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Abstract: - This paper proposes a nonlinear dynamical model of stock market. Dynamical variables of the 
model are the variation of ask and bid price relative to equilibrium values and difference between numbers of 
market agents in a-state and p-state. A particular market agent being in a-state has maximum amount of 
valuable information about financial asset and has minimum information being in p-state. This model explains 
the impossibility of existence of an equilibrium state of the market, shows the presence of deterministic chaos 
in a stock market and fractal financial time series. The results of the nonlinear dynamical analysis and statistical 
analysis of the empirical financial time series are presented. We show the results of nonlinear analysis for the 
model as an open nonequilibrium system, as well as comparison with empirical results.  
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1 Introduction 
From the second half of the XX century the 
general trend of science development is the 
penetration of the ideas and methods of physics 
into other natural and humanitarian disciplines. 
Methods of physical modelling are often used in 
sciences such as demography, sociology and 
linguistics.  

An interdisciplinary research field, known as 
econophysics, was formed in the middle 1990s as an 
approach to solve various problems in economics, 
such as uncertainty or stochastic processes and 
nonlinear dynamics, by applying theories and 
methods originally developed by physicists. The 
term “econophysics” was coined by H. Eugene 
Stanley in order to describe the large number of 
papers written by physicists in the problems of 
(stock and other) markets (for econophysics reviews 
see refs. [1-4]). 

Current state of theoretical economics allows one 
to effectively use advanced methods of physico-
mathematical modelling for economical system. A 
remarkable example is applying nonlinear dynamics 
to analysis of financial time series [5,6]. Moreover, 
in 1963 Benoit B. Mandelbrot[7] during his research 
of cotton prices found out that the prices follows a 
scaled distribution in time. That discovery 
originated a new approach in market research called 
fractal market analysis [8]. A systematic research of 

deterministic chaos in financial markets started from 
works of Robert Savit [9]. 

By the end of 20th century there were formed two 
lines of research of deterministic chaos in financial 
markets. The first one is related to discovery and 
analysis of deterministic chaos in the structure of 
financial markets. Studies of that kind are usually 
based on qualitative characteristic and quantitative 
measures of chaos [10], and their results show 
conclusively that deterministic chaos exists in 
financial markets [11-19]. The second line 
connected to retrieval of explicit form of such 
dynamical systems. Definitely, construction of such 
models is far more complex problem. That is why 
the number of relevant publications on this topic is 
relatively small. The most comprehensive survey of 
mathematical models of financial markets can be 
found in the book of R.J. Elliott and P.E. Kopp [20]. 
Although the book and other relevant publications 
contain numerous conceptual models, we have not 
found any econophysical model of a stock market 
that can explain its fundamental functioning 
mechanisms.  

Thus, the purpose of this work is building of 
econophysical model of a stock market using 
parallels between market functioning and physical 
principles of laser operation and is defining 
possibilities and limitations of deterministic 
nonlinear dynamic model of the stock market. 
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This paper is organized as follows. In section 2 
we present the simple econophysical model of stock 
market as an open nonequilibrium system, including 
the definition of the dynamic variables and 
parameters, and the results and discussions, 
including the definition of the regular and the 
chaotic states of the stock market. In section 3 we 
present the results of nonlinear dynamical and 
statistical analysis of empirical financial time series 
(stock market indexes). In section 4 we conclude 
this paper, defining possibilities and limitations of 
deterministic nonlinear dynamic model of the stock 
market. 
 
2 Construction of the Model 
 
2.1 Class of thermodynamical systems 
 
In general, theoretical economics consider the 
problem of constructing mathematical concepts for 
modeling of economic processes, which consist of 
numerous internal elements and incorporates several 
influential forces. Therefore, theoretical economics 
provide basic ideas, propositions and methods as a 
ground for creating a mathematical model of 
economic dynamics that clearly reflects the 
evolution of complex economic systems according 
to specific economical principles. The key property 
of such systems is synergy that makes oneself 
evident in the fact that the whole system obtains 
some characteristics that its elements do not 
originally have. 

Although the economic dynamics is a new and 
developing field of study, it originates from natural 
sciences where the methods of dynamical modeling 
have already been successfully applied to variety of 
problems. However, mathematical concepts, which 
work fine in electrodynamics or physics of liquids 
and gas, cannot be applied to economic objects “as 
is”. On the contrary, the best results can be achieved 
only when the model is created with due 
consideration of the properties of the object being 
modeled. 

In physics, there is a class of the models that was 
constructed according to the guidelines explained 
above. These systems are called thermodynamical 
systems. Originally, the systems of this class were 
developed for modeling aggregated gas and fluid 
characteristics like temperature or pressure, but 
based on characteristics of gas (or fluid) particles, 
which are simply single molecules that do not have 
these characteristics. That is why we do not propose 
to use already built physical models “of the box”, 

but to use the same principles in constructing 
custom economic dynamical models. 

Complex thermodynamical systems are the 
systems that consist of numerous elements, similar 
to each other (“atoms”). So, these atoms interaction 
follows some determined rules. As a result, the 
evolution of the whole system depends in a 
complicated way from the evolution of every atom. 

In thermodynamical systems, there are three 
levels of detail: 

Local micro-dynamics 0S : at this level 
interaction of an atom with others is considered. It is 
an ontogenetic level of the system, which forms all 
other dynamical effects. 

Meso-dynamics 1S : this “convoluted” level 
considers the averaged motion characteristics of 
each atom. 

Macro-dynamics 2S : observed indicators as a 
function of aggregated system states from two 
previous levels. 

Let us denote an observed variable with index α  
at the moment of observation t T∈  as txα . 
Therefore, the tuple of simultaneously observed 
variables which specify the global macro state of the 
system is 

( )1 2, ,..., ,...t t t tx x xα≡x .              (1) 

Assume that every single atom ia  in Λ  belongs 
to basic set of system elements and has its own 
space of internal states. We denote the internal state 
of element ia ; 1,...,i N=  at the moment t  as i

tω . 

By gathering all i
tω , we have phase micro states for 

the whole system at the moment t : 

( )1 2, ,..., N
t t t tω ω ω≡ω .              (2) 

Important remark: here we consider big, but 
finite systems, so the set of atoms Λ  is large 
enough. 

Let Φ  be the union of all possible macro states 
and Ω  union of all micro states. 

,t tΦ ≡ Ω∈Xω .                       (3) 
Then Ω  is the underlying space of the system.  
It is worth to notice, that Ω  is an abstract 

mathematical construct, since, in general, one 
cannot observe the micro states of the system. So, 
one can only make an assumption on Ω  and on kind 
of interaction between the atoms, from which the 
abstract stochastic dynamics of micro level is 
derived. Further, the global dynamics on macro 
level can be reconstructed by applying the 
convolution techniques to micro-dynamical 
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information of the system, which is a typical task of 
stochastic dynamics. 

It is fact that every stochastic dynamical system 
being without external influence tends to the nearest 
local equilibrium state, both on micro and macro 
levels. The process of system transition to 
equilibrium is called relaxation. From the research 
transitional processes in big stochastic dynamical 
systems, the effect of self–organization and creation 
of ordered structures was discovered. The necessary 
conditions for new dynamical information are strong 
deviation from equilibrium states and nonlinear 
interaction between the elements. This effect is 
called synergy, and it works in various complex 
thermodynamical systems. Therefore, synergy 
shows itself in economics due to the fact, that the 
big economical systems like global markets can also 
be modeled with this kind of dynamical systems. 

Back to the micro level of the system, assume, 
that for every atom ,i i i

t ta A ω∈Λ =  is an internal 

phase space for ia . Then 

( ), , 1,2,...,i i iA a A i Nξ= ≡ = .          (4) 

is a structure of the micro level. It includes all 
system atoms and their possible internal states. 

Moving further, let us consider the micro-
dynamics of the system. Again, assume that at 
moment t  the system is in state tω  (2). Then 

1 2
ˆˆ ˆ0 1 1... fLL L f f−→ → →ω ω ω ω        (5) 

is a generalized trajectory of system evolution. Here 
the trajectory starts with initial system state 0ω  at 
time 0t =  and reaches the state fω  at time t f= . 
In this model, local micro movements 

ˆ1 kLk k− →ω ω  are determined by stochastic 
dynamical operators ˆkL . Thus, the problem of 
finding the micro dynamics of the system reduces to 
definition of such operators. In general, for complex 
dynamical systems, operators ˆkL  are nonlinear and 
not local. Moreover, they have functional 
dependence on the previous system states or, in 
other words, are functions with “memory”. Due to 
these characteristics, these functions “enlace” the 
trajectories of possible system evolutions. 

Therefore, the structure 
( )( )ˆ,S A L ξ≡                    (6) 

describes the global information dynamics in the 
system. 

1
ˆˆ0 1

0
... f

k fLL f k
k

=

=
 → → ≡  ω ω ω ω        (7) 

10 1
0

... f
k ff k

i i ii k

ϕϕ =

=
 → → ≡  ω ω ω ω        (8) 

Equations (7) and (8) represent the segments of 
global system trajectory and trajectories of single 
atoms respectively. Here we introduce the evolution 
operators ( )0

0
ˆ , : fT t t t t∆ ∆ = −ω  that turn the 

system from initial state 0ω  into fω . Finally, the 
set of such operators form the informational and 
“material” flows in the system. Then, taking this set 
of evolution operators with 0t∆ →  and system 
phase space Ω , we get the Liouville flows. 

The Liouville flows is well known mathematical 
abstraction, that allows us to connect the micro level 
of the system with its meso- and macro-levels, by 
convolving and aggregating dynamical information. 

The key concept of the Liouville flows is 
probability density function of the system ( ),tρ x  
being in some state near the point 

( )1 1,..., N Nx xω ω≡ = =x  at some moment of time 

t T∈ . Assume, that 

1

N
N i

i
dx dx

=
=∏  

is an element of volume in variable space ix . Then 
( ) ( ), , NdW t t dxρ=x x                   (9) 

is the probability that system will be in some state 
near the point x . To convolve the information in 
function ( ),tρ x  we integrate it using all variables 
except sx . As a result, we have an atomic state 
function for atom sa  

( ) ( )1, ,s s sx t x t dx
K

ϕ ρ= ∫ ,    (10) 

where 1 K  is a normalizing constant. Thus, 
functions ( ),s x tϕ  become the generalized variables 
that describe system state on meso-dynamical level. 
In fact, they are the result of aggregated influence 
on element sa  from the rest of the system. Let us 
denote the set of atomic state function ( ),s x tϕ  as 

( ),tΦ x . 
Together atomic state functions defines meso-

dynamics of the system. 

( ) ( )( ), ,t tt F t
t
∂

=
∂
Φ x Φ x     (11) 

The equations (11) in thermodynamical systems 
are called kinetic equations. 

Next step is to move from meso-dynamics to 
macro dynamics by convolving aggregated atomic 
state functions into aggregated global system state 
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functions and binding them with observed 
indicators. No need to say, that these global system 
state functions depend in a particular way on global 
dynamical variables, which, in turn, are defined by 
atomic state functions of meso-dynamical level. 
 
2.2 Model assumptions 
 
2.2.1 Stock market is a macroscopic system 
Assume that the stock market is a dynamical system 
that consists of numerous market agents (investors) 
( 1N >> ) (fig. 1). Modeling of such systems does 
not require detailed analysis of interactions between 
the agents on the micro-level. For macrosystem 
description we use macroscopic parameters and 
dynamical variables of the system. For macroscopic 
dynamical variables we have chosen aggregated 
flows of ask and bid price changes and dynamical 
difference of market agents in specific states. 

 
Figure 1. The stock market as a nonequilibrium open system. 

 
2.2.2 Stock market is a point autonomous 
dynamical system 

( ),t t=xΦ x β ,                          (12) 

where mR∈β  is a m -dimensional vector of 

parameters, t
d
dt

=
xx . 

This statement goes without saying, as it depends 
only on chosen modelling approach and objectives. 
However, the choice of (12) as the base model is 
made for reason. It is based on tests that the 
constructed mathematical model agrees with 
empirical (observed) data, for which we used 
available financial time series of ask/bid stock 
prices. 

 
2.2.3 Every market agent can be in one of two 
possible states: active ( a -state) or passive ( p -
state) 

A particular market agent being in a -state has 
maximum amount of valuable information about 
financial asset ( aI ) and has minimum information 

( pI ) being in p -state. 

The agent being in a -state is able to generate 
local demand on deal with the asset and send an 
“ask-quantum” to other agents. If the agent is in p
-state (he/she does not have enough valuable 
information about the asset), then the agent's 
rational decision is do not generate demand on deal 
(“bid-quantum”). Moreover, for the agent in �|𝑝𝑝�〉-
state generating of a deal offer depends on the 
agent's reaction on received “ask-quantum” (fig. 2a) 
or can be his or her own decision (fig. 2b). General 
pattern in stock markets is that local “ask” waves 
(“quanta”) induce local “bid” waves (“quanta”). 

 
Figure 2. Agents generate «ask-quanta» (red) and «bid-quanta» 

(green). (а) Forsed generation of an «bid-quantum». (b) 
Spontaneous generation of an «ask-quantum». 

 
2.2.4 Stock market is a nonequilibrium open 
system 
Indeed, stock market is an open system that 
continuously exchanges information and money 
flows with the external world. Sources of external 
information include corporate financial reports, 
financial news feeds, stock-ticker data and others. 
This information flow, in some sense, “pump up” 
the stock market, making inverse population of 
market agents: a pN N>> , where aN  is the 

number of agents being in a -state, pN  is the 

number of agents being in p -state. 
With acceptable accuracy, the distribution of 

number of agents by their states can be represented 
as follows: 

    exp
a p

a p
I I

N N
θ

− 
= − 

 
 

,            (13) 

where θ  is average intensity of stochastic 
interactions between market agents Simple analysis 
of equation (13) allows to identify two macroscopic 
states of  the market: stable equilibrium state and 
nonequilibrium state. If a pI I θ− >> , then 
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a pN N<< . In this case, the system is in stable 

equilibrium state. Otherwise, if p aI I θ− >> , 

then a pN N>> . This case corresponds to 

nonequilibrium state of the system. 
Taking into account continuous information 

pumping, stock market is always functioning in 
nonequilibrium state, making “avalanches” of ask 
and bid “quanta”. Due to information pumping, the 
equilibrium state is almost unreachable. It is 
crucially important, that existence of chaotic states 
is a fundamental property of nonequilibrium open 
systems [24, 25]. 
 
2.3 Dynamical variables of the model and 
relationship between them 

 
2.3.1 Dynamical variables of the models 
Let us define dynamical variables in equation (12) 
for constructing nonlinear dynamical model of stock 
market: t t eqx a a≡ −  is the variation of “ask” price (

ta ) relative to equilibrium value ( eqa ) is the “ask” 

price in equilibrium state); t t eqy b b≡ −  is the 

variation of “bid” price ( tb ) relative to equilibrium 
value ( eqb ) is the “bid” price in equilibrium state); 

( ) ( )t a pz N t N t≡ −  instantaneous difference 

between numbers of agents in a -state and p -
state. 

The choice of these dynamical variables 
responds to possibility to test whether the 
constructed dynamical system agrees with empirical 
data, for which we have chosen available time series 
of ask and bid prices from real stock markets. 
However, it is impossible to compare the third 
dynamical variable with actual data, due to available 
datasets does not contain these values. Thus, the fit 
test can be performed only with two dynamical 
variables.  

Let us establish connections between dynamical 
variables and their change rates. 
 
2.3.2 Ask price dynamics 
Variation rate of the ask prices is defined by 
concurrency of two factors: rate decrease due to 
market relaxation ( txα− ) and rate increase due to 
growing variation of bid prices ( tyβ+ ): 

t t tx x yα β= − +                             (14) 

Term txα−  in (3) is necessary due to relaxation 
of nonequilibrium system. According to Le 
Chatelier's principle [26], when the system at 
equilibrium is subjected to change by external force, 
then the system readjusts itself to counteract 
(partially) the effect of the applied change. Indeed, 
without term tyβ+  the equation (14) has the 
following form: 

 t tx xα= − .                                (15) 
A solution of differential equation (15) is a 

function of form ( )exptx A tα= − . Therefore, 

t eqa a→  when t →∞  (stock market tend to stable 
equilibrium). In equation (15) α  – relaxation 
parameter, related to relaxation time ( 1τ ) according 
to: 11α τ= . Term tyβ+  in (14) refers to the fact, 
that increase of bid price variation leads to increase 
of variation rate of ask prices. 

 
2.3.3 Bid price dynamics 
Variation rate of the bid prices is defined by 
concurrency of two factors: rate decrease due to 
market relaxation ( tyγ− ) and rate increase due to  

t tcx z+ . 

t t t ty y cx zγ= − +                  (16) 
Presence of the first term in (16) is explained by 

Le Chatelier's principle. Term t tcx z+  is explained 
as follows: “bid quantum”, on which every market 
agent reacts considering “ask quanta” flow, is 
proportional to ask price variation and depends on 
the agent’s current state ( a -state or p -state). 

 
2.3.4 Dynamics of difference between 
numbers of market agents in a -state and 

p -state 

( )0t t t tz I z kx yε= − +                     (17) 
Again, term tzε−  is in equation (17) due to Le 

Chatelier's principle. Parameter 0I  refers to 
intensity of external information pumping, so 
instantaneous difference between numbers of agents 
in a -state and p -state grows with increase of 0I
. Term t tkx y+  represents the power that the 
aggregated ask price variation spends on creation of 
the aggregated bid price variation. 
 
2.4 Modeling results and their interpretation 
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The system of differential equations (14), (16) и 
(17) represents the well-known Lorenz–Haken 
equations [27]: 

          

( )0

t t t

t t t t

t t t t

x x y
y y cx z
z I z kx y

α β
γ

ε

 = − +


= − +
 = − +







              (18) 

System (18) is one of the most studied 3-
dimensional dynamical systems. General properties 
of (18) are presented in works [28, 29]. Let us 
consider (18) as a system with one control 
parameter 0I . From changing control parameter’s 
value, we can make two important conclusions 
about system (7). 

If 1cβ αγ ≅  and 00 1I< < , then t eqa a→ , 

t eqb b→  and ( ) ( )a pN t N t→  as t →∞ . In case 

of relatively small intensity of external information 
pumping, the stock market tends to stable 
equilibrium (fig. 3). However, practically this stable 
equilibrium state cannot be reached, since the 
market is an open system with permanent eternal 
information pumping. 

 
Figure 3. Asymptotically stability solution of (7). 

 
If 1cβ αγ ≅  and 0 28I ≅ , then the stock market 
functions as an open nonequilibrium system with 
deterministic chaos (fig. 4). It is worth to mention 
that such behaviour is typical for a financial market 
with considerably intense external information. 

 
Figure 4. Chaotic solution of (7). 

 
3-dimensional dynamical model (7) explains 

some properties of the stock market functioning 
such as fractality (fractal dimension ( FD ) equals 
1.497), chaotic nature (correlation dimension ( CD ) 
equals 1.896) and absence of memory (Hurst 
exponent ( H ) equals 0.5028) of financial time 
series (FTS) [28]. 

Generally, a dynamical system can be defined as 
follows [8]: its state at time t  is a point ( )tσ  in 

some E -dimensional phase space ER , and the 
trajectory between the times t  and t t+ ∆  is 
determined by rules in which t does not enter 
explicitly. Each point in phase space can be taken as 
the initial state ( )0S  at 0t = , and is followed by an 
orbit defined by the ( ) , 0S t t∀ > . 

A dynamical system is said to have an attractor if 
there exists a proper subset EA R∈ , such that 
almost all starting points ( )0S  and t  large enough, 

( )S t  is close to some point of A . An attractor 
which has fractal (not integer) dimension is called 
strange attractor. So, the term chaotic dynamical 
system usually refers to a dynamical system with 
strange attractor. However, sometimes the word 
“chaotic” may be used just as opposite to 
“stochastic”, in order to emphasize the difference 
between random and determined systems. 

The weakness of this model lies in significant 
discrepancy between empirical and theoretical 
trajectories of FTS. Moreover, it is impossible to fit 
theoretical trajectories to observed data by varying 
control parameters (in a range of chaotic state) of 
the dynamical system. The dynamical system (7) 
has 3 equilibrium points for any values of control 
parameters in a range of chaotic state. Therefore, 
theoretical probability density function (PDF) is a 
three-modal distribution (three maxima of the PDF) 
(fig. 5) and tx  is a white random process. This PDF 
is not fat-tailed distribution [30]. The white noise 
signal is not a signal of catastrophic events. 
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Figure 5. Probability density function of the theoretical FTS. 

 
3 Analysis of Empirical Financial 
Time Series 
For analysis of empirical FTS, we chose the 
following stock market indexes: 30Y T-Bond INT 
Rates (1), ASX Australia (2), BOVESPA Brazil (3), 
CAC 40 (4), DAX 30 (5), DJ Industrial (6), FTSE 
100 (7), ISEX Spain (8), NASDAQ Comp (9), 
Nikkei 225 (10), S&P 500 (11), Shanghai 
Composite (12), USD Index (13), VIX Volatility 
Index (14). 

 
3.1 Nonlinear analysis 
 
The nonlinear analysis was conducted for all chosen 
TTS. Such measures as correlation dimension ( CD
), Hurst exponents ( H ), power of power spectral 
density ( 2 1Hβ = + ) and fractal dimension ( FD ) 
were calculated (table 1). 

 
Table 1. Results of nonlinear FTS analysis 

Stock 
market 
index 

CD  H  β  FD  

(1) 2.448 0.665 2.330 1.335 
(2) 2.300 0.617 2.234 1.383 
(3) 2.329 0.683 2.366 1.317 
(4) 3.895 0.634 2.268 1.366 
(5) 4.045 0.702 2.404 1.298 
(6) 3.234 0.694 2.388 1.306 
(7) 3.433 0.622 2.244 1.378 
(8) 2.560 0.689 2.378 1.311 
(9) 3.483 0.637 2.274 1.363 

(10) 2.004 0.682 2.364 1.318 
(11) 3.717 0.701 2.402 1.299 
(12) 3.440 0.708 2.416 1.292 
(13) 2.761 0.646 2.292 1.354 
(14) 3.471 0.681 2.362 1.319 
 
Determination of the correlation dimension [31] 

for a supposed chaotic process directly from 
experimental time series is often used to get 
information about the nature of the underlying 
dynamics (see, for example, contributions in ref. 
[32]). In particular, such analysis has been made to 

support the hypothesis that the time series are 
generated from the inherently low-dimensional 
chaotic process [32]. The geometry of chaotic 
attractors can be complex and difficult to describe. 
It is therefore useful to understand quantitative 
characterizations of such geometrical objects. 

One of these characterizations is CD . CD  of the 
attractor of dynamical system can be estimated 
using the Grassberger–Procaccia algorithm [31]. 

CD  has several advantages in comparison to the 
other dimensional measures: 

1. if CD  is finite, then a FTS is a chaotic time 
series (generated by a dynamical system); 

2. if CD  is infinite, then a FTS is a stochastic 
time series (generated by a purely random process). 

For calculation of FD  we used the algorithm 
described in a paper [33]. If F TD D>  ( TD  is a 
topological dimension of the FTS, that equals 1 for 
all time series), then the FTS is a random fractal. 

A value of 2 FH D= −  allows to give a noise 
classification (1 f -classification, where f  is a 
signal frequency) of the FTS [34]: 

1. if 0 0.5H< < , then the FTS is characterized 
by anti-persistence (the time series changes the 
tendency more often, than a series of independent 
random variables) and represents a process with 
1 f  noise or a pink noise; 

2. if 0.5 1H< < , then the FTS is characterized 
by persistence (the time series is characterized by 
the effect of the long memory and has an inclination 
to follow the trends) and represents a process with  
1 f β  ( 2β > ) noise or a black noise; 

3. if 0.5H = , then FTS represents a process with 
the absence of memory or a white noise. 

Empirical FTS is a black random process. Most 
of the time series, which can be observed in 
existence, can usually be related to one of the 
above-mentioned classes [35,36]. Thus, the time 
series observed in turbulence processes, show the 
best correlation with the pink noise. The black 
noises can be registered in floods, a solar activity, 
statistics of the natural and induced catastrophes. 
The black noise indicates long term persistence and 
long memory. 

There is a simple scaling relation, connecting β  
and H  [34]: 2 1Hβ = + . The results for β  are 
shown in the table 1. 
 
3.2 Statistical analysis 
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Point and interval estimates of the parameters of 
empirical PDF are the questions of statistical 
analysis. 

The PDFs of returns and volatilities of many 
financial time series have power low tails at t →∞  
[37]: 

( ) ( )1 , 0~p x x γ γ− + > .                    (19) 
The PDF (8) belongs to the class of the power 

law PDFs or the fat-tailed PDFs. The fundamental 
difference of the PDF (19) from the compact 
distributions is the fact, that those events, which fall 
on the distribution tail area, take place not so rarely 
to be neglected. 

Figure 6 provides PDF for empirical NASDAQ 
time series of returns. The PDFs of other stock 
market indexes have a similar form. 

Visually, these PDFs correspond to the Gaussian 
(compact distribution) or to the generalized 
Gaussian fat-tailed PDF (19), for example, the q-
Gaussian distribution [38-40]: 

( ) ( )2expq
q

x x
C
χ

ρ χ= − ,                    (20) 

where ( ) ( ) ( )1 1exp 1 1 q
q x q x −

≡  + −   , qC  – 
normalization factor. 

 
Figure 6. PDF of the NASDAQ time series of returns. 

 
The distribution (20) is a two-parameter 

generalization ( 3q <  is a shape parameter, 0χ >  is 
a rate parameter) of the one-parameter Gaussian 
distribution. 

In the limit 1q → , PDF (20) recovers the usual 
Gaussian distribution, so 1q ≠  indicates a departure 
from Gaussian statistics. For 1q > , the tails of q-
Gaussian decrease as power laws [40], 

( ) ( )2 1~ qx xρ − − .                    (21) 
Table 2 contains the estimated values for 

parameters of PDF (20) obtained by the maximum 
likelihood method [41]. 

 
Table 2. Point and interval estimations of the PDF (20) 

parameters and γ-parameters of the PDF (19) 

Stock 
market 
index 

q  χ  γ  

(1) 2.505±0.005 1.329±0.074 0.329 
(2) 2.675±0.025 1.194±0.086 0.194 
(3) 2.734±0.038 1.153±0.069 0.153 
(4) 2.305±0.015 1.533±0.072 0.533 
(5) 2.630±0.022 1.227±0.076 0.227 
(6) 2.532±0.036 1.305±0.084 0.305 
(7) 2.665±0.032 1.201±0.072 0.201 
(8) 2.689±0.033 1.184±0.076 0.184 
(9) 2.432±0.022 1.397±0.084 0.397 

(10) 2.638±0.012 1.221±0.042 0.221 
(11) 2.531±0.021 1.306±0.032 0.306 
(12) 2.682±0.038 1.189±0.036 0.189 
(13) 2.331±0.024 1.503±0.025 0.503 
(14) 2.834±0.015 1.091±0.018 0.091 
 
Thus, according to the point and interval values 

of the PDF (20), shown in the table 1, the following 
conclusion can be made: PDF is a fat-tailed PDF ((
1 γ+ )-values vary from 1.091 to 1.533). 

q -Gaussian distribution takes place by the 
maximization of the Tsallis entropy [42] considering 
definite limitations. Tsallis entropy as a non-
additive generalization of the Boltzmann–Gibbs 
entropy has the following form: 

1

1 1
1

q
q

q i
i

T p
q =

 
= −  −  

∑ .                    (22) 

The probability ( )i ip N N ε=  can be estimated 
in much the same way as that one used in the Renyi 
entropy: iN  is a number of system elements for the 
i -element of the ε -partition; ( )N ε  – is a full 
number of elements of the given ε -cover. In 
contrast to all entropy types, the Tsallis entropy is 
nonadditive. Being applied to the financial market 
(such as, for example, stock market) it gives a 
possibility to correctly describe a financial market, 
where any market agent interacts not only with the 
nearest market agent or several nearest market 
agents, but also with the whole market or some of 
its parts. Besides, from (22) it follows that qT  is 
concave by 0q >  and convex by 0q < . 

Thus, the entropy description of the stock 
market, based on Tsallis statistics is appropriate for 
studying of evolution of the stock market that 
contains a large number of market agents who 
interact with each other in a particular way and 
specifically every market agent can interact not only 
with his or her nearest neighbors but also with 
remote market agents (for example, see refs 
[43,44]). 

The ability of the system to have a “long” 
memory for its past, and the ability of the system 
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elements to “feel” each other wide-apart, can be 
considered by the emergent behavior. At the 
statistical level the emergent behaviors are usually 
related to the long-range time and space 
correlations. The matter concerns the time-series 
with the long memory, or those time-series, 
autocorrelation function (ACF) of which decreases 
slowly. The expression “a long-range dependence”, 
which is sometimes used to refer to   noise, has also 
been used in the other contexts with somewhat 
different meanings. “Long memory” and other 
variants are also sometimes used in the same way. 

Figure 7 provides the ACF of theoretical FTS. 
 

 
Figure 7. ACF of the theoretical FTS. 

 
Figure 8 provides the ACF of NASDAQ FTS. 

The ACFs of other stock market indexes have a 
similar form. 

 
Figure 7. ACF of the NASDAQ FTS. 

 
Thus, theoretical FTS represents a process with 

the absence of memory. The empirical FTS 
represents processes with the long memory. 

 
4 Conclusion 
The constructed simple econophysical model of a 
stock market as an open nonequilibrium system 
allows to explain the following phenomena: 

1. Unrealizability of equilibrium state of the 
market as well. 

2. Appearance of deterministic chaos in the 
market ( CD  is finite). 

3. There exists a fractal financial time series (
F TD D> ).  
These phenomena are explained only by 

quantitative characteristics of external information 
pumping as a control parameter of the system.  

However, this simple model cannot explain 
several other important phenomena, such as  

− heavy-tailed distribution of financial time series 
((1 γ+ )-values vary from 1.091 to 1.533, see 
table 2); 

− financial time series as a black random process (
1 f β  noise, where β  varies from 2.404 to 
2.292, see table 1); 

− financial time series as a random process with 
long memory (see fig. 7).  
We suppose, that explanation of heavy-tailed 

distribution of financial time series requires 
modification of dynamical system by introducing 
the noise of specific kind (such as parametric noise, 
for example, intensity of external information 
pumping is a random variable with q -exponential 
distribution). 

Particularly, the form of time series with heavy-
tailed distribution can be achieved by including a 
power-law multiplicative noise [43-45], what is the 
subject of our further research. 
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