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Abstract: - Tunnel construction is affected from its origins by different types of uncertainties responsible for 
innumerable safety risks. This problem has been addressed constantly during the last times achieving positive 
results, but the complex work scenarios and the common variability of the construction processes prevent 
putting an end to this problem. For this reason, this study presents an alternative methodology for safety 
prioritization in tunnel construction gaining relevant information hitherto unknown which can be crucial for 
policy making in infrastructure projects. The method proposed consists on the Bayesian analysis of data from 
occupational accidents recorded during the construction of tunnels in the last years. For this purpose, the model 
variables are rigorously estimated from expert judgement supported by the analysis of data from previous 
projects. Once the bayesian model is built, the dependencies among the variables are examined using the 
mutual information. The results obtained from the mutual information analysis allow to detect the main risks 
responsible for the occurrence of accidents and how they interact. Afterwards, a simplified Bayesian model 
with the most relevant risk factors affecting safety is built. Through the bayesian inference process, this 
condensed and validated model facilitates the exploration of significant contributions for safety policy 
decisions in tunnel construction. Overall, the results obtained provide a deep insight about the most influential 
factors on which should be focus the efforts to reduce accidents. Several safety risk factors are further 
influenced by human and organizational factors, whose effect can be reduced in advance. The mechanism of 
risk migration was better understood when analysing the interaction between the variables in the Bayesian 
model. In general, the accurate simplification of the model network demonstrated to be a powerful tool to 
comprehend the uncertainty associated to complex problems. 
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1 Introduction 
Over the last several decades, the underground 
construction industry has been experiencing a 
world-wide boom. A look at the tunnel construction 
statistics since the 1960s shows the obvious 
consistency of the rising curve with the amount of 
traffic and civilian infrastructure in these decades 
[1]. Two main reasons can explain this sudden 
development. First, the increased necessity of civil 
tunnels to satisfy the growth of rail and vehicular 
road traffic. Second, a higher demand for utility 
tunnels required to create facilities for electricity, 
water, sewage or modern communication systems. 

The continued escalation of the productive 

requirements in tunnel projects occurs at the same 
time that higher levels of quality, budget and time 
completion are required. Tunnel boring machines 
(TBM) and associated back-up systems are used to 
highly automate the entire tunneling process, 
reducing tunneling costs. However, the frequent 
complex scenarios and the diversity of operations 
(Fig.1) become occupational accidents a major 
problem in tunnel construction [2]. The occurrence 
of accidents are responsible for big overruns and 
important delays, decreasing considerably the odds 
of success. Moreover, there exists a generalized 
public concern about the actual safety of tunnel 
construction, especially when it comes to coping 
with uncertainties and their enormous hidden 
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dangers for workers. 
 
All new tunnels now have to be constructed in 

accordance with the most stringent safety standards, 
and existing tunnels are being successively 
upgraded. Safety management plays a fundamental 
role in order to identify the main risk factors 
involved in the principal safety violations. In the 
recent years, there has been an increasing number of 
studies introducing risk-based analysis into safety 
control. Qualitative and quantitative risk analysis 
are the principal risk-based methods used for 
managing risks in construction projects [3]. They 
include a wide range of techniques, such as Fault 
Tree Analysis (FTA), Comprehensive Fuzzy 
Evaluation Method (CFEM), Influence Diagrams 
(IDs) or Neural Networks (NNs), among others. 
These techniques have made a relevant contribution 
to quality and safety management in complex 
engineering projects [4-6].  

 

 
 

Fig. 1: Complex supporting operation under ground 
water conditions 

 
However, when dealing with complex scenarios 

problems arise inevitably due to the common 
limitation in explicitly representing dependencies of 
events, updating probabilities and coping with 
uncertainties. The construction process is affected 
by different types of uncertainties. Generally, they 
can be distinguish between the common variability 
of the construction process and the uncertainty on 
occurrence of extraordinary events, also denoted as 
failures of the construction process. Bayesian 
networks emerged as an efficient solution to address 
this problem. Their ability to model knowledge, 
make inferences and reduce uncertainty providing 
highly visual outcomes caught the attention of many 
complex engineering projects for safety control [7-
9].  

The principal objective of this article is trying to 
identify and cope with occupational hazards in 

tunnel construction by creating a prioritization of 
the main safety risk factors that cause the accidents. 
To better understand the dependencies among the 
random variables and the type of accident, a 
Bayesian network (BN) model was built and 
evaluated with the mutual information (MI) [10] 
trying to measure the mutual dependence between 
the type of accident and every random variable. This 
approach is intended to reduce the problem 
complexity, obtaining a classification with the risk 
factors that have a greater influence in the 
occurrence of accidents.  

Subsequently, a new simplified BN model is 
designed to determine some revealing safety control 
measures that can then be proposed in advance for 
risk reduction before an accident occurs. The 
incorporation of the mutual information to analyse 
the information exchange among the variables can 
definitely suppose a new dynamic for safety control 
in complex engineering environments. The relation 
of dependence between each variable and the 
occurrence of the accident could be described as 
never before. Decision makers and safety engineers 
would be able to create more accurate policies and 
construction strategies that concentrate their efforts 
on human factors and not only on technical issues. 

 
 

2 Risk factors determination 
A good BN modelling practice entails clear 
definition of the model objective and scope, as well 
as reliable documentation, data and information 
sources. A complete revision and identification of 
possible risk factors was carried out using a 6-year 
database of accidents in the construction of civil 
tunnels in Spain.  

 

2.1 Database creation 
The study is based on a total of 212 occupational 
accidents that occurred between 2009 and 2015 
during tunnel construction. The database was 
created from accident reports supplied by the 
companies operating under the Spanish legislative 
framework. However, in order to obtain a more 
calibrated model, further data were collected via 
questionnaires and personal interviews with relevant 
company employees. Moreover, it was also made 
contact with the prevention technicians responsible 
for accident investigation and safety policies design. 
They, along with the workers, provided fundamental 
information regarding the variables that need to be 
defined in relation to tunnel construction accidents. 
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Expert judgement is frequently used in 
developing BNs to generate the model structure and 
estimate the prior conditional probabilities. The use 
of expert knowledge is particularly advantageous 
when empirical data are limited or difficult to 
obtain. However, modellers should be aware of the 
uncertainty of data elicited from experts, as humans 
are susceptible to cognitive biases in judgement and 
decision making. For this reason, for reliable 
predictions, the expert estimates were supported by 
analysis of data from different underground 
projects. 

 
 

2.2 Safety risk factors 
The revision of the information obtained during the 
database creation was used to define a set of 
variables reflecting the full range of the causes that 
lead to accidents. Due to the complexities in 
underground construction two types of influential 
variables concerning the safety issues on tunnel 
construction are presented (general variables and 
specific variables) (Table I). In addition to the safety 
risk factors, the principal types of accidents suffered 
by workers were registered as well (type of 
accident). This approach allows the future BN 
model make inferences about how some specific 
risk factors influence the occurrence of certain 
accidents. 

 
2.2.1  General variables 
These variables are related as common causes of 
accidents broadly mentioned in the literature [11-
14]. Such variables as shift work (V1), operator 
training (V6), operator experience (V7) or order and 
cleanliness (V8) are variables commonly used to 
illustrate the working conditions and the workers 
competence for the work to be carried out in the 
specific context under study. 

The definition of these general variables has a 
positive aspect in regard to possible comparisons 
between different underground projects. Technical 
variables depending on the project properties are 
more difficult to compare, intrinsic to the specific 
works. 

 
2.2.2  Specific variables in tunnel construction 
There are a set of variables that represent certain 
conditions or activities associated exclusively to 
tunneling construction, which can have a big 
influence on the occurrence of accidents. Some of 
these variables refer to geological and design 
factors, such as tunnel length (V10), state of the 

floor surface (V14) or excavation method (V17). 
Others emphasize the importance of stability and 
tunnel support, for example, stability of the 
excavation front (V15), rock bolts installation (V29) 
or tunnel waterproofing (V33). Finally, there are 
some variables related to technical and operational 
aspects including, outsourcing in the same cut (V37) 
or works execution deadline (V38). 

Table I. Risk factors identified in tunnel 
construction 

 
 
2.2.3  Type of accident 
As a further variable, in addition to the 39 in Table 
1, the type of accident states the typology of the 
accident suffered by workers during the tunnel 
construction. This variable is of paramount 
importance. Depending on the type of accident a 
worker suffers, certain variables are going to have a 
greater or lesser influence.  The definition of the 
principal typologies found were as follows: 
 

• Falls from the same or different height. 

• Detachment or handling-induced falls of loose 
objects. 

• Collision or hit with objects. 
• Projection of fragments and particles. 

V1 Shift work V10 Tunnel length

V2 Shift duration V11 Tunnel section

V3 Machinery age V12 Type of excavation section

V4 Machinery maintenance V13 State of haul roads

V5 Operator seniority V14 State of the floor surface

V6 Operator training V15 Stability of the excavation front

V7 Operator experience V16 Simultaneity of operations

V8 Order and cleanliness V17 Excavation method

V9 Signposting and signalling V18 Loading machinery

V19 Conveyor belt

V20 Type of hauling vehicle

V21 Vehicles interference

V22 Water drainage

V23 Walls stability

V24 Drilling machinery

V25 Dust collection

V26 Gas detection

V27 Tunnel profiling

V28 Tunnel initial support

V29 Steel ribs installation

V30 Rock bolts installation

V31 Type of shotcrete

V32 Tunnel lining

V33 Tunnel waterproofing

V34 Ventilation

V35 Lighting

V36 Outside communication systems

V37 Outsourcing in the same cut

V38 Works execution deadline

V39 Operator assigned work

General variables Specific variables
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• Entrapment by or between objects. 

• Overexertion. 
• Exposure to corrosive substances or electrical 

contacts. 
• Fires. 

• Accidents involving vehicles. 
 
 

3 Bayesian networks and mutual 
information in safety risk analysis 
In machine learning and data mining, 
dimensionality reduction refers to the process of 
reducing the number of random variables under 
consideration, obtaining a subset of principal 
variables, typically from large databases [15]. In this 
case, the database created with accidents recorded in 
tunnel construction it was used in a first step to 
create a general Bayesian model. This model was 
afterwards reduced through the analysis of the 
mutual information between the variables.  

The topological structure of a Bayesian model 
reflects the variables’ dependency and describes the 
probability distribution of certain events occurring 
in specific conditions. If { }1 2, ,..., nX X X X=  is a set 

of m-dimensional variables, then a Bayesian 
network is formally defined as a couplet ,X G P=  

where G is a directed acyclic graph in which each 
node represents one of the variables 1 2, ,..., nX X X  
and each arc represents a direct dependency 
relationship between these variables; and P is a set 
of parameters that quantifies the network, 
containing the probabilities for each possible value 

ix  for each variable iX . 
From the decomposition theorem, the joint 

probability P , under the hypothesis that each node 
is independent of its non-descendants, can be 
calculated. Therefore, the Bayesian network has a 
single joint probability distribution given by:      

 1 2 ( )
1

( ) ( , ,..., ) ( | )
n

n i j i
i

P X P X X X P X X
=

= =∏     (1) 

where ( )j iX  is the set of parent variables of iX  for 

direct acyclic graph G. Consequently, the 
application of Bayes’ theorem enables to determine 
the posterior probability of the variable of interest 
through the inference process.  

When building a Bayesian network, it is 
necessary to explore different structures [16]. 
Firstly, a supervised learning approach was used for 
generating a model for the target variable’s 
prediction autonomously from data. In this 
approach, the only guidance provided is the node of 

interest, the type of accident, representing the target 
variable for the machine learning process.  

For computation and data analysis, Artificial 
Intelligence software BayesiaLab v6.0.7 [17] was 
used. A direct network with a Naive Bayes 
algorithm was built in order to minimize the 
network complexity, making it easier for the 
computation of the mutual information. The concept 
of mutual information is intricately linked to that of 
entropy of a variable, a fundamental notion in 
information theory that defines the amount of 
information held by the variable itself. 

Shannon Entropy [18-19] was used for the 
computation of information exchanged between the 
target variable and every risk factor (Table I). The 
definition of Shannon Entropy, of a discrete variable 
X  is: 

 
 2( ) ( ) log ( )

x X

H X p x p x
∈

= −∑         (2) 

 
The difference between the marginal entropy of the 
target variable and the conditional entropy of a 
given target is formally known as mutual 
information (MI). More generally, the mutual 
information between two variables X  and Y  is 
defined by [20]: 
 

 ( , ) ( ) ( | )MI X Y H X H X Y= −         (3) 

 
which is equivalent to: 
 

 2

( , )
( , ) ( , ) log

( ) ( )x X y X

p x y
MI X Y p x y

p x p y∈ ∈

= ∑∑         (4) 

 

The computation of the mutual information, 
between the type of accident and each variable, in 
the form of risk factors, is represented by the 
Bayesian probability allocated to each class of the 
target variable. Thus, the predictors providing the 
maximum information can be properly identified, 
highlighting their predictive importance and 
repercussion as risk factors in the occurrence of 
accidents in tunnel construction 
 
 

4 Simplified Bayesian model 
In a second step, once the main risk factors on 
which efforts to reduce accidents should be focus 
were identified, a simplified Bayesian model was 
carried out as a support tool in safety studies 
conducted in the planning stage of tunnel 
construction. On this occasion, the supervised 
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learning during the network construction was 
evaluated in order to obtain a BN model with a 
complexity determined by the adequate amount of 
relationships among variables representing a 
common field work. The Minimum Description 
Length (MDL) [21], in which BayesiaLab’s 
algorithms are based on, was used for measuring the 
quality of the network with respect to the underlying 
data. This strategy is now feasible and highly 
practical, because since the problem dimensionality 
is reduced more significant cause and effect 
relationships can be discovered in a much more 
efficient way for safety analysis.  

The MDL score is composed of two parts: one to 
score the structure and other one to quantify how 
well the network fits the data. The MDL must be 
minimized to obtain the best solution that leads to 
the best compression of the data. Formally, can be 
written as [20]: 
 

         𝑀𝑀𝑀𝑀𝑀𝑀(𝐵𝐵,𝑀𝑀) = ∝ 𝑀𝑀𝑀𝑀(𝐵𝐵) + 𝑀𝑀𝑀𝑀(𝑀𝑀|𝐵𝐵)      (5)     
 
 

 

• ∝  represents the structural network coefficient 
(SC). This parameter, which default value is 1, 
permits changing the network complexity. The 
lower the value of ,α  the greater the 
complexity of the resulting network. 
 

• 𝑀𝑀𝑀𝑀(𝐵𝐵) is the number of bits to represent the 
Bayesian network, B, graph and probabilities. 
For this term, the minimum value is obtained 

with the simplest network structure. 

 

 
 

• 𝑀𝑀𝑀𝑀(𝑀𝑀|𝐵𝐵) is the number of bits to represent the 
dataset, D, given the Bayesian network, B. 
Here, the minimum value corresponds to the 
fully connected network, in which no structural 
independencies are stated. 

 

Thus, minimizing this score consists in finding the 
best trade-off between both terms. This can be 
achieved finding a point in between the simplest 
structure where the network is fully unconnected 
and the fully connected network, in which no 
structural independences are stated [20]. 

Finally, when the suitable model is found, the 
BN can be used to exploit the conceptual field by 
applying intercausal reasoning [22]. Major accidents 
generally do not originate from a single 
circumstance [23]. Their occurrence is determined 
by the interaction between the physical construction 
processes, the behavior of operators and the 
organizational elements.  

 
 

 
The intercausal reasoning technique opens the 

door to explore the probability of occurrence of 

Fig.2: Supervised BN with Naive Bayes algorithm. The mutual information result for each node is 
represented in a proportional way to its size. 
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certain events and its relation with producing 
particular types of accidents. The inference results 
will allow to define safety strategies which address 
specifically the root causes responsible for every 
type of accident in tunneling construction. 
 

5 Results and discussion 
The full range of risk factors identified in tunnel 
construction were ordered using the mutual 
information with regard to the type of accident. A 
simplified Bayesian model was built and the most 
likely accidents were quantified and analyzed. The 
use of intercausal reasoning showed the influence of 
specific variables in causing accidents. The results 
obtained are widely described in the next 
subsections. 
 

5.1 Prioritisation of safety risk factors 
The Bayesian analysis executed with the supervised 
learning approach and the measure of the mutual 
information allowed to establish a classification of 
the most influential variables causing accidents. Fig. 
2 shows the supervised BN built using the Naive 
Bayes algorithm. Every node contains the mutual 
information result. The units of mutual information 
are bits, because the log base 2 is used in (4). A 
complete summary of the mutual information result 
for every variable is presented in Table 2, ordered 
from the most to the least influential factor causing 
accidents in tunnel construction. 

As can be observed, excavation method (V17), 
operator training (V6), type of excavation section 
(V12), operator assigned work (V39), tunnel 
waterproofing (V33) and operator experience (V7) 
are identified, in that order, the six factors most 
affecting the occurrence of accidents. Conversely, 
steel ribs collocation (V29), vehicles interference 
(V21), stability of the excavation front (V15), tunnel 
section (V11), tunnel length (V10) and walls stability 
(V23) are the factors that less affect the occurrence 
of accidents. Some of these results are undoubtedly 
surprising. 

For example, it is an extended belief among 
civilians that the excavation stability is the major 
consequence of accidents in tunnel construction. 
However, the tremendous advances in the last 
decades in supporting technology of the 
underground construction industry have reduced 
notably this circumstance. This can explain that 
stability of the excavation front (V15) or walls 
stability (V23) are among the factors that affect the 
least accidents occurrence (Table II). 

Table II. Risk factors classification with respect to 
the information gain brought by each node to the 

knowledge of the type of accident 

  
 
However, the safety risks seem to move towards 

the increasingly diverse and complex excavation 
methods (V17), which require more operators with 
an appropriate training in occupational risks to 
accomplish the assigned works (V39), where 
experience plays a fundamental role (V7).  

These results shed light about the importance of 
training for workers. The more knowledge a worker 
has, the less risks will materialize. Therefore, the 
number of accidents will decrease and works will be 

Mutual 
Information

Relative 
significance

V17 Excavation method 0.0859 1.0000

V6 Operator training 0.0804 0.9368

V12 Type of excavation section 0.0773 0.9003

V39 Operator assigned work 0.0729 0.8486

V33 Tunnel waterproofing 0.0681 0.7930

V7 Operator experience 0.0642 0.7476

V18 Loading machinery 0.0576 0.6712

V26 Gas detection 0.0554 0.6451

V20 Type of hauling vehicle 0.0490 0.5704

V5 Operator seniority 0.0446 0.5191

V14 State of the floor surface 0.0441 0.5142

V24 Drilling machinery 0.0439 0.5115

V25 Dust collection 0.0415 0.4836

V16 Simultaneity of operations 0.0367 0.4277

V9 Signposting and signalling 0.0337 0.3924

V30 Rock bolts installation 0.0318 0.3707

V13 State of haul roads 0.0318 0.3702

V37 Outsourcing in the same cut 0.0307 0.3579

V8 Order and cleanliness 0.0305 0.3548

V19 Conveyor belt 0.0304 0.3540

V3 Machinery age 0.0288 0.3359

V32 Tunnel lining 0.0285 0.3323

V35 Lightning 0.0271 0.3156

V38 Works execution deadline 0.0270 0.3143

V28 Tunnel initial support 0.0246 0.2866

V22 Water drainage 0.0234 0.2724

V36 Outside communication system 0.0233 0.2714

V2 Shift duration 0.0211 0.2575

V27 Tunnel profiling 0.0194 0.2255

V34 Ventilation 0.0191 0.2219

V31 Type of shotcrete 0.0186 0.2164

V4 Machinery maintenance 0.0179 0.2086

V1 Shift work 0.0154 0.1788

V29 Steel ribs installation 0.0136 0.1579

V21 Vehicles interference 0.0133 0.1547

V15 Stability of the excavation front 0.0108 0.1256

V11 Tunnel section 0.0064 0.0742

V10 Tunnel length 0.0036 0.0415

V23 Walls stability 0.0030 0.0349

Network Nodes
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completed more frequent at the time scheduled. 
5.2 Bayesian model simplification 
The central premise of using mutual information as 
variable selection is that the data contains many 
features that are either redundant or irrelevant, and 
thus can be removed without incurring a significant 
loss of information [24]. 

The factors that statistically have shown a greater 
influence on accidents occurrence can be now used 
to create a simplified BN. This simplification does 
not invalidate a more generalized preventive study 
that takes into account all the possible factors. 
However, once it is demonstrated the low influence 
of some factors, their use increases the network 
complexity becoming the model redundant and 
inaccurate leading to possible deviations between 
the predicted results and those observed in reality. 
For this reason, in the simplified model were only 
considered those variables with a relative 
significance of at least 0.30 with respect to the 
information brought by the variable to the 
knowledge of the target node (red line, Table II). 
The relative significance expresses the ratio between 
the mutual information brought by each variable and 
the maximum mutual information brought by any 
variable, which corresponds to excavation method 
(V17). This choice allows to reduce the model from 
39 to 24 risk factors. The new BN model is shown 
in Fig. 3. 
 

 
 

Fig. 3: Simplified Bayesian network with SC=1 
 

This network was built using an Augmented 
Naive Bayes algorithm with a SC value of 1, which 
is the default value set to BayesiaLab’s algorithms. 
The possibility of manipulating the SC makes it 
possible for the analyst to change the weight of the 
structural part in the MDL score. The possible range 

of values for this SC parameter is 0 to 150 [20]. An 
SC value of 0 means that the MDL score is 
exclusive based on data fit, thus potentially resulting 
in a fully-connected network. At the other extreme, 
an SC value of 150 favors simplest and often 
unconnected structures. As such, this parameter 
works as a threshold. 

The higher the SC value, the stronger the 
probabilistic relations would have to be to result in a 
corresponding arc in the network. Conversely, the 
lower the SC value, the weaker the probabilistic 
relation can be while still being represented with an 
arc. The key point it is to find the right level of 
complexity of the network. 

Lowering the SC value can be particularly useful 
if the number of available observations is not 
excessively big, like in this case (212 accidents). 
However, choosing too low of an SC value might 
result in learning insignificant relationships and thus 
overfitting the network model to the data. To 
achieve a right balance it was performed a SC 
analysis in order to examine the data-to-structure 
ratio as a function of the SC (Fig. 3). 
 

 
Fig. 4: Data-to-structure ratio as a function of the 

SC value 
 
By analyzing the graph in Fig. 4, moving from 

right to left along the x-axis, an important inflection 
point of the curve can be seen around SC = 0.50. 
Below that value, the structural complexity of the 
network is increasing faster than the data likelihood. 
For this reason, it is chosen SC = 0.50 and relearn 
the network on that basis with the supervised 
learning algorithm Augmented Naive Bayes. 
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The resulting network in Fig. 5 is now more 

sophisticated than the original simplified network in 
Fig. 3, in terms of arcs representing dependencies of 
events. At this point, the factors whose cause-effect 
relationships are shown can be considered the most 
relevant for safety management in tunnel 
construction, according to the available data. 

 

 
 

 

Fig. 5. Simplified Bayesian network with SC=0.50 

 
Additionally, once the final BN was built (Fig. 5) 

the following results with regard to the type of 
accident were obtained (Fig. 6). The most likely 
type of accident was collision or hit with objects 
(28.30%), closely followed by falls from the same 
or different height (21.70%) and overexertion 
(21.23%).  

The least likely accidents were fires (0.94%), 
projection of fragments or particles (1.42%) and 
entrapment by or between objects (4.25%). Other 
interesting results concerning safety in tunnel 
construction were found looking at some specific 
factors. For example, at the moment of an accident, 
a total of 83% of the works execution deadline (V38) 
was delayed and tunnel lightning (V35) was 
unsatisfactory the 65% of the time. Another key 
factor in occupational accidents is the order and 
cleanliness (V8), which was found deficient in 82% 
of cases. Regarding technical aspects, the 
excavation method (V17) most likely to be associated 
with an accident was drilling and use of explosives 
(63%), far more than those excavation methods 

executed with excavators or roadheaders (37%).  
 

 
 
 

Fig. 6. Probability of occurrence for every type of 
accident 

 

5.3 Inference results 
One of the inherent abilities of Bayesian networks to 
explicitly model uncertainty is that they compute 
inference omni-directionally [22]. Given an 
observation with any type of evidence on any of the 
networks’ nodes, it is possible to compute the 
posterior probability of all other nodes in the 
network, regardless of arc direction. The impact of 
lack of experience joined to the lack of training is 
corroborated as a common cause of occupational 
accidents by several studies [25-29]. In Fig. 6 is 
evaluated this circumstance setting a hard evidence 
where there is no uncertainty regarding the state of 
the variable (V7), P(Operator experience=No)=100% .  

 

 
 
 

Fig. 7. Operator experience evidence-setting and 
inference results for operator training and type of 

accident. 

The inference results in Fig. 6 show that the 
operator inexperience is linked to high probabilities 
of an inadequate training, due to only 15.69% of 
operators had been trained before the 
commencement of the activity. Moreover, the lack 
of experience increases the risk of suffering certain 
accidents, such as those related to overexertion 
(from 21.23% to 23.53%) or exposure to corrosive 
substances or electrical contacts (from 5.19% to 
13.73%). In order to have a clearer picture of lack of 
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experience coupled with the lack of training, the 
inference results for every type of accident were 
plotted in Fig. 7. 

 

 
 

Fig. 8. Inexperience and lack of training impact on 
the different types of accidents in tunnel 

construction 
 

Accidents caused by projection of fragments and 
particles (type 4) and exposure to corrosive 
substances or electrical contacts (type 7) are the 
most sensitive to operators’ inexperience. When it 
comes to lack of training, projection of fragments 
and particles (type 4) and fires (type 8) are the 
accidents with the highest risk. This seems 
reasonable having into account that compliance with 
safety protocols it is something crucial when there is 
a fire or during the use of explosives. The ignorance 
of operators about how to react to unexpected 
situations promotes safety violations many related to 
a deficient hazard perception. Conversely, it is 
noticeable that types 1, 2 and 3, due to falls, 
detachments and collisions are the accidents for 
which operators present the lowest levels of 
influence regarding inexperience and lack of 
training.  

In summary, this knowledge modelling process 
and reasoning under uncertainty demonstrates the 
potential for safety risk analysis of reducing the 
problem complexity by using Bayesian networks. 

 
6 Conclusions 
Safety management of tunnel construction deals 
with complex work scenarios where accidents occur 
owing to a wide range of risk factors difficult to 
assess. This paper shows Bayesian networks and the 
use of mutual information as a powerful tool for 
data integration and knowledge reasoning in order 
to identify and cope with the principal occupational 
hazards responsible for accidents, as well as 
overruns and delays affecting the underground 

construction industry. 
A full range of risk factors identified in tunnel 

construction were prioritized using the mutual 
information with regard to their influence on 
accidents occurrence. The excavation method and 
the type of excavation section together with several 
issues concerning operators, such as training, 
experience or the assigned work were found the 
most influential factors on which efforts to reduce 
accidents should be focused. 

From these factors, a simplified Bayesian model 
was built, paying special attention to achieve a 
network design that accurately represent the 
dependencies of events. The resulting model 
allowed to identify collision or hit with objects the 
most likely type of accident, followed by 
overexertion. Finally, exploiting the possibility of 
Bayesian networks to analyse the conceptual field 
by applying intercausal reasoning different 
conclusions concerning the operators’ inexperience 
and lack of training were brought to light. The 
results obtained suggest that this type of network 
prioritisation and simplification can be reliably 
employed in the future in other fields with complex 
scenarios. 
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