua) is partitioned into ST =
(ST1, ..., STn) such that STi is a trace subset ex-
pressing behaviours starting at one entry point of
Entry(Sua) (Card(Entry(Sua)) = n).

5.3 STS generation and reduction

Each trace subset STi of ST = (ST1, ..., STn) is then
lifted to the level of the STS formalism, by transform-
ing traces to runs and runs to STS paths. Given a set
STi, its traces are converted into runs by completing
them with states. Each run begins with the initial state
(l0, v∅) with v∅ an empty condition. Then, new states
are injected after each production event. The set of
runs Runsi obtained from STi is defined as :

Definition 9 (Structured Runs) Let STi be
a trace set obtained from FTraces(Sua).
We denote Runsi the set of runs derived
from STi with the following inference rule:

tid=(a1,α1)...(ak,αk)∈STi,α1(pid)=(pid:=id)
(l0,v∅)a1(α1)(lid1,v∅)...(lidk−1,v∅)ak(αk)(lidk,v∅)∈Runsi

The runs of Runsi have states that are unique ex-
cept for the initial state (l0, v∅). We defined such a set
to later build a STS having a tree structure. The state
uniqueness is here guaranteed by means of the trace
identifier pid, which is unique for each trace.

Runs are transformed into STS paths that are as-
sembled together by means of a union. The resulting
STS forms a tree compound of branches starting from
the location l0. Parameters and guards are extracted
from the assignments found in production events. In
this step, the events of the runs are normalised with
the Norm operator to remove the parameter assign-
ments related to products (assignment of the variables
pid and time in our context). We obtain more gen-
eralised STSs, which express the behaviours of Sua,
independently of the manufactured products.

Definition 10 Given a run set Runsi and Y
the set of variables related to products, Si =
(LSi , l0Si , VSi , V 0Si , ISi ,ΛSi ,→Si) is the STS ex-
pressing the (generalised) behaviours found in Runsi
such that:

• LSi = {l | ∃r ∈ Runsi, (l, v∅) is a state of r},

• l0Si = l0 is the initial location such that ∀r ∈
Runsi, r starts with (l0, v∅),

• VSi = ∅, V 0Si = v∅,

Figure 6: First inferred STS example

• →Si and ΛSi are defined by the following infer-
ence rule applied on every element r ∈ Runsi:

(l, v∅)a(α)(l′, v∅) ∈ r, a(α′) = NormY (a(α)),
p = {x | α ∈ DX , x ∈ X},
G =

∧
(x:=v)∈α′

x == v

l
a(p),G−−−−→Si

l′

The STS Si has a tree form, one branch transpos-
ing one trace of STi. Figure 6 illustrates the STS S1
obtained from the production events of Figure 4. It is
composed of events, each associated with its own pa-
rameters. Transitions are labelled with guards directly
derived from the parameter assignments found in the
production events.

Once the subsets ST1, . . . , STn are transformed
into STSs, we obtain a first production system model
S = (S1, . . . , Sn). We also attach to S, the repeti-
tive patterns, the entry and exit points detected from
Sua: Pattern(S) = Pattern(Sua), Entry(S) =
Entry(Sua), Exit(S) = Exit(Sua).

If we only have collected a subset of all the pro-
duction events of Sua, we have inferred a partial
model S. In a sense, one could also affirm that S is an
over-approximation of Sua because the pid variable
can take any value. But S gives the same traces as
Sua with the same parameter values, if the variables
related to products are not considered. In this context,
we say that S is not an over-approximation of Sua.
This is captured by the following proposition:

Proposition 11 Let S be a model in-
ferred from a production system Sua and
Ld ⊆

⋃
Si∈S Li be its deadlock loca-

tions. We have: NormY (FTraces(Sua)) =
NormY (TracesLd(S))

5.4 STS reduction

The model S includes STSs that are most likely too
large for being employed for testing (e.g., for being

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 341 Volume 14, 2017

kept resident in memory). Yet, production systems
are often conceived with a finite number of assem-
bly lines and build products with a finite number of
steps. A STS Si in S should contain branches captur-
ing the same sequences of events (without necessarily
the same parameter assignments) and could be min-
imised.

Initially, we studied the state merging techniques
used with passive inference methods, and particularly
kTail, which appeared to be well suited in this con-
text. But, as stated earlier, these techniques build
over-approximated models by raising the level of ab-
straction, which may lead to false positives when used
for testing. Consequently, we have chosen to de-
sign a context-specific and lightweight STS reduction
technique, which aims at reducing a STS Si into an-
other STS denoted R(Si). The reduction technique
merges the STS branches having the same sequence of
events. As we do not want to infer approximated mod-
els, when STS branches are merged, we keep all the
guards and wrap them into matrices of guards. These
matrices pack the data, which are separated from the
transitions. This structure helps analyse events and
parameters separately. In addition, it allows the re-
covery of the initial traces of Si. Finally, the resulting
STS R(Si) still keeps its tree structure but has fewer
branches.

Given a STS Si, its paths are firstly adapted to ex-
press sequences of guards in a vector form. Later, the
concatenation of these vectors shall give birth to ma-
trices. This adaptation is obtained with the definition
of the STS operator Mat:

Definition 12 Let Si = (LSi , l0Si , VSi , V 0Si , ISi ,ΛSi ,
→Si) be a STS inferred from Sua. We denoteMat(Si)
the STS operator that consists in expressing guards of
STS paths in a vector form.

Mat(Si) = (LMat(Si), l0Mat(Si), VMat(Si),
V 0Mat(Si), IMat(Si),ΛMat(Si),→Mat(Si)) where:

• LMat(Si) = LSi , l0Mat(Si) = l0Si , IMat(Si) =
ISi , ΛMat(Si) = ΛSi ,

• VMat(Si), V 0Mat(Si) and →Mat(Si) are given by
the following rule:

b=l0
(a1(p1),G1)...(ak(pk),Gk)−−−−−−−−−−−−−−−→Si

lk

V 0Mat(Si) = V 0Mat(Si) ∧Mb == [G1, ..., Gk]

l0Mat(Si)
(a1(p1),Mb[1])...(ak(pk),Mb[k])−−−−−−−−−−−−−−−−−−−→Mat(Si) lk

Given a path b ∈→∗Mat(Si)
, we also denote

Mat(b) = Mb the vector used within the guards of
b.

Figure 7: Reduced model (STS)

The STS branches having the same sequences of
events can now be assembled. These branches are
grouped into path equivalence classes:

Definition 13 (STS path equivalence class) Let
Si = (LSi , l0Si , VSi , V 0Si , ISi ,ΛSi , →Si) be a STS
obtained from Sua.

[b] denotes the equivalence class gathering the
paths of Mat(Si) such that:

[b] = {b′ = l0Mat(Si)

(a′1(p
′
1),G

′
1),...,(a

′
k(p
′
k),G

′
k)−−−−−−−−−−−−−−−−→ l′k |

b = l0Mat(Si)
(a1(p1),G1)...(ak(pk),Gk)−−−−−−−−−−−−−−−→ lk, ai(pi) =

a′i(p
′
i) (1 ≤ i ≤ k)}

The reduced STS R(Si) of Si is derived by merg-
ing the locations of the paths of every equivalence
class [b] found in Mat(Si). The vectors of guards
found in the paths of [b] are joined into the matrix
M[b]. R(Si) is defined as follows:

Definition 14 (STS reduction) Let Si = (LSi ,
l0Si , VSi , V 0Si , ISi ,ΛSi ,→Si) be a STS inferred from
Sua. The reduction of Si is modelled by the STS
R(Si) = (LR, l0R, VR, V 0R, IR,ΛR,→R) where:

[b] = {b1, ..., bm} with bj =

l0Mat(Si)

(a1(p1),Gj1)...(ak(pk),Gjk)−−−−−−−−−−−−−−−−−→Mat(Si) ljk
V 0R = V 0R ∧M[b] == [Mat(b1), ...,Mat(bm)]

∧(1 ≤ c[b] ≤ m), l0R
(a1(p1),M[b][1,c[b]])...(ak(pk),M[b][k,c[b]])−−−−−−−−−−−−−−−−−−−−−−−−−→R (l1k...lmk)

A STS R(Si) holds paths labelled by guards,
which refer to a matrix k×m denotedM[b]. A column
of this matrix M[b] stores a list of successive guards
found in a path of the initial STS Si. The choice of
the column in a matrix depends on a new variable c[b],
which takes a value between 1 and m by means of the
initial condition V 0R.

The STS example of Figure 6 has two paths hav-
ing the same sequence of events, which can be re-
duced to one path. The reduced STS is depicted in
Figure 7. The guards are placed into two vectors

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 342 Volume 14, 2017

M1 = [G1 G2] and M2 = [G3 G4]. These are com-
bined into the matrix M[b]. The condition V 0 exhibits
that the variable c[b] can either be assigned to c[b] := 1
or c[b] := 2, in reference with the two matrix columns.
The resulting STS of Figure 7 still encodes the initial
behaviours described by the first STS. This is captured
with the following proposition:

Proposition 15 Let Si be a STS inferred from Sua
and R(Si) be its reduced STS.
We have: Traces(R(Si)) = Traces(Si).

When we apply this STS reduction method on the
whole production system model S, we obtain a model
denotedR(S) such thatR(S) = (R(S1), . . . , R(Sn)),
and Entry(R(S)) = Entry(S), Exit(R(S)) =
Exit(S), Pattern(R(S)) = Pattern(S).

5.5 Soundness complexity and termination
of the model inference step

The soundness of the model inference stage mainly
depends on the inference rules and the knowledge
bases. The latter are exclusively constituted of (pos-
itive) facts (Events, Traces, Transitions, STSs) that
have an Horn form. We have assumed that the infer-
ence rules are Modus Ponens. Therefore, the resolu-
tion of the inference rules and the inference of knowl-
edge bases is sound and complete [9] (all the resulting
facts are always true and have proofs in the system).
From this fact and by considering the propositions 8,
11 and 15, we can state the soundness of the whole
model inference stage with:

Proposition 16 Let Sua be a system under analy-
sis, which meets the assumptions given in Section 3.
Let S = (R(S1), . . . R(Sn)) be the production system
model inferred from Sua and Ld ⊆

⋃
1≤i≤n LR(Si) be

its deadlock location set. We have:

1. FTraces(Sua) ⊆ Traces(Sua) and
FTraces(Sua) ⊆ TracesLd(R(S))

2. NormY (TracesLd(R(S))) = NormY (
FTraces(Sua)) ⊆ NormY (Traces(Sua))

The model inference complexity is polynomial
in time and is proportional to O(t + m(t2 + t +
k + log(m))) with m production events, t traces in
Traces(Sua), k inference rules for filtering (worst
case). The complexity to filter m production events
with k rules is O(mk). The remaining ones are sorted
in O(m ∗ log(m)) (with the Java Collection.sort()).
We mine Traces(Sua) with K-means, whose com-
plexity is proportional to O(2t) with t the number

of traces in Traces(Sua). The complexity of ex-
tracting FTraces(Sua) from Traces(Sua) in O(t+
t2m). Indeed, inference rules covers the traces of
Traces(Sua) to keep those capturing behaviours
starting from one entry point and finishing at one exit
point of Sua. For every pair of traces, we search
for repetitive patterns by scanning the traces labels
(with the Michelin context, we limit to the patterns of
the form request/response) and then check if the pa-
rameter values are identical. Traces are lifted to the
STS level, event after event, with a complexity pro-
portional to O(m). The STS reduction complexity is
O(m + tm). Path equivalence classes are generated
with a hash function, called on event sequences (com-
plexity proportional to O(m)). The paths of a class
are grouped with a rule covering all the paths together
(O(tm)).

6 Passive testing
In this section, we present the second part of our
framework, dedicated to the passive testing of another
system under test Sut. The model R(S), inferred
from a system Sua, is regarded as a reference specifi-
cation. The STSs of R(S) can be modified to record
some updates made on Sut or some specific features.
Manual modifications of the inferred STSs are possi-
ble but should be time-consuming though, since the
STSs are usually large. Inference rules added by ex-
perts are another possibility to update the STSs of
R(S), e.g., with variable or label modifications.

In addition, we take advantage of this step to label
the final locations of the STSs of R(S) with ”Pass”.
We denote these locations as verdict locations and
gather them into the set Pass ⊆

⋃
1≤i≤n

LR(Si). For

sake of readability, we still denote the resulting model
with R(S). It expresses some possible behaviours
that should happen, which are encoded by the traces
TracesPass(R(S)). We refer to these traces as pass
traces. We call the others, possibly failure traces be-
cause R(S) is a partial model.

To reason about conformance between a speci-
fication and an implementation, it is classically as-
sumed that the latter can be modelled with an un-
known and possibly non-deterministic model. In our
context, we suppose that a production system under
test can be modelled by a LTS denoted Sut.

An overview of the passive testing module of Aut-
ofunk is depicted in Figure 8. Testing is passively
performed, i.e., a set of production events were col-
lected before from Sut, in the same way as for Sua.
These are grouped into traces to form the trace set
Traces(Sut). Traces are then filtered as described

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 343 Volume 14, 2017

Figure 8: Passive Testing in Autofunk

in Section 5.1 to obtain a set of filtered traces denoted
with FTraces(Sut). The tester is finally called to
check if Sut is conforming to R(S).

6.1 Implementation relations

We define conformance with two implementation re-
lations, which take root in the preorder relations
([14]). Our industrial partner was interested in check-
ing whether the filtered traces of Sut match the be-
haviours encoded in R(S). In this case, the test ver-
dict must reflect a successful result. Conversely, if
a filtered trace of Sut cannot be found in the traces
of R(S), it remains difficult to conclude that Sut
is a faulty implementation because R(S) is a partial
model. It does not necessarily encode all the cor-
rect behaviours of the previous system under analy-
sis Sua. This is why we consider such a trace as a
possibly failure trace.

This concept of conformance is defined by a first
implementation relation, denoted with ≤ft (ft for fil-
tered traces). It aims at checking whether the filtered
traces of Sut are Pass traces of R(S):

Definition 17 (Implementation relation ≤ft)
Let R(S) be an inferred model of Sua and Sut
be the system under test.When Sut produces fil-
tered traces also captured within R(S), we write:
Sut ≤ft R(S) =def FTraces(Sut) ⊆ TracesPass(
R(S)).

As the model R(S) can be under-approximated
and may not include some correct behaviours, Miche-
lin engineers wished the definition of a second rela-
tion ”less strict on the parameters on condition that
these parameters could be found inside the model”.
In a sense, one can say that this second relation aims

at describing an over-approximation of the under-
approximation, which contradicts the objective of the
model inference stage. This implementation relation
must be considered as a complementary relation of
≤ft, which is fully useful when≤ft returns a possibly
failure trace of Sut. The second relation aims to point
out whether this trace might reflect a realistic scenario,
composed of a correct sequence of events completed
of parameters found in other traces of the modelR(S).
This helps classify possibly failure traces in risk im-
portance. In the Michelin context, when a trace of
Sut is a possibly failure trace for both relations, the
likelihood of failure detection is the highest.

This relation, denoted ≤mft (with mft for mul-
tiple filtered traces), defines that an implementation
Sut is correct iff its filtered traces a1(α1)...ak(αk)
can be found in several traces of TracesPass(R(S))
having the same sequence of labels a1...ak. The im-
plementation relation ≤mft, is defined by:

Definition 18 (Implementation relation ≤mft) Let
R(S) = (R(S1), . . . , R(Sn)) be an inferred model of
Sua, Sut be the system under test and Y be the set of
variables related to products.

Sut ≤mft R(S) =def ∀t = a1(α1)...ak(αk) ∈
FTraces(Sut),∀αj(x)(1≤j≤k) with x /∈ Y , ∃t′ ∈
TracesPass(R(S)) : t′ = a1(α

′
1)...ak(α

′
k), α

′
j(x) =

αj(x)

If we take back the example of Figure 7, the
trace t = 17011(nsys := 1, nsec := 8, point :=
1, pid := 1) 17021(nsys := 1, nsec := 8, point :=
4, tpoint := 9, pid := 1) is not a pass trace of R(S)
for the relation ≤ft because this trace cannot be ex-
tracted from the STS of Figure 7, even though it has
the same sequence of labels ”17011 17021” as t. If
we focus on the guards and on the matrix M[b], the
parameter assignments of the event 17011(nsys :=
1, nsec := 8, point := 1) satisfy the guard G1 but
those in 17021(nsys := 1, nsec := 8, point :=
4, tpoint := 9) do not meet the guard G2 on ac-
count of the variables point and tpoint, which do
not take the expected values. In the second column
of the matrix, the first guard G3 does not hold with
(nsys := 1, nsec := 8, point := 1). With the im-
plementation relation ≤mft, each parameter assign-
ment αj(x) found in the trace t (except those related
to products), must also be found in one of the traces
of the STS of Figure 7 having the same sequence
of labels as t. In the STS level, this involves that
any parameter assignment αj(x) found in the trace t
must meet at least one guard of the matrix line j in
M[b][j, ∗]. The parameter assignments of the event
17011(nsys := 1, nsec := 8, point := 1) sat-
isfy the guard G1 of the STS Figure 7 and those in

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 344 Volume 14, 2017

17021(nsys := 1, nsec := 8, point := 4, tpoint :=
9) satisfy the guard G4. Hence, the trace t is pass trace
for the relation ≤mft.

By generalising this idea, we propose to rewrite
the implementation relation≤mft in an equivalent but
simpler form in the following. Firstly, ≤mft can be
written with the guards of the STSs of R(S):

Proposition 19 Sut ≤mft R(S) iff ∀t =
a1(α1)...ak(αk) ∈ FTraces(Sut),∃(1 ≤
i ≤ n), ∃b = l0R(Si)

(a1(p1),M[b][1,c[b]]),...,(ak(pk),M[b][k,c[b]])−−−−−−−−−−−−−−−−−−−−−−−−−−→ Pass with
M[b] a matrix k × c, ∀αj(x)(1 ≤ j ≤ k) : αj(x) |=
Proj{x}(M[b][j, 1] ∨ ... ∨M[b][j, c]).

Now, one can compare both relations ≤ft and
≤mft. With the relation≤ft, the variable assignments
found in a trace of Sut must meet the guards of one
matrix column of R(Si) (any column but always the
same for all the assignments of the trace). With≤mft,
the variable assignments of the trace of Sutmust meet
the guards of any column. This attests that ≤mft is a
weaker relation than ≤ft and that:

Proposition 20 Sut ≤ft R(S) =⇒ Sut ≤mft
R(S)

The sketch of proof of Proposition 20 is given in
[34]. The relation ≤mft can be simplified again by
adapting the disjunction of guards M[b][j, 1] ∨ ... ∨
M[b][j, c], found in the matrix M[b]. The resulting for-
mula can be reduced by gathering all the equalities
(x == val) together with disjunctions for each vari-
able x. We obtain one guard of the form

∧
x∈I(x ==

val1 ∨ ... ∨ x == valk). If we generalise this idea
on the matrices of a STS R(Si), it becomes possible
to replace a matrix composed of several columns into
one vector of guards. Therefore, we propose to trans-
form the STS R(Si) into another STS composed of
such vectors.

Definition 21 Let R(Si) = (LR, l0R, VR, V 0R, IR,
ΛR,→R) be a reduced STS inferred from Sua. We de-
note D(Si) the STS (LD, l0D, VD, V 0D, ID,ΛD,→D

) derived from R(Si) such that:

• LD = LR, l0D = l0R, ID = IR, ΛD = ΛR,

• VD, V 0D and→D are given by the following in-
ference rule:

b = l0R
(a1(p1),M ′[b][1,c

′
[b]

])...(ak(pk),M
′
[b]

[k,c′
[b]

])
−−−−−−−−−−−−−−−−−−−−−−−−−→R lk

(1 ≤ c′[b] ≤ c) in V 0R

l0D
(a1(p1),M[b][1])...(ak(pk),M[b][k])−−−−−−−−−−−−−−−−−−−−→D lk

V 0D = V 0D ∧ (c[b] == 1) ∧M[b],

M[b][j](1≤j≤k) =∧
x∈pj

(Proj{x}(M
′
[b][j, 1]) ∨ . . .

∨Proj{x}(M ′[b][j, c]))

When we apply this transformation on the STSs
of R(S) = (R(S1), . . . , R(Sn)), we obtain a model
denoted D(S) = (D(S1), . . . , D(Sn)).

The second implementation relation ≤mft can
now be expressed with D(S):

Proposition 22 Sut ≤mft R(S) iff ∀t = a1(α1)...
ak(αk) ∈ FTraces(Sut),∃(1 ≤ i ≤ n), ∃l0D(Si)

(a1(p1),G1),...,(ak(pk),Gk)−−−−−−−−−−−−−−−−→ Pass such that ∀αj(1 ≤
j ≤ k), αj |= Gj .

≤mft now implies that a correct trace of Sut is
also a pass trace of the model D(S). This notion of
trace inclusion is close to the idea formulated with the
first relation ≤ft, and finally the relation ≤mft can be
written with ≤ft as:

Proposition 23

1. Sut ≤mft R(S) iff FTraces(Sut) ⊆⋃
1≤i≤n

TracesPass(D(Si)).

2. Sut ≤mft R(S)⇔ Sut ≤ft D(S).

This proposition implies that the same passive
tester algorithm can be called to check if both rela-
tions hold for a system under test.

In addition to these two relations, others could be
implemented, e.g., ioco [36] or invariant satisfiabil-
ity checking [10], etc. In the Michelin context, the
two previous relations where considered appropriate
for the testing purposes of the company.

6.2 Passive tester algorithm

The passive tester functioning is deducible from the
above propositions. Indeed, it takes the models R(S)
and D(S) and checks whether the filtered traces
of FTraces(Sut) belong to TracesPass(R(S)) or
TracesPass(D(S)) respectively.

The passive tester algorithm is presented in Al-
gorithm 1. It takes the traces of Sut and the

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 345 Volume 14, 2017

model R(S). It starts by constructing the filtered
traces FTraces(Sut) from Traces(Sut) and builds
D(S). Afterwards (line 4), it covers every trace t of
FTraces(Sut) and tries to find a STSR(Si) such that
t is a pass trace in TracesPass
(R(Si)). This step is performed with the function
complies with(tracet, STS S). If this function re-
turns True, it is not necessary to check if the traces
t satisfies the second relation ≤mft since ≤ft =⇒
≤mft (Proposition 20). On the contrary, the trace t is
placed into the set T1, which gathers the possibly fail-
ure traces w.r.t. ≤ft. The algorithm performs the pre-
vious step once more but on D(S). As previously, if
the function returns False, the trace t is placed into the
set T2. The latter gathers the possibly failure traces,
w.r.t. the relation ≤mft. Finally, if T1 is empty, the
verdict ”Pass≤ft” is returned, which means that the
first implementation relation holds. Otherwise, T1 is
provided. If T2 is empty, the verdict ”Pass≤mft” is
returned, or T2 in the other case.

The function complies with(trace t, STS S) (lines
22-32) aims at checking whether the trace t =
a1(α1)...ak(αk) is a trace of the STS S. More pre-
cisely, if a STS path b is composed of the same se-
quence of labels as the trace t, the function tries to
find a matrix column C = M[b][∗, i] such that every
guard C[j] (1 ≤ j ≤ k) holds with the variable as-
signment αj . If such a column of guards exists, the
function returns True or False otherwise.

When one of the implementation relations does
not hold, this algorithm offers the advantage to pro-
vide the possibly failure traces of FTraces(Sut).
Such traces can later be analysed.

6.3 Soundness, termination and complexity
of Algorithm 1

The soundness of Algorithm 1 is captured by the fol-
lowing proposition, whose sketch of proof is given in
[34]:

Proposition 24 1. Sut ≤ft R(S) =⇒ Algorithm
1 returns ”Pass≤ft”, ”Pass≤mft”

2. Sut ≤mft R(S) =⇒ Algorithm 1 returns
”Pass≤mft”

Algorithm 1 terminates if FTraces(Sut) is fi-
nite (which is necessarily the case since the filtered
traces are built from a finite number of production
events). For every trace in FTraces(Sut), it covers
the paths of the STSs ofR(S) andD(S). The STSs in
(R(S1), . . . , R(Sn)) and in (D(S1), . . . , D(Sn)) have
a finite number of paths (at worst equal to the number
of traces in FTraces(Sua)).

Algorithm 1: Passive testing algorithm
input : R(S), T races(Sut)
output: Verdicts and possibly failure trace sets T1, T2

1 T1 = T2 = ∅;
2 Build FTraces(Sut);
3 Build D(S);
4 foreach t ∈ FTraces(Sut) do
5 found=false;
6 foreach i ∈ 1, . . . , n do
7 if complies with(t, R(Si)) then
8 found=true; break;

9 if found == false then
10 T1 = T1 ∪ {t};
11 foreach i ∈ 1, . . . , n do
12 if complies with(t, D(Si)) then
13 found=true; break;

14 if found == false then
15 T2 = T2 ∪ {t}

16 if T1 == ∅ and T2 == ∅ then
17 return ”Pass≤ft, Pass≤mft”

18 if T1 6= ∅ and T2 == ∅ then
19 return T1, ”Pass≤mft”

20 if T1 6= ∅ and T2 6= ∅ then
21 return T1, T2

22 Function complies with(trace t, STS S) : bool is

23 if ∃b = l0S
(a1(p1),G1)...(ak(pk),Gk)−−−−−−−−−−−−−−−−−−→ Pass : trace =

a1()α1) . . . ak(αk) then
24 M[b] =Mat(b) is the Matrix l × c of b;
25 i = 1;
26 while i ≤ c do
27 C =M[b][∗, i];
28 foreach j ∈ 1, . . . , k do
29 if αj 6|= C[j] then break ;

30 if j == k then return True ;
31 i++;

32 return False;

The complexity of Algorithm 1 is proportional to
O(mk+mlog(m)+ t+ t2m+ tmc)) with t the num-
ber of filtered traces of Sut, m the number of pro-
duction events, k the number of inference rules and
c the highest number of columns in any matrix M[b].
As in the model inference stage, it begins construct-
ing FTraces(Sut).This step has a complexity pro-
portional to O(mk + mlog(m) + t + t2m). Then,
Algorithm 1 calls the procedure complies with twice
for each trace in FTraces(Sut). The complexity of
the procedure complies with is O(m × c). Indeed,
finding a path in a STS related to a trace is negligible
by using a hash mechanism to identify sequences of
labels, hence, we only take the matrix traversal into
account here.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 346 Volume 14, 2017

7 Evaluation
The tool Autofunk is currently used with factory sim-
ulations and is deployed in one factory for testing pur-
poses. It is planned to gradually deploy it in other
ones. The tool was experimented in this factory to
evaluate the following criteria:

• C1 (Accuracy/precision): are models accurate
w.r.t a real production system? Do we always ob-
tain the same results? Does the tool return Pass
verdicts when the system under test is identical
to the one used to infer models?

• C2 (Efficiency/Effectiveness): can a production
system be tested in reasonable time? Does Auto-
funk detect faults? Does it help reduce the testing
phase complexity?

• C3 (Scalability): can Autofunk take as inputs
large trace sets and still build models and test sys-
tems in reasonable time?

Initially, while the Autofunk implementation, we
executed functional tests in a controlled environment
to check how Autofunk builds models and if it can de-
tect faults. In a sense, these functional tests partially
evaluate the criteria C1 and C2. Sua is materialised
by a set of twenty traces constructed manually and
composed of ten production events. The functional
tests aimed to check that Autofunk always provides
the expected STSs. Then, other functional tests were
used to check that Autofunk detects faults. To ma-
terialise Sut, we kept the same trace set on which we
injected faults. We considered the removal/addition of
events, of parameters and of repetitive patterns. The
functional tests seeded the tester module of Autofunk
with this trace set and checked that the faults were de-
tected. This preliminary phase does not completely
answer to the previous questions though. This is why
Autofunk was installed inside a real production sys-
tem (on a Linux machine with 12 Intel(R) Xeon(R)
CPU X5660 @ 2.8GHz and 64GB RAM) to assess un-
der what real circumstances these criteria are fulfilled.
This system is a workshop (part of a whole factory),
in which two main operations are performed (with ma-
chines and human operators): tire assembling (assem-
bling the components onto a tire building drum) and
curing (applying pressure to the tire in a mold). It is
composed of 3 entry points starting 3 main assembly
lines split into a large set of sub-lines to reach devices
and operators. The tires can be placed in storage areas
in which they may stay several days up to some weeks,
or go out of the workshop through 3 exit points. For
confidentiality reasons, we cannot provide more de-
tails about the system neither a plan of its layout.

7.1 Empirical setup and results

We collected production events from this system by
considering several (collection) delays to build mod-
els: 1, 8 11, 20 and 23 days.

Table 1 summarises the observed results. The
third column gives the number of production events
recorded on the system. The next column shows the
trace number obtained after the parsing step. N and
M represent the number of entry and exit points. The
column Trace Subsets shows how FTraces(Sua) is
segmented per the entry point into subsets and the
number of traces included in each subset. For in-
stance, in the second experiment, three entry points
are detected, hence, FTraces(Sua) is partitioned
into three subsets, which give birth to the same num-
ber of STSs. The trace numbers, given in this column,
also correspond to the numbers of paths generated in
the first STSs. The eighth column, # R(Si), repre-
sents the number of paths found in each reduced STSs
R(S1), ..., R(Sn), with n the number of entry points.
Finally, execution times are rounded and expressed in
minutes in the last column.

Based on the recommendations given by the
Michelin engineers, we chose to keep as reference
model Sua the one obtained in Experiment C. It
expresses the system functioning, manufacturing the
same product (same tire reference) and it includes the
correct number of entry and exit points of the real sys-
tem. This model was then used to passively test a
modified version of the production system in order to
detect regressions.

We collected three trace sets for testing at differ-
ent periods of time to mostly cover all the cases that
may be encountered: no modification of the produc-
tion system, slight modifications (changes of some pa-
rameters, slight modifications of the devices, which is
a typical case at Michelin), strong modifications of the
original system or test of a different system. These
experiments are presented in Table 2. The second col-
umn shows different kinds of system under test: Sut1
that was the same as Sua, Sut2 that was slightly up-
dated from Sua with new application versions, and
Sut3 that was a system much older than Sua and
hence very different (older application versions, per-
haps other devices, etc.). Column 3 gives the sizes
of the trace sets used to infer models, column 4 the
sizes of the trace sets collected from the systems un-
der test. The two next columns show the percentage
of pass traces w.r.t. the relations ≤ft and ≤mft. The
last column indicates the execution time for the testing
phase.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 347 Volume 14, 2017

Exp. #
Days

Events Card(Traces
(Sua))

N M # FTraces Sub-
sets

R(Si) Time
(min)

A1 1 660,431 16,602 2 3 4,822 332 1
A2 1,310 193
B1 8 3,952,906 66,880 3 3 28,555 914 9
B2 18,900 788
B3 6,681 51
C1 11 3,615,215 61,125 3 3 28,302 889 9
C2 14,605 681
C2 7,824 80
D1 11 3,851,264 73,364 2 3 35,541 924 9
D2 17,402 837
E1 20 7,635,494 134,908 2 3 61,795 1,441 16
E2 35,799 1,401
F1 23 9,231,160 161,035 2 3 77,058 1,587 24
F2 43,536 1,585

Table 1: Results of 6 experiments on model inference

Exp. Sut Card(Traces(Sua)) Card(FTraces(Sut)) Pass≤ft Pass≤mft Time (min)

1 Sut1 = Sua 61,125 61,125 100% 100% 17
2 Sut2 updated from Sua 61,125 25,047 98% 98% 10
3 Sut3 6= Sua 61,125 2,075 3% 30% 4

Table 2: Results of 3 experiments on passive testing

7.2 Evaluation

7.2.1 C1 (Accuracy/precision)

To answer the questions concerning these criteria, we
firstly focused on model generation. We extracted the
values of columns 4 and 7 in Table 1 to depict the
stacked bar chart illustrated in Figure 9. This chart
shows, for each experiment, the proportion of filtered
traces kept to build models, over the initial number of
traces in Traces(Sua). The first limitation of Auto-
funk takes effect in Experiment A. Indeed, only 37%
of the initial traces are kept to build models. There
are two reasons for this. In one day, too few traces
are gathered for using K-means with success. In this
trace set, there is not a clear separation between the
entry/exit points and the others. Therefore, K-means
may return wrong point clusters. In this situation, en-
try and exit points have to be manually given by an
engineer. This is what happened in Experiment A.
The second reason concerns the collection delay it-
self. During a day, most of the recorded traces do not
start or end at real entry or exit points of the produc-
tion system, but rather start or end somewhere within
assembly lines. Indeed, the workshop contains stor-
age areas where products can stay for a while, de-
pending on the production campaigns or needs for in-
stance. That is why, on a single day, so many incom-
plete traces are filtered. With more production events,
such a phenomenon is limited because these storage
delays are absorbed in the period of time considered

to collect production events. With the other experi-
ments, the ratios of traces removed from the initial
set Traces(Sua) vary between 20 % to 30 %. Af-
ter some inspections, we observed that, among these
traces, around 15 % to 25% appear to be traces com-
posed of repetitive patterns of events. The other traces
capture abnormal behaviours of the production sys-
tem, e.g., unexpected removal of products, device in-
terruptions, etc. and are deleted according to the clus-
ters of entry / exit points given by K-means. We ob-
served that these ratios are acceptable, and few traces
expressing normal behaviours of the production sys-
tem are deleted. But the trace filtering could still
be refined with more inference rules or with another
cluster analysis technique. For instance, Table 1 re-
vealed strange behaviours not taken into considera-
tion by Autofunk. In experiments B and C, three en-
try points are detected whereas two are found in the
others. Actually, the real production system has three
entry points whose two are mainly used. The third
one is employed to equilibrate the production load be-
tween this system and a second one located close to
it in the same factory. Depending on the period, this
entry point may be more or less solicited, hence the
difference between experiments B, C and experiment
D.

The inferred models from FTraces(Sua) are
accurate in the sense that the normalised traces of
the models are equal to the normalised traces of
Traces(Sua) (Proposition 16). Regarding the test-

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 348 Volume 14, 2017

Figure 9: Proportions of filtered traces

ing phase, we measured accuracy with the first exper-
iment of Table 2. The system under test is here exactly
identical to the original production system Sua. This
experiment shows that the passive tester yields the ex-
pected test verdicts, hence no fault were detected (no
regression). Indeed, both relations ≤ft and ≤mft are
satisfied. Finally, for a given trace set, if the traces
are analysed in a different order, we still obtain the
same results, because traces and STS paths are anal-
ysed/compared separately by the algorithms of Auto-
funk. K-means also computes the same clusters from
the same trace set.

We can conclude that the accuracy and precision
of Autofunk depends on the amount of traces col-
lected to build models and on the delay considered
to get these traces. The larger the trace set is and the
longer the production events are collected, the more
accurate the models are without any loss of precision.
Otherwise, the main danger is that K-means might re-
turn wrong sets of entry/exit points, which have to be
manually given. The best delay for collecting produc-
tion events depends on the system behaviour. With the
production system taken for experimentation, this de-
lay has been set against the storage area functioning.
We observed that if events are collected during 7 days
or more, we obtain accurate and precise results.

7.2.2 C2 (Efficiency / Effectiveness)

One of the purposes of Autofunk is to automate the
testing stage and to quickly return the possibly fail-
ure traces when non conformance is detected so that
they can be later analysed by engineers to diagnose the
cause of the non conformance detection (failure, cor-
rect behaviour not found in the model, new behaviour
obtained after system updates).

Tables 1 and 2 show that Autofunk builds models
and gives test verdicts in reasonable time. With pro-

duction event sets collected during one day up to one
week (experiments A, B, C, and D), models are in-
ferred in less than 10 minutes. Experiment C in Table
1 corresponds to a typical use of Autofunk for Miche-
lin. Models are generated after 9 minutes from pro-
duction events collected during 11 days (more than
three millions of events).

In Table 1, the difference of STS path numbers
between the columns 7 and 8 clearly shows that our
STS reduction approach is efficient. For instance,
with experiment C, we reduce the STSs by 96.7%.
In other words, 96% of the original behaviours are
packed into matrices. These results mainly stem from
our choice to design a context-specific state merging
process. It is manifest that these ratios should vary
with other kinds of systems. Experiment 2 in Table 2
also corresponds to a typical use of Autofunk for test-
ing. The model were inferred from traces collected
during 11 days. Traces of the system under test Sut2
were collected during 5 days. It took only 10 min-
utes to check whether Sut is conforming to the STSs
inferred from Sua with respect to ≤ft and ≤mft.

Experiment 2 in Table 2 shows that Autofunk is
effective to detect faults: Sut2 was slightly updated
from Sua and the tool detected that 98% of the traces
are pass traces, the remaining 2% are new behaviours
that never occurred before. Here, engineers have to
manually analyse the possibly failure traces to check if
these are the consequence of system failures or of new
features of Sut2 not present in Sua. 2% means 500
traces, which remains a significant trace amount to in-
spect. Nonetheless in our manufacturing context, this
is still valuable. Before Autofunk, engineers had to
manually test the whole system by hand: around sev-
eral hundreds of scenarios were executed and the re-
sulting traces also had to be manually inspected. Aut-
ofunk can test a production system by automatically
inspecting thousands of its traces in some minutes. It
analyses more the system under test than manual test-
ing, it remains for engineers to manually check a small
subset of traces (only those capturing behaviours not
found in the model). Such information is essential for
Michelin engineers so that they can quickly focus on
the potential defects of the system under test. In this
example, we observed that almost half of the possibly
failure traces were caused by unexpected manual in-
terventions done by operators (tires were taken from
one position and placed elsewhere). Around a hun-
dred of traces captured new behaviours of Sut2 not
possible in Sua. None of them revealed real failures
in this case.

The third experiment illustrates an abnormal use
of our framework. The defacto usage of our frame-
work is to build models from a production system
Sua, which should be older than an new or updated

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 349 Volume 14, 2017

system Sut. Here, the traces of Sut3 were collected
long before collecting those of Sua used for infer-
ring models. Sut3 were indeed a four month older
system whose CIM2 applications were different than
those of Sua. In this situation, Sua and Sut3 can
be seen as quite distinctive production systems. Auto-
funk still detects non-conformance and provides pos-
sibly failure traces quickly. Unsurprisingly, both im-
plementation relations are unsatisfied. Only 3% of
the traces of Sut3 are pass traces w.r.t. ≤ft. This
means that only 60 traces of Sut3 exactly match the
behaviours captured by the inferred models. With the
second implementation relation ≤mft, the pass trace
ratio is increased to 30%. The second relation shows
that roughly a third of the traces of Sut3 have the
same sequences of events as the traces found in the
STSs, but the parameter values (which can be found in
other traces) are different. Hence, the second relation
shows that 27% of the pass traces appear to be real-
istic scenarios. This helps focus on the traces having
unknown sequences of actions or actions associated
with unknown parameters, for which the likelihood of
failure detection is the highest. Indeed, Michelin engi-
neers confirmed that these traces often capture system
defects.

These experiments revealed that Autofunk is ef-
ficient since models and possibly failure traces are
provided in reasonable time. It can detect non-
conformance when the system under test includes be-
haviours not present in the model and help focus on
the unknown behaviours detected from Sut. How-
ever, when Sua and Sut have many differences, it de-
tects non-conformance but returns so much possibly
failure traces that it may become difficult to inspect
all of them.

C3 (scalability)

The motivations behind this work and collaboration
are to generate models for testing from large sets of
production events and to do this as quick as possible
so that models may be also used for other purposes,
e.g., to diagnose unexpected stops or failures in the
production system. The results given in Tables 1 and
2 reveal that our framework can take up to millions of
production events and still build models quickly (less
than half an hour). Experiment F handled almost 10
millions of events in less than half an hour to build two
STSs including around 1,600 paths. As mentioned
in Section ??, the parsing step is not parallelised yet,
and it took up to 20 minutes to open and parse around
1,000 files (number of Michelin log files for this ex-
periment). This is a technical issue that needs to be
addressed in the future.

The columns 3 and 8 of Table 1 are confronted in

Figure 10: Model inference: Execution time vs Nb
events

Figure 11: Passive testing: Execution time vs Nb
events

the graph of Figure 10 to summarise the performances
of our framework, and how fast it infers models (ex-
periments B, C and D run in about 9 minutes). Like-
wise, the columns 4 and 7 of Table 2 give the graph of
Figure 11. The linear regressions depicted in these fig-
ures reveal that the overall framework scales well de-
spite the current production event parsing implemen-
tation, by means of the parallelisation of the Autofunk
algorithms (STS generation and reduction, trace com-
parison of the tester).

The memory consumption peak occurs in Auto-
funk in the beginning of the model inference stage.
Every production event is currently loaded in memory
and may lead to a memory saturation problem. We
compared execution time and memory consumption
in Figure 12. Memory consumption tends to follow a
logarithmic trend line because we partially fixed the
memory consumption problem by optimising the ob-
ject representation, but it is not future-proof. This is
an implementation limitation, which needs to be ad-
dressed in a next version. At the moment, it has been
considered acceptable by Michelin.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 350 Volume 14, 2017

Figure 12: Memory consumption vs execution time

8 Conclusion
This paper has proposed a novel approach to build
models of a first production system in order to check
whether a second system is conforming to the mod-
els. This approach is the result of a collaboration with
the manufacturer Michelin to test the CIM2 level of
production systems (i.e., the applications controlling
devices), without having up-to-date models. As a re-
sult, we have presented Autofunk, a fast and scalable
framework combining model inference, expert sys-
tems and passive testing. From a set of production
events, Autofunk generates formal models, which are
then reused to test another production system. Confor-
mance is defined with two implementation relations,
which take into account that the models may not ex-
press all the possible correct behaviours. Initial results
on the passive testing method are encouraging, and
Michelin engineers see a real potential in this frame-
work.

This framework has several limitations, which de-
serve further investigations in the future. Our ap-
proach can be applied to several kinds of production
systems but requires a manual study to fill the pre-
requisites given in Section 2 and to establish: how
to parse production events and the inference rules re-
quired to filter the traces. Additionally, if the set of
production events is too small, the detection of the
entry and exit points cannot be done with K-means.
In this situation, these have to be given by an ex-
pert of the system. We believe that the use of fur-
ther data mining approaches on the production events
could help in the deduction of some of these require-
ments.

Our context-specific STS reduction does not ap-
pear to be generalisable while keeping the same per-
formance. Another more general solution, which lim-
its over-approximation, is to guide the model infer-
ence with the computation of quality metrics [35, 27].

At the moment, these approaches are time-consuming
though and can only be applied to small systems be-
cause the models are incrementally re-generated from
scratch to improve the metrics. In Autofunk, another
future direction would be to build sub-models of a
production system. By now, we consider a whole
workshop as a production system to infer models.
Focusing on specific locations of a workshop would
allow to build smaller models with a generalisable
model inference approach.

Our preliminary results show that, in normal us-
age, it still remains a big set of possibly failure traces
to analyse (we mentioned 2% with our experimen-
tations). Even though the possibly failure trace set
remains large, Autofunk eases the work of Michelin
engineers by highlighting the traces to focus on. We
observed that the larger the initial set of traces is, the
less under-approximated the inferred model is, and the
less possibly failure traces we have after testing. Yet,
the design of an automatic diagnosis method of failure
traces could be beneficial.

Acknowledgement
This Research was supported in part by the French
National Agency of Research and by the industrial
partner Michelin.

References:

[1] G. Ammons, R. Bodı́k, and J. R. Larus. Mining
specifications. SIGPLAN Not., 37(1):4–16, Jan.
2002.

[2] C. Andrès, M. G. Merayo, and M. Nuñez. For-
mal passive testing of timed systems: Theory
and tools. Softw. Test. Verif. Reliab., 22(6):365–
405, Sept. 2012.

[3] D. Angluin. Learning regular sets from queries
and counterexamples. Information and Compu-
tation, 75(2):87 – 106, 1987.

[4] J. Antunes, N. Neves, and P. Verissimo. Reverse
engineering of protocols from network traces. In
Reverse Engineering (WCRE), 2011 18th Work-
ing Conference on, pages 169–178, Oct 2011.

[5] J. A. Arnedo, A. Cavalli, and M. Núñez. Fast
Testing of Critical Properties through Passive
Testing, pages 295–310. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2003.

[6] E. Bayse, A. Cavalli, M. Nunez, and F. Zaidi.
A passive testing approach based on invariants:

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 351 Volume 14, 2017

application to the {WAP}. Computer Networks,
48(2):247 – 266, 2005.

[7] A. Biermann and J. Feldman. On the synthe-
sis of finite-state machines from samples of their
behavior. Computers, IEEE Transactions on, C-
21(6):592–597, June 1972.

[8] E. Brinksma and J. Tretmans. Modeling and ver-
ification of parallel processes. chapter Testing
Transition Systems: An Annotated Bibliogra-
phy, pages 187–195. Springer-Verlag New York,
Inc., New York, NY, USA, 2001.

[9] S. R. Buss. An introduction to proof theory.

[10] A. Cavalli, C. Gervy, and S. Prokopenko. New
approaches for passive testing using an extended
finite state machine specification. Information
and Software Technology, 45(12):837 – 852,
2003. Testing and Validation of Communication
Software.

[11] A. Cavalli, S. Maag, and E. M. de Oca. A pas-
sive conformance testing approach for a manet
routing protocol. In Proceedings of the 2009
ACM symposium on Applied Computing, SAC
’09, pages 207–211, New York, NY, USA, 2009.
ACM.

[12] N. Chen and C. Viho. Passive Interoper-
ability Testing for Request-Response Protocols:
Method, Tool and Application on CoAP Proto-
col, pages 87–102. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[13] K. T. Cheng and A. S. Krishnakumar. Automatic
functional test generation using the extended fi-
nite state machine model. In Proceedings of the
30th International Design Automation Confer-
ence, DAC ’93, pages 86–91, New York, NY,
USA, 1993. ACM.

[14] R. de Nicola and M. C. B. Hennessy. Automata,
Languages and Programming: 10th Colloquium
Barcelona, Spain, July 18–22, 1983, chapter
Testing equivalences for processes, pages 548–
560. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1983.

[15] P. Dupont. Incremental regular inference. In
Proceedings of the Third ICGI-96, pages 222–
237. Springer, 1996.

[16] W. Durand and S. Salva. Passive testing of pro-
duction systems based on model inference. In

13. ACM/IEEE International Conference on For-
mal Methods and Models for Codesign, MEM-
OCODE 2015, Austin, TX, USA, September 21-
23, 2015, pages 138–147. IEEE, 2015.

[17] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely pro-
gram invariants to support program evolution.
In Proceedings of the 21st International Confer-
ence on Software Engineering, ICSE ’99, pages
213–224, New York, NY, USA, 1999. ACM.

[18] Y. Falcone, J.-C. Fernandez, and L. Mounier.
Runtime Verification of Safety-Progress Proper-
ties, pages 40–59. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[19] L. Frantzen, J. Tretmans, and T. Willemse. Test
Generation Based on Symbolic Specifications.
In J. Grabowski and B. Nielsen, editors, FATES
2004, number 3395 in Lecture Notes in Com-
puter Science, pages 1–15. Springer, 2005.

[20] E. M. Gold. Complexity of automaton identifica-
tion from given data. Information and Control,
37(3):302 – 320, 1978.

[21] V. J. Hodge and J. Austin. A Survey of Outlier
Detection Methodologies. Artificial Intelligence
Review, 22:85–126, 2004.

[22] I. Krka, Y. Brun, D. Popescu, J. Garcia, and
N. Medvidovic. Using dynamic execution traces
and program invariants to enhance behavioral
model inference. In Proceedings of the 32Nd
ACM/IEEE International Conference on Soft-
ware Engineering - Volume 2, ICSE ’10, pages
179–182, New York, NY, USA, 2010. ACM.

[23] J. Lang, P. Liberatore, and P. Marquis. Proposi-
tional independence - formula-variable indepen-
dence and forgetting. Journal of Artificial Intel-
ligence Research, 18:391–443, 2003.

[24] D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu,
and X. Yin. Network protocol system mon-
itoring: a formal approach with passive test-
ing. IEEE/ACM Trans. Netw., 14:424–437, April
2006.

[25] D. Lee and M. Yannakakis. Principles and meth-
ods of testing finite state machines-a survey.
Proceedings of the IEEE, 84(8):1090–1123, Aug
1996.

[26] M. Leucker and C. Schallhart. A brief account
of runtime verification. The Journal of Logic and
Algebraic Programming, 78(5):293 – 303, 2009.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 352 Volume 14, 2017

The 1st Workshop on Formal Languages and
Analysis of Contract-Oriented Software (FLA-
COS07).

[27] D. Lo, L. Mariani, and M. Santoro. Learn-
ing extended fsa from software: An empirical
assessment. Journal of Systems and Software,
85(9):2063 – 2076, 2012. Selected papers from
the 2011 Joint Working IEEE/IFIP Conference
on Software Architecture (WICSA 2011).

[28] D. Lorenzoli, L. Mariani, and M. Pezzè. Auto-
matic generation of software behavioral models.
In Proceedings of the 30th International Confer-
ence on Software Engineering, ICSE ’08, pages
501–510, New York, NY, USA, 2008. ACM.

[29] L. Mariani and M. Pezze. Dynamic detection of
cots component incompatibility. IEEE Software,
24(5):76–85, 2007.

[30] P. Mouttappa, S. Maag, and A. Cavalli. Us-
ing passive testing based on symbolic execu-
tion and slicing techniques. Comput. Netw.,
57(15):2992–3008, Oct. 2013.

[31] M. Pradel and T. R. Gross. Automatic gener-
ation of object usage specifications from large
method traces. In Proceedings of the 2009
IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE ’09, pages
371–382, Washington, DC, USA, 2009. IEEE
Computer Society.

[32] M. Salah, T. Denton, S. Mancoridis, and
A. Shokouf. Scenariographer: A tool for reverse
engineering class usage scenarios from method
invocation sequences. In In ICSM, pages 155–
164. IEEE Computer Society, 2005.

[33] S. Salva and W. Durand. Autofunk, a fast and
scalable framework for building formal models
from production systems. In Proceedings of
the 9th ACM International Conference on Dis-
tributed Event-Based Systems, DEBS ’15, Oslo,
Norway, June 29 - July 3, 2015, pages 193–204,
2015.

[34] S. Salva and W. Durand. Combining model gen-
eration and passive testing in the same frame-
work to test industrial systems. Technical re-
port, LIMOS, http://sebastien.salva.free.fr/RR-
17-03.pdf, 2017. LIMOS Research report RR-
17-03.

[35] P. Tonella, C. D. Nguyen, A. Marchetto,
K. Lakhotia, and M. Harman. Automated gener-
ation of state abstraction functions using data in-
variant inference. In 8th International Workshop

on Automation of Software Test, AST 2013, San
Francisco, CA, USA, May 18-19, 2013, pages
75–81, 2013.

[36] G. Tretmans. Test generation with inputs,
outputs and repetitive quiescence. Software—
Concepts and Tools, 3(TR-CTI), 1996.

[37] H. Ural and Z. Xu. An efsm-based passive
fault detection approach. In Proceedings of
the 19th IFIP TC6/WG6.1 International Confer-
ence, and 7th International Conference on Test-
ing of Software and Communicating Systems,
TestCom’07/FATES’07, pages 335–350, Berlin,
Heidelberg, 2007. Springer-Verlag.

[38] N. Walkinshaw, K. Bogdanov, M. Holcombe,
and S. Salahuddin. Reverse engineering state
machines by interactive grammar inference. In
In Proceedings of the 14th Working Confer-
ence on Reverse Engineering (WCRE’07. IEEE,
2007.

[39] C. Wernhard. Literal Projection for First-Order
Logic, pages 389–402. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2008.

[40] C. Wu, F. YuShun, and X. Deyun. Computer
Integrated Manufacturing, pages 484–529. John
Wiley & Sons, Inc., 2007.

[41] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh,
Q. Yang, H. Motoda, G. J. McLachlan, A. Ng,
B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J.
Hand, and D. Steinberg. Top 10 algorithms in
data mining. Knowledge and Information Sys-
tems, 14(1):1–37, 2008.

[42] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and
M. Das. Perracotta: Mining temporal api rules
from imperfect traces. In Proceedings of the
28th International Conference on Software En-
gineering, ICSE ’06, pages 282–291, New York,
NY, USA, 2006. ACM.

[43] H. Zhong, L. Zhang, T. Xie, and H. Mei. In-
ferring specifications for resources from natu-
ral language api documentation. Autom. Softw.
Eng., 18(3-4):227–261, 2011.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Sebastien Salva, William Durand

E-ISSN: 2224-2899 353 Volume 14, 2017

