
Training neural networks for financial forecasting:
Backpropagation vs Particle Swarm Optimization

Luca Di Persio
University of Verona

Department of Computer Science
Strada le Grazie, 15 - Verona

Italy
luca.dipersio@univr.it

Oleksandr Honchar
University of Verona

Department of Computer Science
Strada le Grazie, 15 - Verona

Italy
alex.gonchar@univr.it

Abstract: Neural networks (NN) architectures can be effectively used to classify, forecast and recognize quantity
of interest in, e.g., computer vision, machine translation, finance, etc. Concerning the financial framework, fore-
casting procedures are often used as a part of the decision making process in both trading and portfolio strategy
optimization. Unfortunately training a NN is in general a challenging task mainly because of the high number
of parameters involved. In particular, a typical NN is based on a large number of layers, each of which may be
composed by several neurons , moreover, for every component, normalization as well as training algorithms, have
to be performed. One of the most popular method to overcome such difficulties is represented by the so called back
propagation algorithm. Other possibilities are represented by genetic algorithms, and, in this family, the swarm
particle optimization method seems to be rather promising. In this paper we want to compare canonical back-
propagation and the swarm particle optimization algorithm in minimizing the error on surface created by financial
time series, particularly concerning the task of forecast up/down movements for the assets we are interested in.

Key–Words: Artificial neural networks, Multi-layer neural network, Backpropagation, Particle Swarm Optimiza-
tion, Stock markets, Time series analysis, Financial forecasting.

AMS classification: 62M45, 62F86, 68T05, 68T42, 91G60, 91G70

1 Introduction
A general forecasting process aims at producing a set
of outputs which are supposed to happen, with an es-
timated probability, in the future, the related mathe-
matical prediction being based on set of values (time
series) describing what has happened in the past. In
the present article we mainly deal with historical fi-
nancial data, assuming that the time series of daily
close prices. We assume that some aspects of the
past patterns also characterize present values influenc-
ing the future ones rather smoothly. Past relationships
can then be discovered through study and observation.
Such an approach is standard in classical financial en-
gineering technical analysis when observing candle-
stick patters to predict bull or bear behaviour of a
stock. The basic idea being to find an approximation
of the map that relates input and output as to discover
the implicit rules that influence future events. Arti-
ficial neural networks (ANN) architectures constitute
an efficient tool to learn such a relation by exploit-
ing time series of interest as set of training data, see,
e.g., [1, 2, 4, 5, 11, 12], and references therein. It
has been shown, that ANNs with non-linear activation

functions can approximate almost any function with
corresponding hyperparameters, see, e.g., [7, 9, 15]
It is worth to mention that aforementioned approach
has to be consider with a certain care. In particu-
lar, learning from past history is in general ill-posed
method. In fact, a good forecasting model has to be
sufficiently flexible to merge past infos with newer
ones. This allows to realize an adaptive way of predic-
tion. Concerning the latter issue, ANNs showed they
power in some applications to time series, in particu-
lar to financial time series, see, e.g., [8, 13], mainly
being backpropagating trained, by mean of classic al-
gorithm based on gradient descent optimization rou-
tine.

Swarm Intelligence (SI) originates from the study
of natural creatures behaving as a swarm where indi-
viduals follow simple rules, whereas the whole swarm
exhibits complex dynamics. SI based approaches
argue against the view that individuals are isolated
information-processing entities, while stressing the
fact that intelligent dynamics are produced by the
interaction among such individuals. Based on this
idea, Particle Swarm Optimization (PSO) algorithm

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Luca Di Persio, Oleksandr Honchar

E-ISSN: 2224-2899 597 Volume 13, 2016



has been shown to converge rapidly during the initial
stages of a global search, see, e.g., [6], and references
therein. Nevertheless, around global optimum, the
search process becomes very slow. On the contrary,
the gradient descending method can achieve faster
convergent speed around global optimum, and at the
same time, the convergent accuracy can be higher.

In this paper we want to study the behaviour
of ANN weights optimized by gradient descent, the
PSO and their mixture, see, e.g., [3, 10], to find an
optimal mix with respect to speed of convergence
and accuracy of predictions. In particular we show
how to use PSO to avoid ANNs bad performance in
predicting local optimum, when trained with wrong
hyper-parameters. The article is subdivided as fol-
lows: in Sec. 2 we specify the particular time series
we have considered, also explaining the basic choices
made with respect to the initialization of the ANNs
approach; then in Sec. 4 we provide the detailed
implementation of the proposed training algorithms,
namely we specify the Output layer, both the Hidden
layer N-1 and the Hidden layer N-2, and we describe
the PSO approach; eventually, in Sec. 5 we summa-
rize obtained results, while in the Appendix we give a
pseudocode used to implement the PSO method.

2 Data processing
In what follows we focus our attention on the S&P500
index, exploiting related data from 1950 to 2016
(16706 data points). Usually stock market data looks
like on Figure 1, which report the close prices for ev-
ery days in the aforementioned time interval.

Figure 1: S&P500 index data from 2006 to 2016.

Our goal is to predict the movements (up/down)
of the S&P500 index, exploiting related time series.
Suppose we are going to predict if the close price of

the next day, resp. minute, is larger or smaller than
the previous one, based on the last N , N ∈ N+, days,
resp. minutes, of observations. Then, from the ANNs
point of views, we have to choose appropriate time
window and prediction horizon during hyper parame-
ter optimization stage.

In our research we use return prices as more rep-
resentative data with normalization for stock price
movement forecasting problem. In particular, we nor-
malized our time series to have zero mean and unit
variance, making use of the sklearn library, see [14].
All existing time series have been splitted, accord-
ingly to the latter, in train, 80%, resp. in test dataset,
the remaining 20%. Moreover we use 10% of training
set for hyper parameter optimization. After empirical
tests on data, we can conclude that the best choice,
for every element of the train data set, is to consider a
normalized time series with length of N = 30. Based
on such a subdivision, we want to predict the next
day/minute transition [1; 0], if price goes up, resp. [0;
1] if it goes down.

3 Artificial neural networks
To describe ANNs we start with the definition of a
computationally modelled neuron. Essentially it is a
network of interconnected functional elements each of
which has several inputs, but only one output. We can
formalize it as follows

y(x1, . . . , xn) = f(w1x1+w2x2+. . .+wnxn) , (1)

where wi are parameters, f is the activation func-
tion, that is usually assumed to be non-linear as a sig-
moid, or as rectified linear unit (ReLU).

In this setting a relevant role is played by the
Single-Layer Perceptron architecture, characterized
by n inputs and one output, and formally defined as
follows

y(x1, . . . , xn) = f(w1x1 + . . .+ wnxn) . (2)

To gain flexibility in learning the decision hyper-
plane, we add a bias term w0 to the product sum:

y(x1, . . . , xn) = f(w0 +w1x1 + . . .+wnxn) , (3)

which implies the implementation of a simple al-
gorithm mainly inspired by biological neural system.
It is worth to mention that the latter can learn some
functions, but still has limited capabilities. A multi-
layer perceptron is then defined by connecting the out-
put of a basic-perceptron to the input of another one.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Luca Di Persio, Oleksandr Honchar

E-ISSN: 2224-2899 598 Volume 13, 2016



The hidden layer maps inputs into a second space:
feature space, and classification space. The latter al-
lows to simplify the output classification layer proce-
dure. In fact, each hidden unit computes a separation
of the input space, their combination can carve a poly-
tope in the input space to make output units possible
to distinguish polytope membership.

Basically, stacking the layers in neural network,
we achieve a superposition of functions f1 ... fn,
where n is the number of layers, namely

y(x1, . . . , xn) = fn(...f1(w0+w1x1+ . . .+wnxn)) .
(4)

4 ANN training algorithms
4.1 Backpropagation
Let us first recall some definitions: a Sigmoid func-
tion: σ(x) = 1

1+e−x ∈ (0, 1), with σ′ = σ(1− σ).

4.1.1 Output layer

Let us define the output unit by q, while the hidden
layer unit is indicated by m. Moreover we set

• Iq: summed input for unit q.

• Oq: softmax output of layer N, unit q

• WN : weight matrix from layer N-1 to layer N.

• BN : bias for layer N.

For the sake of clearness, the layer superscript is
dropped whenever there is no ambiguity and we will
use a different index letter for the nodes at each differ-
ent layer. Therefore there is no ambiguity concerning
which layer a node is located. Further, we indicate by
soft(.), the softmax function.

At each time frame t is (t is omitted for simplicity
whenever possible), we have

Iq = (
∑
m

wmqOm) + bq ,

Oq = soft(Iq) =
eIq∑
k e

Ik
,

where Om denotes the output of unit m, analo-
gously for the output of unit q.

In back propagation algorithm for conventional
ANN, the weight matrix is updated via stochastic gra-
dient descent, namely according to the following

ŵmq = wmq − α
∂F

∂wmq
,

b̂q = bq − α
∂F

∂bq
,

where F is the objective function.
With gradient descent, we compute the error sig-

nal and update the parameters per frame of input. At
the node q∗, we have an output represented by the soft-
max function. For simplicity, and only in this para-
graph, we use q to also denote the input to the node q,
i.e., q = Iq. The partial derivative of Oq∗ with respect
to Iq, is computed as follows:

∂F

∂wmq
= − 1

Oq∗
Oq∗(δqq∗ −Oq)Om

= −(δqq∗ −Oq)Om .

We can combine the above two formulas into one,
by using the Kronecker delta

∂Oq∗

∂Iq
= Oq∗(δqq∗ −Oq) .

4.1.2 Hidden layer N-1 and N-2

In what follows we consider hidden unit m at layer
N-1, and unit i at layer N-2.

The output of unit m is a sigmoid function, hence
its derivative reads as follow

Om = σ(Im) =
1

1 + e−Im
= (1 + e−Im)

−1

∂Om

∂Im
= −(1 + e−Im)

−2
(−1)e−Im

= (1 + e−Im)
−1 e−Im

1 + e−Im

= Om(1−Om) .

Analogously, for hidden unit i at layer N-2, and
unit j at layer N-3, the error signal of unit i is given
by

∂F

∂Ii
= − ∂F

∂Oi

∂Oi

∂Ii

= {
∑
m

ξmwim}(1−Oi)Oi

ŵji = wji + αξiOj

b̂i = bi + αξi .

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Luca Di Persio, Oleksandr Honchar

E-ISSN: 2224-2899 599 Volume 13, 2016



If j is the input layer, i.e. Layer 1, then Oj = Ij .

4.2 Particle Swarm Optimization
In this context, each particle is aD dimensional vector
Xi with velocity Vi and we assume that some objec-
tive fitness function f is given. If Pi : represents the
best position of particle i, Pg = maxi{Pi}, then the
evolution equation is as folllows

Vi(k + 1) = wVi(k) + c1r1(Pi −Xi(k))

+c2r2(Pg −Xi(k))

Xi(k + 1) = Xi(k) + Vi(k + 1) ,

where c1 > 0, c2 > 0 are constants, while r1, r2
are random numbers in [0, 1]. Iteration terminates af-
ter some time or after f(Pg) reaches some value. Such
a scheme can be adapted for a discrete 0/1 problem.
In particular, Vi evolves as above, with S being the
a logistic transformation into [0, 1], while xi,d is set
to one in each step with probability S(vi,d). For the
resulting PSO pseudocode see the Appendix.

5 Conclusion
In this paper we compared two algorithms that can be
used for training artificial neural networks. Training
neural networks is basically a minimization problem
of an error function defined over training set. Sev-
eral techniques can be applied to find a local mini-
mum. The canonic one, back-propagation with gra-
dient descent, is a stable method converging to some
local optimum. Nevertheless, being gradient-based,
it requires calculation of partial derivatives, demands
long convergence time, and tends to over-fit the cost
function if no regularization methods are applied. Par-
ticle swarm optimization (PSO) is a global search op-
timization algorithm which does not require deriva-
tives, but it tends to find an area about some optimal
point and is not suitable for finding a good weights
set for a neural network. However, these two methods
can be combined in a suitable way: first we perform a
global search by mean of the PSO approach, then we
fine-tune the given weights set by a gradient descent
method.

References:

[1] A. Dutta, G. Bandopadhyay and S. Sengupta,
Prediction of Stock Performance in the Indian
Stock Market Using Logistic Regression, Inter-
national Journal of Business and Information,
2012

[2] J. Chen , M. Chen and Nan Ye, Forecasting the
Direction and Strength of Stock Market Move-
ment, Technical report, 2013

[3] G. Dasa, P.K. Pattnaikb, S.K. Padhyc, Artificial
Neural Network trained by Particle Swarm Op-
timization for non-linear channel equalization,
Expert Systems with Applications, Volume 41,
Issue 7, 1, Pages 34913496, 2014

[4] L. Di Di Persio and O. Honchar, Artificial Neu-
ral Networks architectures for stock price pre-
diction:comparisons and applications: Forecast-
ing the Direction and Strength of Stock Market
Movement, submitted, 2016

[5] L. Di Di Persio and O. Honchar, Artificial neu-
ral networks approach to the forecast of stock
market price movements, International Journal
of Economics and Management Systems, Vol.1,
pages 158-162, 2016

[6] B.A. Garro and R.A. Vázquez, Designing Ar-
tificial Neural Networks Using Particle Swarm
Optimization Algorithms, Computational Intel-
ligence and Neuroscience, Volume 2015, Article
ID 369298, 20 pages, 2015

[7] G. L. Gilardoni , Very accurate posterior approx-
imations based on finite mixtures of the hyper-
parameters conditionals, Journal Computational
Statistics & Data Analysis, Volume 51 Issue 2,
Pages 872-884 , 2006

[8] W. Huang, K.K. Lai and Y. F. Nakamori, ore-
casting foreign exchange rates with arti cial neu-
ral networks: A review., International Journal
of Information Technology & Decision Making,
Vol.3(1):145165, 2004

[9] David J. C. MacKay , Comparison of approx-
imate methods for handling hyperparameters,
Journal Neural Computation, Volume 11 Issue
5, Pages 1035-1068 , 1999

[10] M. Meissner, M. Schmuker and G. Schnei-
der, Optimized Particle Swarm Optimization
(OPSO) and its application to artificial neural
network training, BMC Bioinformatics, Volume
7:125, 2006

[11] Y. Wang and In-Chan Choi, Market Index and
Stock Price Direction Prediction using Machine
Learning Techniques: An empirical study on the
KOSPI and HSI, Technical report, 2013

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Luca Di Persio, Oleksandr Honchar

E-ISSN: 2224-2899 600 Volume 13, 2016



[12] Wei Huang, Yoshiteru Nakamori, Shou-Yang
Wang, Forecasting stock market movement di-
rection with support vector machine, Computers
and Operations Research, archive Volume 32, Is-
sue 10, 2005, pp. 2513–2522

[13] E. Samolada and A. Zapranis, Can neural net-
works learn the head and shoulders technical
analysis price pattern ? Towards a methodology
for testing the efficient market hypothesis, Lec-
ture Notes in Computer Science, 4669, 2007

[14] Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M. and Duchesnay, E.,
Scikit-learn: Machine Learning in Python, Jour-
nal of Machine Learning Research Volume 12,
2011, pp.2825-2830

[15] Lecture Notes in Computer Science Volume
7700, Neural Networks: Tricks of the Trade,
Second Edition, Editors: Grgoire Montavon,
Geneviéve B. Orr, Klaus-Robert Müller, 2012.

Appendix

In what folllows we provide a pseudocode for the PSO
approach described in Subsection 4.2.

Input: ProblemSize, Populationsize
Output: Pg best

Population← ∅;
Pg best← ∅;
for i = 1 to Populationsize do

Pvelocity ← RandomVelocity();
Pposition←
RandomPosition(Populationsize);
Pp best← Pposition;
if Cost(Pp best) ≤ Cost(Pg best) then

Pg best← Pp best;
end

end
while ¬StopCondition() do

foreach P ∈ Population do
Pvelocity ←
UpdateVelocity(Pvelocity, Pg best,
Pp best);
Pposition←
UpdatePosition(Pposition,
Pvelocity);

if Cost(Pposition) ≤ Cost(Pp best)
then
Pp best← Pposition;
if Cost(Pp best) ≤ Cost(Pg best)

then
Pg best← Pp best;

end
end

end
end
return Pg best;

Algorithm 1: Pseudocode for PSO.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Luca Di Persio, Oleksandr Honchar

E-ISSN: 2224-2899 601 Volume 13, 2016




