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Abstract: The paper is focused on numerical approximation of early exercise boundary within American put 
option pricing problem. Assuming non-dividend paying, American put option leads to two disjunctive regions, 
a continuation one and a stopping one, which are separated by an early exercise boundary. We present 
variational formulation of American option problem with special attention to early exercise action effect. Next, 
we discuss financially motivated additive decomposition of American option price into a European option price 
and another part due to the extra premium required by early exercising the option contract. As the optimal 
exercise boundary is a free boundary, its determination is coupled with the determination of the option price. 
However, the integral equation is known for determination of early exercise boundary. We propose an iterative 
procedure for numerical solution of that integral equation. We discuss the construction of initial 
approximations, and we also describe the steps of our submitted procedure in details. Finally, we present some 
numerical results of determination of free boundary based upon this approach. All computations are performed 
by the sw Mathematica, version 11.1. 
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1 Introduction 
An American put option is a financial contract 
between the writer and the holder of the option. It 
gives the holder the right, but not an obligation, to 
sell the amount specified in the contract of the 
underlying asset at the prescribed strike price and at 
any time between the writing and the expiration of 
the option contract given. The problem of efficient 
and accurate valuation of American options has a 
large literature. In accordance with our desires, we 
selected the books [5], [6], [9], and [10], in 
particular, discussing American option pricing 
problems with different levels of abstraction. In 
general, we know that in contrast to European 
options.  

The main difficulty to valuate American options 
is caused by the exercising flexibility. Such 
exercising flexibility gives American option more 
profiteering opportunity than European option 
offers, and it means that payoff functions of 
American options take the following general form, 
where a subscript C, and P denotes an option type, 
i.e. call, and put, respectively  

                        Vc(S,t) ≥ max(S – K, 0),  (1) 

                        Vp(S,t) ≥ max(K – S, 0),  (2) 

here S ≥ 0, is an underlying risky asset price at the 
time instant t, e.g. stock price, 0 ≤ t ≤ T, T is the 
option expiration date, and K is the option exercise 
price, called strike price, too. From here on, we also 
write simply S instead of precise St, unless stated 
otherwise.    

It is worth to note, that payoff functions of 
European options take the same forms formally, 
except that S is replaced by ST, and t = T, 
exclusively.  

Now, let us focus on non-dividend paying 
American put option provided the standard 
assumptions made on the underlying asset and 
completeness of the financial markets as discussed 
in [5] and [9], in detail.  

In fact, when S falls below a certain point, one 
should exercise the option immediately to avoid 
loss. For example, if at time t, the current stock 
price St fulfils relation St < K(1 – e-r(T-t)), then the 
option holder should exercise the option 
immediately. Here, r denotes a risk-free interest 
rate. In fact, the payoff at the option expiration data 
T will never exceed K in any case.  

So, if the option is exercised at the time t, the 
immediate gain is  

 

      K – St > K – K(1 – e-r(T-t)) = K e-r(T-t),  
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and by depositing this gain in a saving account, 
assuming a regular compounding process applies, 
the total payoff will exceed K at t = T, clearly. 

Hence, a thorough inspection of relation (2) 
provides an idea that for American put option there 
exist two disjunctive subregions, denoted Σ1 and Σ2, 
covering Σ = [0,+∞) x [0,T], i.e. Σ1 ∪ Σ2, = Σ. 

Let ∂Σi, denotes boundary of Σi, i = 1, 2, being 
defined as ∂Σi, = cl(Σi)\Σi, where cl(Σi) is usual 
pointwise closure of set Σi. Hence, a common piece 
of their boundaries, denoted Γ = ∂Σ1∩∂Σ2, is called 
optimal exercise boundary. 

The optimal exercise boundary is reasonably 
defined by mapping Γ: [0,T] → Γ(t), thus specifying 
the underlying asset price at Γ, denoted Sη=Γ(te), 
precisely. Here, we adopt the subscript η instead of 
usual t in order to point out the specific asset price 
at the optimal exercise time te, in particular. 

The optimal exercise boundary is not given a 
priori, and has to be determined together with option 
pricing function V(S,t) by solving the corresponding 
option pricing problem. Here, we already drop the 
subscript P for simplicity, as we are handling the 
American put option in the paper exclusively. 

Using optimal exercise boundary Γ(t), the 
subregions Σ1 and Σ2 are defined in following way  

                  V(S,t) > max(K – S, 0),  (S,t) ∈ Σ1,     (3) 

                Σ1 = {(S,t) | Γ(t) ≤ S < +∞},  t ∈ [0,T], 

                  V(S,t) = max(K – S, 0),  (S,t) ∈ Σ2,     (4) 

                 Σ2 = {(S,t) | 0 ≤ S ≤  Γ(t) },  t ∈ [0,T], 

where Σ1 is called the continuation subregion, since 
the payoff is zero when S > Sη, and the holder 
should continue to keep the option, whereas Σ2 is 
called the stoping subregion.  

Noting, the continuation subregion Σ1 is 
sometimes called retained subregion alternatively, 
whereas the stopping subregion Σ2 is called selling 
subregion, or exercise subregion, as well.  

       
 

Fig. 1 Payoff function of American put option.  

 

In Figure 1, there is depicted payoff function of 
American put option V(St,t) = max(K – St,0), where 
precise writing St just emphasizes the situation at 
time t, a stock price St spans [0,10], and the strike 
price K = 5.75, both being expressed in an 
unspecified monetary unit. 

In Figure 2, there are depicted both subregions 
Σ1, Σ2, the expiration date T, and the option exercise 
price, all schematically. The horizontal axis 
represents an underlying asset price S, and the 
vertical axis carries the time t elapsed from entering 
the option contract into power. 

 
 

Fig. 2 Subregions Σ1, Σ2, and early exercise 
boundary. 

 

In general, typical derivation of almost all 
models within the field of financial option pricing 
problems follows classical procedure which is based 
upon construction of self-financing portfolio, ∆-
hedging principle, and application of Itȏ's formula. 
For corresponding details, we refer to [5] and [9], in 
particular.  

Using such procedure, we can infer that function 
V(S,t) satisfies the Black-Scholes partial differential 
equation in the subregion Σ1  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑟𝑟𝑟𝑟 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

+ 1
2
𝜎𝜎2𝑟𝑟2 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑟𝑟2 − 𝑟𝑟𝜕𝜕 = 0,   (𝑟𝑟, 𝜕𝜕) ∈ Σ1,  (5) 

provided that pricing function V(S,t) belongs to 
C2,1(Σ1) class of functions, in classical formulation 
framework. 

The boundary conditions on ∂Σ1 are specified in 
following way. First, on the optimal exercise 
boundary Γ, it holds  

         V(S,t) = max(K – S, 0)   ⇒  𝜕𝜕𝜕𝜕(𝑟𝑟,𝜕𝜕)
𝜕𝜕𝑟𝑟

=  −1,  

                   𝑟𝑟 = 𝑟𝑟𝜂𝜂 ∈ Γ(𝜕𝜕),   𝜕𝜕 ∈ [0,𝑇𝑇).     (6) 

 Further, the terminal condition at t = T, and the 
condition when S → +∞, are following  

                     V(ST,T) = max(K – ST, 0),   
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                lim V(S,t) = 0, S → +∞, 𝜕𝜕 ∈ [0,𝑇𝑇].        (7) 

 Concluding, we see that American put option 
pricing problem leads to finding a function pair 
{V(S,t), Γ(t)} in subregion Σ1 satisfying the partial 
differential equation (5) and boundary-terminal 
conditions (6) and (7). 

 Following [10], we are able to get more compact 
form of the problem and to elucidate its setting, too. 
First, it is reasonable to introduce so called Black-
Scholes differential operator ℒBS  as follows  
    ℒBS F(S,t) =  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑟𝑟𝑟𝑟 𝜕𝜕𝜕𝜕

𝜕𝜕𝑟𝑟
+ 1

2
𝜎𝜎2𝑟𝑟2 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑟𝑟2 − 𝑟𝑟𝜕𝜕,     (8) 

for any function F(S,t) belonging to class of 
functions C2,1[(0,+∞) x(0,T)]. 

 Using (3), (4), and the operator ℒBS, we can 
rewrite properties of function V(S,t) in subregions 
Σ1, Σ2, in compact form 

ℒBS V(S,t) = 0,  V(S,t) > max(K – S,0),  (S,t) ∈ Σ1, (9) 

                       ℒBS V(S,t) = –rK < 0,  

                    V(S,t)=max(K–S,0),  (S,t) ∈ Σ2.        (10) 

Since (10) holds on Γ, being tackled as a part of 
∂Σ2, we can conclude by direct computation that 
both the pricing function V(S,t) and its first 
derivative ∂V/∂S are continuous on the optimal 
exercise boundary Γ.  

Now, combining relations (9) and (10) together, 
we get the variational formulation of American put 
option pricing problem in strong case, see [6], 
Chapter 6.2, for more details 

min{–ℒBS V(S,t), V(S,t)–max(K–S,0)} = 0,   (S,t) ∈Σ,  

               V(ST,T) = max(K – ST, 0), ST ∈ [0, +∞),  

                lim V(S,t) = 0, S → +∞, 𝜕𝜕 ∈ [0,𝑇𝑇].      (11) 

Variational formulation of American put option 
pricing in weak form is discussed in [10], where all 
theoretical details are presented within a functional 
theoretic framework. Finally, the free boundary 
problem for determination of pricing function V(S,t) 
leads to variational inequality problem. In shorter 
form, it is also discussed in paper [7]. 
 
 

2 Decomposition formula for 
American put option 
Early exercise premium is discussed from several 
viewpoints in [3], and [4]. However, we follow an 
approach given in [6], Chapter 6.3, here. Using that, 
we present an interesting decomposition formula for 
American put option price V(S,t) which gives a link 
to European put option price VE(S,t) in following 
way  

                  V(S,t) = VE(S,t) + e(S,t),                (12) 

here VE(S,t) is the well-known European put option 
price on the same underlying asset, and e(S,t) is the 
early exercise premium. 

The VE(S,t) is computed by well-known Black-
Scholes formula, see for example [4], [5], and [9],  

   𝜕𝜕𝐸𝐸(𝑟𝑟, 𝜕𝜕) = 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕) 𝑁𝑁(−𝑑𝑑2) − 𝑟𝑟 𝑁𝑁(−𝑑𝑑1).   (13) 

Where d1 and d2 are given by following expressions 

𝑑𝑑1 = (ln 𝑟𝑟
𝐾𝐾

+ �𝑟𝑟 + 𝜎𝜎2

2
� (𝑇𝑇 − 𝜕𝜕))/(𝜎𝜎√(𝑇𝑇 − 𝜕𝜕)), 

                 𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎(𝑇𝑇 − 𝜕𝜕). 

Function N(x) is the cumulative probability of a 
standard normal distribution N(0,1). It is given by 
following expression 

                     𝑁𝑁(𝑥𝑥) = 1
√2𝜋𝜋 ∫ 𝑒𝑒−

𝜉𝜉2

2
𝑥𝑥
−∞ 𝑑𝑑𝜉𝜉 . 

The early exercise premium e(S,t) is given in 
integral representation by following expression    

           e(S,t) = 𝑟𝑟𝐾𝐾 ∫ 𝑑𝑑𝜂𝜂 ∫ 𝜕𝜕(𝑟𝑟, 𝜕𝜕; 𝜉𝜉, 𝜂𝜂)𝑑𝑑𝜉𝜉𝑟𝑟𝜂𝜂
0

𝑇𝑇
𝜕𝜕 .        (14) 

The function G(S,t;ξ,η) is fundamental solution, 
sometimes called Green function, too, of the well-
known Black-Scholes partial differential equation, 
being expressed explicitly in relation (5).  

Inspecting (14) thoroughly, we reckon the upper 
bound Sη of the inner integral to cause direct 
dependence of early exercise premium e(S,t) upon 
the optimal exercise boundary Γ, evidently. 

Now, we refer to [6], Chapter 6.3, and Theorems 
6.3 and 6.4 therein, for more technical details 
regarding the function G(S,t;ξ,η). However, we 
ought to present here at least the function G(S,t;ξ,T) 
in explicit form 
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              G(S,t;ξ,T) = 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕)

𝜉𝜉𝜎𝜎�2𝜋𝜋(𝑇𝑇−𝜕𝜕)
 𝑒𝑒𝜑𝜑(𝑟𝑟,𝜕𝜕;𝜉𝜉 ,𝑇𝑇),                  

φ(S,t;ξ,T)= − 1
2𝜎𝜎2(𝑇𝑇−𝜕𝜕)

[ln 𝑟𝑟
𝜉𝜉

+ (𝑟𝑟 − 𝜎𝜎2

2
)(𝑇𝑇 − 𝜕𝜕)]2.(15) 

In general, the function G(S,t;ξ,T) represents a 
solution U(S,t) of the Black-Scholes partial 
differential equations with special terminal 
condition expressing concentrated effect at an 
arbitrary point ξ, which is emphasized by including 
parameters T and ξ into (15) explicitly. The 
corresponding terminal value problem for 
determination of function U(S,t) takes the following 
form 

           ℒBS𝑈𝑈(𝑟𝑟, 𝜕𝜕) =  0,   U(S,T) = δ(S – ξ),       (16)  

where 0 < S < +∞, 0 < ξ < +∞, 0 < t < T, and δ(x) is 
the well-known Dirac function being given by its 
properties δ(x) = +∞, if x = 0, otherwise δ(x) = 0, 
and ∫ 𝛿𝛿(𝑥𝑥)𝑑𝑑𝑥𝑥 = 1+∞

−∞ . 
 
 
3 Early exercise boundary equation 
As the optimal early exercise boundary Γ is not 
known a priori but has to be determined together 
with pricing function V(S,t), therefore, in general, 
the problem is called free-boundary value problem 
for parabolic partial differential equation.  

Albeit we have already formulated the problem 
by expressions (5)-(7) explicitly, the main difficulty 
therein is that one needs to solve for both unknown 
function V(S,t) and unknown boundary Γ(t), 
simultaneously. 

 Since any American option has early exercise 
term in the contract, the determination of Γ(t) is of 
special importance to the holder of American 
options, put ones in particular. In general, we 
remark that it is applicable in any case of American 
options when early exercise is interesting, i.e. in 
case of American put options, and in case of 
American call options paying dividends.  

In [1], [2] and [6], Chapters 6.3-6.5, there are 
several interesting results related to both qualitative 
and quantitative properties of the optimal exercise 
boundary. 

Except other ones, as for example position of 
Γ(T), the monotonicity of Γ(t), upper and lower 
bounds of Γ(t), and convexity of Γ(t), as well, the 
most important are following two ones. First, the 
asymptotic expression of Γ(t) near t = T, and at 
second, the integral equation for determination of 

Γ(t), which is given in [6], Chapter 6.3, Theorem 
6.5, in particular. 

However, we need to point out that the thorough 
and clear discussion of derivation of the 
corresponding integral equation for determination of 
Γ(t) based upon solution of optimal stopping 
problem for Brownian motion is given in [1] and 
[2], precisely.  

Following [6], Theorem 6.5, the equation for 
determination of optimal exercise boundary Γ(t) for 
American put options, assuming payment of 
dividend, in general, is given by following 
expression 

   Γ(t) = K + Γ(t)𝑒𝑒−𝑞𝑞(𝑇𝑇−𝜕𝜕)𝑁𝑁[−𝑔𝑔2(𝜕𝜕;𝐾𝐾,𝑇𝑇,𝜎𝜎,𝛽𝛽2)]    

 − 𝐾𝐾𝑒𝑒−𝑞𝑞(𝑇𝑇−𝜕𝜕)𝑁𝑁[−𝑔𝑔1(𝜕𝜕;𝐾𝐾,𝑇𝑇,𝜎𝜎,𝛽𝛽1)] 

      −𝑟𝑟𝐾𝐾� 𝑒𝑒−𝑟𝑟(𝜂𝜂−𝜕𝜕){1−𝑁𝑁[
𝑇𝑇

𝜕𝜕
ℎ1(𝜕𝜕; Γ(𝜂𝜂), 𝜂𝜂,𝜎𝜎,𝛽𝛽1)] 

+𝑟𝑟𝐾𝐾 ∫ 𝑒𝑒−𝑟𝑟(𝜂𝜂−𝜕𝜕){1−𝑁𝑁[𝑇𝑇
𝜕𝜕 ℎ2(𝜕𝜕; Γ(𝜂𝜂), 𝜂𝜂,𝜎𝜎,𝛽𝛽2)]}𝑑𝑑𝜂𝜂,   

                                                                      (17) 

here q is dividend rate,  N(x) is the cumulative 
distribution function of N(0,1), again, and 
parameters β1, β2, are defined as follows 

                 β1 = r – q – σ2/2,   β2 = r – q + σ2/2, 

The functions 𝑔𝑔𝑖𝑖(𝜕𝜕;𝐾𝐾,𝑇𝑇,𝜎𝜎,𝛽𝛽𝑖𝑖), ℎ𝑖𝑖(𝜕𝜕; Γ(𝜂𝜂), 𝜂𝜂,𝜎𝜎,𝛽𝛽𝑖𝑖), 
i = 1, 2, are given by following expressions 

    𝑔𝑔𝑖𝑖(𝜕𝜕;𝐾𝐾,𝑇𝑇,𝜎𝜎,𝛽𝛽𝑖𝑖) =
− ln Γ(𝜕𝜕)

𝐾𝐾 +𝛽𝛽𝑖𝑖(𝑇𝑇−𝜕𝜕)

𝜎𝜎√𝑇𝑇−𝜕𝜕
,  i = 1,2,    (18) 

   ℎ𝑖𝑖(𝜕𝜕; Γ(𝜂𝜂), 𝜂𝜂,𝜎𝜎,𝛽𝛽𝑖𝑖) =
ln Γ(𝜕𝜕)

Γ(𝜂𝜂 )+𝛽𝛽𝑖𝑖(𝜂𝜂−𝜕𝜕)

𝜎𝜎�𝜂𝜂−𝜕𝜕
,  i = 1,2.    (19) 

However, the equation (17) is a nonlinear 
Volterra integral equation of the second kind.  

In general, solving such type of equation is a 
rather challenging problem for numerical 
mathematics. 

Interesting approaches are presented in [8], and 
[11], too. Here, we mention the procedure given in 
[8], in particular.  

The numerical approximation of early exercise 
boundary is constructed by following procedure. 
First, one assumes the function Γ(t) to be 
expressible by exponential function with an 
exponent γ(τ), as follows  
                         Γ(t) = 𝐾𝐾𝑒𝑒𝛾𝛾(𝜏𝜏),    τ = T – t , 
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  γ(τ) = 𝑎𝑎0 +  𝑎𝑎1𝜏𝜏1/2 + 𝑎𝑎2𝜏𝜏 + 𝑎𝑎3𝜏𝜏3/2 + 𝑎𝑎4𝜏𝜏2 +
𝑎𝑎5𝜏𝜏5/2 + 𝑎𝑎6𝜏𝜏3 + ⋯  ,                                          (20) 
 

where τ  is the time remaining to expiration date.  
Second, one truncates the series representing γ(τ) to 
finite number of terms, which yields an 
approximation containing a finite number of 
unknowns coefficients aj, j = 0,…,m 
                     γm(τ) = ∑ 𝑎𝑎𝑗𝑗 𝜏𝜏𝑗𝑗 /2𝑚𝑚

𝑗𝑗=0  .                      (21) 
 

Third, substituting an approximation Γm(t) =
𝐾𝐾𝑒𝑒𝛾𝛾𝑚𝑚 (𝜏𝜏),  into the integral equation (18), one tries to 
calculate the corresponding integrals in order to get 
a set of nonlinear algebraic equations for the 
coefficients aj, j = 0,…,m. Sure, various approaches 
are applicable, for example some numerical 
integration schemes, collocation methods, etc. 
     

In the next chapter, we propose another approach 
for solution of the integral equation (17), which is 
based upon successive approximations of early 
exercise boundary Γ using an adaptive iteration 
algorithm. The algorithm is implemented in sw 
package Mathematica, and it is the core of our 
paper. The Mathematica notebook is available upon 
request. 
 
 
4 Early exercise boundary equation 
The first step is time discretization. Let ti, i = 0, …, 
n, such that t0 = 0, tn = T, denote regular mesh of 
time points with a mesh size ∆t = T/n. As the Γ(t) 
represents a uncountable set of points (t,St) laying 
on the optimal early exercise boundary Γ, then 
adopting time discretization turns the problem to 
solve integral equation (17) directly to looking for a 
finite set of points {ti,Si}, i = 0, …, n, satisfying a 
discrete version of (17), where we just introduce 
shorter notation Si instead of cumbersome St|t=ti.  

 Time discretization being applied upon (17) 
yields the following set of fixed-point looking 
problems 

                 Si = Ψ(Si; ti, Γ(η)), i = 0, …, n,            (22) 
 

here symbol Ψ expresses formally the right-hand 
side of (17) after discretization thus denoting its 
proper dependence upon variable Si, but also upon 
parameters ti and Γ(η) thereby making the numerical 
solution of (22) rather involved. 
 

In order to overcome numerically a complication 
caused by function Γ(η) appearing in (22), which is 
itself a solution of equation (17) being seeked, we 
propose the following algorithm based upon 

successive approximation of Γ(η) starting with some 
initial guess.  

Adaptive iterative algorithm – steps: 
1. Set initial approximation Γ0(η), η ∈ [ti,T], 

and set index k = 0,  
2. Increment current k by 1, for loop ti, i = 0, 

…, n, solve Si,k = Ψ(Si,k;ti,Γk-1(η)), k ≥ 1, 
until conver-gence of Si,k appears with given 
tolerance ε1, 

3. Build Γk(η), η ∈ [0,T] using available set 
{ti,Si,k}, i = 0, …, n, by spline 
approximation,  

4. Check convergence,                            
          if ∥ Γ𝑘𝑘 − Γ𝑘𝑘−1 ∥𝐿𝐿2(0,𝑇𝑇)≤ 𝜀𝜀2then Stop  
          else GoTo step 2. 
 

Our first attempt to solve (17) for a given ti, 
which is a core of the step 2 within the proposed 
algorithm, was simply lured by computational 
power of sw Mathematica ver.11.1 to be able to 
solve it just by two following commands 

eq6318 = S[t] == eqSt := K + # Exp[-q (T - t)] CDF[ 

NormalDistribution[0,  

1], -(-Log[#/K] + \[Beta]2 (T - t))/(\[Sigma] Sqrt[T - t])]  

- K Exp[-r (T - t)] CDF[NormalDistribution[0,  

1], -(-Log[#/K] + \[Beta]1 (T - t))/(\[Sigma] Sqrt[T - t])]  

- K r Integrate[Exp[-r (\[Eta] - t)] (1 -  

CDF[NormalDistribution[0, 1], (Log[#/S\[Eta][\[Eta]]]  

+ \[Beta]1 (\[Eta] - t))/(\[Sigma] Sqrt[\[Eta] - t])]), {\[Eta], 
t, T}]  

+q # Integrate[Exp[-q (\[Eta] - t)] (1 -  

CDF[NormalDistribution[0, 1], (Log[#/S\[Eta][\[Eta]]]  

+ \[Beta]2 (\[Eta] - t))/(\[Sigma] Sqrt[\[Eta] - t])]),  

{\[Eta], t, T}] & 

FindRoot[eqSt[s] == s, {s, s1}] 

However, it failed with a Mathematica ver. 11.1 
process control message:  

SystemException[“MemoryAllocationFailure”] 

thus signalizing an extreme demand of internal 
Mathematica procedures upon memory allocation 
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when executing such complex commands. It was 
simply over the memory capacity of our Dell 
Latitude E6510 computer with 4GB RAM running 
under MS-Windows 10.  

Hence, we turned to break the given algorithm 
into a sequence of less complex steps and control 
manually their performance and convergence in 
adaptive way, too.  

 Following [6], Chapter 6.5, we also know some 
advanced information about optimal exercise 
boundary. First, the location point at t = T 

                      Γ(T) = min(rK/q, K),                 (23)    

and second, an asymptotic expression of Γ(t) near t 
= T, in case of q = 0, i.e. for non-dividend paying 
American put option, which is known in following 
form 

            (K – Γ(t))/K ≈ σ √[(T – t) |ln(T – t)|].       (24) 

As already stated above, we know that Γ : t → 
Γ(t) is a convex and monotone increasing function 
on (0,T).  

We also note that various other asymptotic 
expansions are discussed in [11], in particular. 

Numerical example: 

For numerical determination of the optimal early 
exercise boundary Γ(t), we select the American put 
option with following data: strike price K = 40, risk-
free rate r = 0.05, underlying asset price S ∈ (0,65], 
with volatility σ = 0.3, option expiration date T = 1 
[year], and dividend rate q = 0, i.e. non-dividend 
paying case.  

 In Figures 3 and 4, we show two different initial 
variants of Γ0(t), constructed either by using 
asymptotic expression (24) with a proper 
prolongation, or by ad-hoc way using a cubic 
polynomial with proper interpolation conditions 
maintaining Γ(T) = K as required by (23), and both 
qualitative properties, i.e. monotonicity and 
convexity of Γ0(t), on (0,T), as well.  

In Figure 3, we present an idea of construction of 
Γ0(t) using (24) with proper prolongation.  

A curve given by (24) is convex on (0,T), but it 
violates the monotonicity. Hence, to fix that defect, 
we propose the following procedure.  

First, we find a global minimum point tmin of 
function (24) on (0,T) issuing the minimum value 
Γmin of that function.  

Second, we make a smooth prolongation from t = 
0 to t = tmin by a horizontal line keeping the 
calculated minimal value Γmin, as it is depicted in 
Figure 3.  

Finally, we join both both branches together to 
get a feasible guess for Γ0(t), 0 ≤  t ≤ T. 

 

 
 
   Fig. 3 Γ0(t) – initial early exercise boundary 
asymptotic-derived with proper prolongation (full 
line); Γ(t)|asymp  – curve given by (24) on (0,T) 
(dashed line). 
 

      
 
   Fig. 4 Γ0(t) – variants: 1) ad-hoc guess cubic curve 
(full line);         2) asymptotic-derived with proper 
prolongation one (dashed line). 

Assumption q = 0, i.e. the case of non-dividend 
paying option, simplifies the integral equation (17) 
for determination of optimal early exercise 
boundary  Γ(t) so that the first term is modified and 
the last one is dropped completely.  

Hence, we obtain another set of fixed-point 
looking problems, written formally in the same form 
(22), however, with a slightly different form of Ψ. It 
is defined as the right-hand side of the following 
equation 

   Γ(t) = K + Γ(t)𝑁𝑁[−𝑔𝑔2(𝜕𝜕;𝐾𝐾,𝑇𝑇,𝜎𝜎,𝛽𝛽2)]    
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− 𝐾𝐾𝑒𝑒−𝑞𝑞(𝑇𝑇−𝜕𝜕)𝑁𝑁[−𝑔𝑔1(𝜕𝜕;𝐾𝐾,𝑇𝑇,𝜎𝜎,𝛽𝛽1)] 

 −𝑟𝑟𝐾𝐾∫ 𝑒𝑒−𝑟𝑟(𝜂𝜂−𝜕𝜕){1−𝑁𝑁[𝑇𝑇
𝜕𝜕 ℎ1(𝜕𝜕; Γ(𝜂𝜂), ç,𝜎𝜎,𝛽𝛽1)], (25)     

here parameters β1, β2, are defined as follows 

                 β1 = r – σ2/2,   β2 = r + σ2/2, 

and functions 𝑔𝑔𝑖𝑖(𝜕𝜕;𝐾𝐾,𝑇𝑇,𝜎𝜎,𝛽𝛽𝑖𝑖), i = 1, 2, are given by 
(18), and function ℎ1(𝜕𝜕; Γ(𝜂𝜂), 𝜂𝜂,𝜎𝜎,𝛽𝛽1) by (19), 
correspondingly. 

 Classical trapeziodal rule is used for numerical 
approximation of integral ∫ 𝜔𝜔(𝜂𝜂)𝑑𝑑𝜂𝜂𝑇𝑇

𝜕𝜕 , which 
appears in equation (25), as the third term on its 
right-hand side. Because of the time discretization, 
we point out that the lower bound t = ti, in particular 
case, whereas the upper bound T is fixed in any 
case.  

 Using function ℎ1(𝜕𝜕; Γ(𝜂𝜂), 𝜂𝜂,𝜎𝜎,𝛽𝛽1), and N(x), 
we can define the function ω(η) in following way  

 ω(η) = 𝑒𝑒−𝑟𝑟(𝜂𝜂−𝜕𝜕)(1−𝑁𝑁[ℎ1(𝜕𝜕; Γ(𝜂𝜂), 𝜂𝜂,𝜎𝜎,𝛽𝛽1) ]).  (26) 

 For trapezoidal rule, let m is a number if 
intervals covering [ti,T] with a step ∆η = (T – ti) /m, 
thus providing   

                                    ∫ 𝜔𝜔(𝜂𝜂)𝑑𝑑𝜂𝜂𝑇𝑇
𝜕𝜕  ≈  

  Δ𝜂𝜂
2
�𝜔𝜔(𝜕𝜕𝑖𝑖) + 2�∑ 𝜔𝜔(𝜕𝜕𝑖𝑖 + 𝑗𝑗Δ𝜂𝜂)𝑚𝑚−1

𝑗𝑗=1 � + 𝜔𝜔(𝑇𝑇)� = 𝑄𝑄𝑖𝑖 .  

                                                                     (27) 

Now, we formulate the inner-most problem. For 
given set of points {ti, Si,0}, find {ti, Si,k}, k ≥ 1, such 
that equation (25) holds, with given tolerance 
appearing in convergence criterion (29) 

                                Si,k = Ψ(Si,k; ti,Γk–1(η)) 

                    = K + 𝑟𝑟𝑖𝑖,𝑘𝑘Φ[−
− ln

𝑟𝑟𝑖𝑖 ,𝑘𝑘
𝐾𝐾 +𝛽𝛽2(𝑇𝑇−𝜕𝜕𝑖𝑖)

𝜎𝜎�𝑇𝑇−𝜕𝜕𝑖𝑖
] 

  −𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕𝑖𝑖)Φ[−
− ln

𝑟𝑟𝑖𝑖,𝑘𝑘
𝐾𝐾 +𝛽𝛽1(𝑇𝑇−𝜕𝜕𝑖𝑖)

𝜎𝜎�𝑇𝑇−𝜕𝜕𝑖𝑖
] – r KQi,k–1,   (28)  

and 

                    | Si,k – Ψ(Si,k; ti,Γk–1(η)) | ≤ ε1.          (29) 

 

 Now, we present some snippets of our 
Mathematica ver. 11.1 code being developed for 
numerical solution of the problem to find optimal 
early exercise boundary for American put option.  

  
First, there is a construction of the initial early 

exercise boundary Γ0(t) based upon asymptotic 
expression of Γ(t) near t =T, as given by (24) 

 

eebAsymp:=K (1-σ Sqrt[(T-#)Abs[Log[T-#]]])&    

Plot[eebAsymp[t],{t,0,T}]
FindMinimum[{eebAsymp[𝜕𝜕], 𝜕𝜕 > 0, 𝜕𝜕 < 1}, {𝜕𝜕,.5}] 
tm=t/.Last[%] 

eebm=%%[[1]] 
eeb1:=If[#<tm,eebm,eebAsymp[#]]&;  

Plot[{eeb1[t],eebAsymp[t]},{t,0,T},PlotStyle-
>{Automatic,Dashed},PlotRange->{{0,1},{32.5,40.2}}] 
eeb2[t_]:=Piecewise[{{eebm,t<tm},{eebAsymp[t],t>=tm}}
] Plot[Evaluate[eeb2[t]],{t,0,T}, 
PlotStyle->{Red},PlotRange->{{0,1},{32.5,40.2}}] 

Second, we present a main part of code 
computing the right-hand side of (28) 

∆t=(T-t)/(n-1); 
ψ3:=With[{s=sLast,t=tLast},Exp[-r(#-t)](1- 
CDF[NormalDistribution[0,1],(Log[s/Evaluate[Sη[#]]]+β1(
#-t))/(σ Sqrt[#-t])])&]; 
 
fstη=Table[ηη=t+j Δt;ψ3[ηη]//Evaluate,{j,n-1}]; 
fL=PadLeft[fstη,n,fstη[[1]]]; 
fR=PadRight[fstη,n,fstη[[n-1]]]; 

f3is=Δt (Total[fL]+Total[fR])/2   (* <Trapezoidal Rule *) 

(* <Compute 1-st & 2-nd terms *) 
ψ1:=With[{s=39.181,t=.98},K+# Exp[-q(T-
t)]CDF[NormalDistribution[0,1],-(-Log[#/K]+β2(T-t))/(σ 
Sqrt[T-t])]&]; 
 
ψ2:=With[{s=sLast,t=tLast},-K Exp[-r(T-
t)]CDF[NormalDistribution[0,1],-(-Log[#/K]+β1(T-t))/(σ 
Sqrt[T-t])]&]; 
sRhs=ψ1[s]+ψ2[s]+f3is 

Now, setting ε1 = 10 –3, we compute two variants 
of optimal early exercise boundary using two initial 
functions Γ0(t), as discussed above and shown in 
Figure 4, respectively.   

In Figures 5 and 6, we show also the selected set 
of points for time discretization, i.e. {ti}, i = 0, ..., n, 
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which are used for basic time discretization of 
nonlinear Volterra integral equation (17), in general. 

 

Fig. 5 Local comparison of computed optimal 
early exercise boundaries Γ(t) computed from two 
initial curves Γ0(t) depicted in Figure 4 (full line and 
dashed one), and location of asymptotic-derived 
with proper prolongation curve Γ0(t) (doted line), 
with set of nodal points {ti,Si}. 

 

Fig. 6 Global comparison of computed optimal 
early exercise boundaries Γ(t), initial Γ0(t), and set 
of nodal points {ti,Si}, just  similar to the results 
depicted in Figure 5. 

Inspecting the results presented in Figures 5 and 
6 , we may conclude that different initial functions 
Γ0(t) cause almost negligible differences between 
our computed approximations of the optimal early 
exercise boundary Γ(t).  

The proposed numerical procedure for 
approximation of optimal early exercise boundary 
for American put option seems to work well, which 
sounds rather promising for further research. 
 
 
5 Conclusion 
In the paper, we discuss briefly a variational 
formulation of American put option problem, in 
strong sense. Next, we are focused upon the early 

exercise premium, which is an integral part of 
pricing function of American put option.  

However, the most attention is devoted to 
problem of finding optimal early exercise boundary 
for American put option, which is formulated by 
nonlinear Volterra integral equation of the second 
kind.  

We propose the adaptive iteration algorithm for 
solving that problem. The numerical procedure 
implementing our algorithm is coded in sw 
Mathematica ver. 11.1, and it seems to work 
satisfactory. So, it presents a promising platform for 
our future research. 

Sure, the further and more complicated 
numerical experiments are necessary to investigate 
the computational behaviour and performance of the 
proposed algorithm in more details.  
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