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Abstract: - In this paper, we present alternative methods to evaluate the presence of the arbitrage opportunities 

in the market. In particular, we investigate empirically the well-known put-call parity no-arbitrage relation and 

the state price density. First, we measure the violation of the put call parity as the difference in implied 

volatilities between call and put options that have the same strike price, the same maturity and the same 

underlying asset. Then, we examine the nonnegativity of the state price density since its negative values 

immediately correspond to the possibility of free-lunch in the market. We evaluate the effectiveness of the 

proposed approaches by an empirical analysis on S&P 500 index options data. Moreover, we propose different 

approaches to estimate the state price density under the classical hypothesis of the Black and Scholes model. In 

this context, we use two different methodologies to evaluate the conditional expectation and its relationship 

with the state price density. Firstly, we examine the real mean return function using local polynomial 

smoothing technique. Then, we evaluate the conditional expectation using the real probability density. 

According to the hypothesis of the Black and Scholes model, we are able to derive a closed formula for 

approximating the conditional expectation with the risk neutral probability. Finally, we propose a comparison 

among two estimators of the state price density. 
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1 Introduction 
The option-pricing theory has had a central role in 

modern finance ever since the pioneering work of 

Black and Scholes [3] (hereinafter BS). The main 

idea behind BS option pricing model is that the 

price of an option is defined as the least amount of 

initial capital that permits the construction of a 

trading strategy whose terminal value equals the 

payout of the option. BS model has a great 

importance for improving research on the option 

pricing techniques. Unfortunately, widespread 

empirical analyses point out that a set of 

assumptions under which BS model built, 

particularly normally distributed returns and 

constant volatility, result in poor pricing and 

hedging performance. However, different 

generalizations of the BS model have been proposed 

in literature - see e.g. Merton [16], Heston [17] and 

Bates [7] for more details. Generally, most models 

that have been proposed so far mainly relax some 

assumptions of BS model and then trying to be 

justified via general fundamental theorem of asset 

pricing-FTAP, Harrison and Kreps [12]. This 

theorem provides many challenges in asset pricing 

theory. In particular, it asserts that the absence of 

arbitrage in a frictionless financial markets if and 

only if there exist an equivalent martingale measure 

under which the price process is a martingale.  

     One fundamental entity in asset pricing theory is 

the so called State Price Density (hereinafter SPD). 

Among no-arbitrage models, the SPD is frequently 

called risk-neutral density, which is the density of 

the equivalent martingale measure with respect to 

the Lebesgue measure. The existence of the 

equivalent martingale measure follows from the 

absence of arbitrage opportunities, while its 

uniqueness demands complete markets. Breeden and 

Litzenberger [4] proposed an excellent framework 

to fully recover the SPD in an easy way. In this 

method, the SPD is simply equal to the second 

derivative of a European call option with respect to 

the strike price, see among others Brunner and 
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Hafner [5] for other estimation technique. 

Furthermore, it is well known that option prices 

carry important information about market conditions 

and about the risk preferences of market 

participants. In this context, the SPD function 

derived from observed standard option prices have 

gained considerable attention in last decades. 

Indeed, an estimate of the SPD implicit in option 

prices can be useful in different contexts, see among 

others Ait-Sahalia and Lo [1]. The most significant 

application of the SPD is that it allows us computing 

the no-arbitrage price of complex or illiquid option 

simply by integration techniques.                

     The first fundamental contribution of this paper 

is to evaluate the presence of arbitrage opportunities 

in the market. To do so, we focus on the violation of 

the put-call parity no-arbitrage relation and the 

nonnegativity of the SPD. Firstly, we measure the 

violation of put-call parity as the difference in 

implied volatility between call and put options that 

have the same strike price, the same expiration date 

and the same underlying asset. Secondly, we 

compare this result with that obtained from the 

violation of the nonnegativity of the SPD. This is 

important, because negative values of the SPD 

immediately correspond to the possibility of free-

lunch in the market.   

     The second crucial contribution of the paper is to 

propose different approaches to estimate the SPD. 

We deviate from previous studies in that we 

estimate SPD directly from the underlying asset 

under the hypothesis of the BS model. To this end 

we follow two distinguished approaches to recover 

the SPD, the first one based on nonparametric 

estimation techniques “kernel” which are natural 

candidates (see among others [1], [2]), then a new 

method based on conditional expectation estimator 

proposed by [18]. Firstly, we examine the so called 

real mean return function using local polynomial 

smoothing technique. Then, we estimate the 

conditional expectation under real probability 

density. According to the hypothesis of BS model, 

we are able to derive a closed formula for 

approximating the conditional expectation under 

risk neutral probability. The main goal of this 

contribution is to examine and compare the 

conditional expectation method and the 

nonparametric technique. These methods allow us 

extrapolating arbitrage opportunities and relevant 

information from different markets (futures and 

options) consistently with the analysis of the 

underlying. 

     The rest of this paper is organized as follows. 

Section 2 presents some methods to evaluate the 

arbitrage opportunities. Section 3 illustrates the first 

empirical analysis. Section 4 proposes alternative 

methods to estimate the SPD. Section 5 includes the 

second empirical analysis.  Concluding remarks are 

contained in Section 6. 

 

 

2 Methods to evaluate the arbitrage 

opportunities 
 

2.1 Black and Scholes methodology  
Fisher Black and Myron Scholes [3] achieved a 

major breakthrough in European option pricing. In 

this model we assume that the price process follows 

a standard geometric Brownian motion defined on 

filtered probability space  
0

( , ,P, )t t
   , where 

 
0t t

  is the natural filtration of the process 

completed by the null sets. Under these assumptions 

we know that  E(S | ) E(S |S )T t T t   as 

consequence of Markovian property. The model of 

stock price behavior used is defined as: 

                         
,dS Sdt SdB                        (1) 

where, 
 
is the expected rate of return,  is the 

volatility of stock return and B denotes a standard 

Brownian motion. Under this hypothesis we know 

that the log price is normally distributed: 

              
 2 2

0ln ln 0.5~ ,,TS S T T    
 

    (2) 

where, TS  is the stock price at future time T, 0S  is 

the stock price at time 0 and   denotes a normal 

distribution. Please note that   in equation (1) 

represents the expected rate of return in real world, 

while in BS model (risk neutral world) it becomes 

risk-free rate r .
1
 

 

 

2.2 Put-call parity 
We recall an important relationship between the 

prices of European put and call options that have the 

same strike price and the same time to maturity. 

This relationship is known as put-call parity, see 

Stoll [20]. In particular, it shows that the value of a 

European call option with a certain strike price and 

expiration date can be deduced from the value of a 

European put option with the same strike price and 

expiration date, and vice versa. Formally, in perfect 

                                                 
1
  For more details about BS assumptions we refer 

to Hull [2015] 
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markets, the following equality must hold for 

European options on non-dividend-paying stocks: 

                                0 ,rtC P S Ke                   (3) 

where, 0S  is the current stock price, C and P are the 

call and put prices, respectively, that have the same 

strike price K , the same expiration date and the 

same underlying asset.    

    To illustrate the arbitrage opportunities when 

equation (3) does not hold, we measure the violation 

of put-call parity as the difference in implied 

volatility between call and put options that have the 

same strike price, the same expiration date and the 

same underlying asset. In this context, it is well 

known that the BS model satisfies put-call parity for 

any assumed value of the volatility parameter . 

Hence, 

           0( ) ( )BS BS rtC P S Ke        0,     (4) 

where, ( )BSC   and ( )BSP   denotes BS call and 

put prices, respectively, as a function of the 

volatility parameter . At this point, from equation 

(3) and (4) we can deduce that: 

           
( ) ( ) C PBS BSC P        0,           (5) 

By definition, the implied volatility (IV) of a call 

option ( )callIV  is that value of the volatility of the 

underlying asset, which matches the BS price with 

the price actually observed on the market. In formal 

way:  

                                
( ) ,BS callC IV C                   (6) 

Now, it is straightforward form equation (5) that: 

                                
( ) ,BS callP IV P                   (7) 

this in turn implies that: 

                                 .call putIV IV                      (8) 

     Put-call parity holds only for European options. 

Thus, for this type of options, put-call parity is 

equivalent to the statement that the BS implied 

volatilities of pairs of call and put options must be 

equal. Therefore, any violation of put-call parity 

may contain useful information about the presence 

of tradable arbitrage opportunities. No attempt will 

be made to formulate the case of American option, 

which beyond the scope of this study. However, it 

possible to derive some results for American options 

price, where put-call parity takes the form of an 

inequality.  

    In this paper, we will carry the analysis on the 

European options style. Since put-call parity is one 

of the best known no-arbitrage relations, we use the 

difference in implied volatility between pairs of call 

and put options in the spirit of equation (8) in order 

to detect the presence of arbitrage opportunities in 

the market. Intuitively, lower call implied 

volatilities relative to put implied volatilities means 

that calls are less expensive than puts, and lower put 

implied volatilities with respect to call implied 

volatilities suggest the opposite.  

    We compute the difference in implied volatilities 

between call and put options that have the same 

strike price, the same maturity and are written on the 

same underlying asset. Hence, we refer to such 

difference as volatility spread (VS) which may 

represent a valid indicator of the presence of 

arbitrage opportunities in the market, especially 

close to at-the-money options. Formally, given call 

and put options with the same strike price and 

expiration date, we compute the VS as: 

                       max | |call putVS IV IV               (9) 

   Of course, higher volatility spread is a significant 

indicator of arbitrage opportunities since put-call 

parity is a fundamental relation of no-arbitrage. A 

simple example illustrates intuitively this result.   

Example: Consider a put option on S&P 500 index 

with strike price 2200K   and has 6 months to 

maturity. The current underlying asset price is 

0 2100S   and the 6-month risk free rate of return is

0.08%r  . Let us assume that the price of this put 

option is 160P   and the price of the call option on 

the S&P 500 index with the same strike price and 

the same maturity is 120C   . It is very simple to 

verify that the put-call parity does not hold and that 

the volatility of call option is greater than the 

volatility of the put option. Indeed, 

0 2240 2299.1rTP S C Ke     ,  

0.2723callIV  ,  0.1699putIV   and  

0.1024VS   

Arbitrage position: Buy the put option at 160P   
and the stock at 0 2100S  , then sell the call option 

at 120C  . To finance this position, borrow:   

0 160 2100 120 2140D P S C        
at 0.08%.r   

Payoff to this arbitrage position: 

 If 2100TS  , the trader exercises the put 

option and the payoff is: 
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(K ) 59.14rT
T TS S De   

 
 If 2100TS  , the short call option 

exercised and the payoff is: 

( ) 59.14rT
T TS S K De   

 

In both cases, the trader ends up with a payoff of 

59.14 and selling the stock at 2200K  .  

    This example illustrates the situation when the 

call implied volatility is greater than the put implied 

volatility, such that the option has the same strike 

price, the same maturity and is written on the same 

underlying asset. On the opposite, lower call 

implied volatility relative to put implied volatility 

means that call option is less expensive than put 

option. Therefore, one may follow the simplest 

strategy that involves buying the call option and 

shorting both the put option and the stock. 

    The efficacy of this theoretical arbitrage 

mechanism in maintaining put and call price parity 

will be examined empirically. However, several 

papers argue that violations of the put-call parity can 

be justified via the short sale constraint, data-related 

issues or even the payment of dividend streams, see 

among others Ofek et al [9]. To overcome these 

issues and to have a valid confirmation of this 

approach we will proceed as follows. We combine 

the IV smoothing with SPD estimation which 

requires some properties in order to be consistent 

with no-arbitrage argument. In particular, we 

evaluate the nonnegativity property of the SPD 

since its negative values immediately correspond to 

the possibility of the arbitrage opportunities in the 

market. To this end we follow a relatively 

conservative approach adopted by Benko et al [2]. 

 

 

2.3 State price density  
SPDs derived from cross-sections of observed 

standard option prices have gained considerable 

attention during last decades. Since given an 

estimate of SPD, one can immediately price any 

path independent derivative. Clearly, the well-

known arbitrage free pricing formula is of vital 

practical importance. In this approach, the option 

price is given as the expected value of its future 

payoff with respect to the risk-neutral measure Q 

discounted back to the present time t. Formally, the 

price (H)t  at time t of a derivative with expiration 

date T and payoff –function H(S )T is given by: 

 ( ) ( )

0

(H) H | H(s) (s) ,
T

r T t Q r T t
t t Se E e q ds


                   

 0,t T 
                                                               

(10) 

where, (s)
TSq  denotes the SPD. In this context, one 

fundamental founding in literature is the relationship 

between SPD and implied volatility (IV) e.g. see 

among others Hafner and Brunner [5]. 

      In this paper, in line with Benko et al [2], we 

apply local polynomial smoothing technique to 

estimate IVs, and then the SPD. To this end, we first 

establish the relation between SPD and IVs and then 

we summaries some properties that SPD demands in 

order to be consistent with no-arbitrage argument.  

     It is well known that in the BS model the SPD is 

assumed to be a lognormal density with mean 

2( 0.5 )r    and variance
2  . In this context, the 

price of a European call option tC
 
with expiration 

date T and strike price K can be obtained: see Black 

and Scholes [3] 

         1 2( , , , , ) ( ) ( ),r
t t tC S K r S d Ke d       (11) 

where, 
2

1

ln( / ) ( 0.5 )tS K r
d

 

 

 
 , 

2 1d d    , T t    is time to maturity, r  is a 

riskless interest rate and ( )   is the standard normal 

distribution function. The BS formula provides a 

correspondence between the price of a plain option 

and the underlying asset volatility. However, it is 

well known that implied volatilities of quoted 

European options are not constant and depend on 

the strike price and the maturity of the option. 

    Breeden and Litzenberger [4] derived an elegant 

formula for obtaining an explicit expression for the 

SPD from option prices. In fact, they observed that 

the second derivative of the call price function 

( , )tC K T with respect to the strike price K is 

proportional to the SPD. Formally:  

            

2
( )

, 2

( , )
( , ) .

T

r T t t
t S

K x

C K T
q x e

K
 







       

(12) 

The last formula is of great practical importance. 

Since for any fixed time T, the relation between 

SPD and IV can be obtained simply by a successive 

application of (11) and (12). After some algebra, 

applying chain rule for derivatives one get:  
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,

1

2

21 2
1 2

2

( , )

2 ( , )1 ( , )

( , )( , )
(d ( , )) ,

( , ) ( , )

( , )

Tt S

K x
r

t

K x K x

q x

d x K

Kx xx K
e S x

d x d x

x K K





  

    
 

   

 



 



 
  

  
 

   
       

    (13) 

where, 
   2

1

ln 0.5 ( , )
( )

( , )

tS x r x
d x

x

  

  

 


2 1( , ) ( , )d d x x      and ( )   is  the p.d.f. of a 

standard normal random variable, we refer the 

reader to Benko et al [2] and Brunner and Hafner [5] 

for further details.  

     Following Carr [6] and Brunner and Hafner [5] 

the SPD has to satisfy a set of properties. Formally: 

 Nonnegativity property:  the SPD is 

nonnegative, i.e.: 

                             
, ( ) 0,

Tt Sq x     [0, )x           (14)  

 Integrability property: the SPD integrate to 

one, i.e.: 

            

,

0

( ) 1
Tt Sq x dx



                             (15) 

 Martingale property: the SPD reprices all 

calls, i.e.:  

  ( )
,

0

max ,0 ( ) ( , ),
T

r T t
t S tx K q x dx e C K T


                         

0.K                                                         (16) 

The first two properties ensure that the SPD is 

indeed a probability density. Furthermore, if , Tt Sq

satisfies the three properties, it is a well-defined 

SPD and the market is free of arbitrage 

opportunities with respect to maturity T. 

 

 

3 First empirical analysis 
In this section, we report numerical experiments 

obtained using the methods introduced to detect the 

presence of arbitrage opportunities in the market. To 

evaluate the empirical importance of these 

techniques and the corresponding SPD estimate, we 

present some applications to the S&P 500 index 

using daily data obtained from DataStream for the 

sample period December 26, 2012 to May 13, 2015. 

Of course, S&P 500 Index options are among the 

most actively traded financial derivatives in the 

world.  

       In the first empirical application to S&P 500 

index options we present the analysis concerning the 

estimation of IVs. For this purpose we use as dataset 

all options listed on May 13, 2015. The options are 

European style and the average daily volume during 

the sample day was 82.65 and 179.01 contracts for 

call and put respectively. Strike price is at 130 

percent and barrier at 70 percent of the underlying 

spot price at 2098.48, while strike price intervals are 

5 points. During sample period, the mean and 

standard deviation of continuously compounded 

daily returns of the S&P index are 1.078 percent and 

11.268 percent, respectively. Throughout this period 

short-term interest rates exhibit a very low level. 

They range from 0.01 percent monthly to 0.89 

percent in almost three years. The options in our 

sample vary significantly in price and terms, for 

example the time-to-maturity varies from 2 days to 

934 days. 

     The row data present some challenges that must 

be addressed. Clearly, in-the-money (ITM) options 

are rarely traded relative to at-the -money (ATM) 

and out-the-money (OTM) options. For example, 

the average daily volume for puts that are 25 points 

OTM is 2553 contracts, in contracts, the volume for 

puts that are 25 points ITM is 2. This can be 

justified by the strong demand of portfolio managers 

for protective puts. 

    Figure 1 shows the IV surface estimated using put 

options for the daily data on May 13, 2015. The IV 

smile is very clear for small maturities and still 

evident as time to maturity increases.  

 

Figure 1: Implied volatility surface of S&P 500 put 

options 

 

      To evaluate the presence of arbitrage 

opportunities, we compute the difference in implied 
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volatilities between call and put options that have 

the same strike price, the same maturity and are 

written on the same underlying asset. In particular, 

we consider the differences that are greater than 80 

percent of the maximum absolute value of the 

differences between call and put implied volatilities.   

In this way, we rule out some differences due to the 

noisy data or transaction costs.  Figure 2 shows the 

differences in implied volatilities between call and 

put options. 

 

Figure 2: Implied volatility surface differences 

 

In Figure 2, it is clear that the differences are 

significant at lower moneyness which corresponds 

to OTM put options and ITM call options. However, 

since the market increases and it is well known that 

OTM put options and ITM call options are not 

reliable data to evaluate arbitrage opportunities, we 

focus on at ATM options. From figure 2, we 

observe even at ATM option there are small 

differences, which may represent arbitrage 

opportunities.  In particular, the differences increase 

as the maturities increase.  

     To evaluate the size of the arbitrage 

opportunities, we combine the IV smoothing with 

SPD estimation. This is important, because the SPD 

requires some properties in order to be consistent 

with no-arbitrage argument. In particular, we 

examine the nonnegativity property of the SPD 

since its negative values immediately correspond to 

the possibility of the arbitrage opportunities in the 

market. To this end we follow a relatively 

conservative approach adopted by Benko et al [2]. 

The last approach is of great practical importance 

and mainly confirms the result obtained via the 

violation of the put call parity relation. 

      The second contribution of this paper is to 

propose different methods to estimate SPD under 

the classical hypothesis of BS model. In particular, 

we use two different methodologies to evaluate the 

conditional expectation. Namely, the nonparametric 

estimator based on kernel estimator and a new 

alternative technique the so called OLP estimator 

proposed by Ortobelli et al [18]. Differently from 

previous studies we estimate SPD directly from the 

underlying asset under the hypothesis of the BS 

model. To do so, firstly we examine the real mean 

return function using local polynomial smoothing 

technique. Then, we estimate the conditional 

expectation under real probability density. 

According to the hypothesis of the BS model, we 

are able to derive a closed formula for 

approximating the conditional expectation under 

risk neutral probability. Now, we describe in details 

our alternative approach towards estimating the 

SPD. 
 

 

4 Alternative methods to estimate the 

SPD 

For the sake of clarity, denote RWS  for a real world 

price and RNS for the risk neutral price. Under the 

hypothesis of the BS model it is straightforward to 

write:    

                           
( ) ,RN RW r T

T TS S e                   (17) 

Since (T t) ( | )r RN
t T tS e E S   , we can write 

(T t) ( )( | )r RW r T
t T tS e E S e       

from which we 

obtain:  

                  
( | ) ( | ),RN T rt RW

T t tE S e E S       (18) 

If we assume 
 
changes over time in model (1), 

then equation (18) becomes  

           

 ( )
0 ( | ) ( | ),

T
r d Q

T t T te E S E S
   

  


   
(19) 

where, ( | )Q
T tE S   denotes expectation under risk 

neutral world and (S | )T tE   
the conditional 

expected price under real world. Moreover, (19) is 

equivalent to:  

   

( )
0

0 0
(s) (s)ds,

T
d rT

RW RNe sq ds e sq
     


 

  
(20) 

where, q (s)RW  and ( )RNq s  denotes SPDs under 

real and risk neutral world respectively. Please note 

that under the BS hypothesis T tS   has the same 

distribution as .t
TS e 

 
 

 

4.1 Local polynomial regressions  
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The first step in this approach is to propose a direct 

method of estimating the real mean return function. 

Therefore, we use a local estimator that 

automatically provides an estimate of the real mean 

function and its derivatives. The input data are daily 

prices. Denoting the intrinsic value by i  
and the 

true function by ( )it , 1,...., ,i n  we assume the 

following regression model: 

                              
( ) ,i i it                           (21) 

where, i  models the noise, n denotes the number 

of data considered.  The local quadratic estimator 

ˆ ( )t  of the regression function ( )t  in the point t  

is defined by the solution of the following local least 

squares criterion:  

 2
0 1 2

, ,0 1 2 1

min ( ) ( ) ( ),
n

i i i h i

i

t t t t k t t
  

   


     

                           (22) 

where, 
1

( ) i
h i

t t
k t t k

h h

 
   

 
 is kernel function, see 

Fan and Gijbels [10] for more details. Comparing 

the last equation with the Taylor expansion of   

yields: 

           0 ˆ( )it  ,
'

1 ˆ ( )it  ,
''

2 ˆ2 ( ),it         (23) 

which make the estimation of the regression 

function and its two derivatives possible. The 

second step towards estimating state price density is 

to use two methodologies, namely OLP estimator 

and kernel estimator, to estimate the quantity

(S |S )T tE . 

 

 

4.2 Nonparametric conditional expectation 

estimators   

Regression analysis is surely one of the most 

suitable and widely used statistical techniques. In 

general, it explores the dependency of the so-called 

dependent variable on one (or more) explanatory or 

independent variables. Without significant loss of 

generality, the mathematical notation changes in this 

section (the distinction of the variables will always 

be clear from context). Interpret Y  as ST , while X

as St . 

            
( | ) ( ) .Y E Y X x g x                    (24) 

It is well known that, if we know the form of the 

function ( ) ( | )g x E Y X x  , (e.g. polynomial, 

exponential, etc.), then we can estimate the 

unknown parameters of ( )g x with several methods 

(e.g. least squares). In particular, if we do not know 

the general form of ( )g x , except that it is a 

continuous and smooth function, then we can 

approximate it with a non-parametric method, as 

proposed by [8] and [11]. The aim of the non-

parametric technique is to relax assumptions on the 

form of regression function and to allow data search 

for an appropriate function that represents well the 

available data, without assuming any specific form 

of the function. Thus, ( )g x can be estimated by: 

                   

1

1

( )
ˆ ( ) ,

( )

n
i

i

i
n n

i

i

x x
y k

h n
g x

x x
k

h n





 
 
 


 
 
 





                  (25) 

where, ( )k   is a density function such that: i)

( ) Ck x   , ii) lim ( ) 0
x

xk x


 , iii) ( ) 0h n 

when n . h is a bandwidth, also called a 

smoothing parameter, which controls the size of the 

local averaging.  The function ( )k x  is called the 

kernel; observe that kernel functions are generally 

used for estimating probability densities non-

parametrically (see [21]). An overview of 

nonparametric regression or smoothing techniques 

may be found, e.g. among others Fan and Gijbels 

[10]. 

    An alternative non-parametric approach for 

approximating the conditional expectation denoted 

by “OLP” has been given in [18]. Define by    the 

σ-algebra generated by X (that is     ( )  
   ( )  *   ( )    +, where   is the Borel 

σ-algebra on  ). Observe that the regression 

function is just a “pointwise” realization of the 

random variable  (    ), which can equivalently 

be denoted by  (   ). The following methodology 

is aimed at estimating  (   ) rather than  ( ). For 

this reason, we propose the following consistent 

estimator of the random variable  (   ). 
    Let       and       be integrable random 

variables in the probability space (     ). Notice 

that:  (   ) is equivalent to  (    ). We can 

approximate    with a σ-algebra generated by a 

suitable partition of  . In particular, for any    , 

we consider the partition {  }   
  

 *        + of 

  in    subsets, where b is an integer number 

greater than 1 and: 

    *   ( )    
  (

 

  
)+, 

    *    
  (

   

  
)   ( )    

  (
 

  
)+,    

for h=2,…,b
k
–1, 
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       ⋃   
    
    *   ( )  

  
  (

    

  
)+. 

Thus, starting with the trivial σ-algebra     
*   +, we can generate a sequence of sigma 

algebras generated by these partitions obtained by 

varying k (k=1,…,m,…). Thus, 

    *           + is the sigma algebra 

generated by    *   ( )    
  (   )+, 

   {    
  (

   

 
)   ( )    

  (
 

 
)}  s=1,...,b-1 

and    *   ( )    
  ((   )  )+ , 

moreover:              

             ({  }   
  

)                                (26) 

Under these hypotheses [18] proved that: 

             (   )         (    )  a.s.             (27) 

where,  (    )( )  ∑  (    )   ( )
  

    a.s. 

and     ( )  {
        
        

  

When b is large enough, even  (    ) can be a 

good approximation of the conditional expected 

value  (   ). On the one side, given N i.i.d. 

observations of Y, we get that  
 

   
∑       (where 

    is the number of elements of   ) is a consistent 

estimator of  (    ). On the other side, if we know 

that the probability    is the probability of the i-th 

outcome    of random variable Y, we get  (    )  

∑           (  )⁄ , otherwise, we can give a 

uniform weight to each observation, which yields 

the following consistent estimator 

of  (    )= 
 

   
∑        , where     is the number 

of elements of   . Therefore, we are able to 

estimate  (    ), that is a consistent estimator of 

the conditional expected value  (   ) as a 

consequence of Proposition 1 in [18]. 

 

 

5 Second empirical analysis 
In the second empirical analysis, we present an 

application to the S&P 500 index using daily data 

for the sample period April 28, 2014 to April 28, 

2015. In this context, we use Treasury Bond 3 

months as a riskless interest rate for a period 

matching our selecting data. Firstly, we examine the 

real mean return function using local polynomial 

smoothing technique (22). The results of this 

analysis are reported in Figure 3. 

 

Figure 3: Real mean return function estimation over 

time 

 

     Secondly, we evaluate the conditional expected 

price using both estimators, namely kernel estimator 

and OLP, to estimate (S |S )T tE  as described above. 

Finally, we use the relationship (19) in order to 

recover the SPD. The results of this analysis are 

reported in Figure 4. 

 

Figure 4: State Price Densities obtained with Kernel 

and OLP estimators 

 

 

 

     From Figure 4 we note a slight difference in the 

result obtained from both estimators.  This result 

can be explained by the nature of the two 

methodologies. In particular, the OLP method 

proposed by [18] yields a consistent estimator of the 

random variable ( | )E X Y , while the generalized 

kernel method proposed in equation (25) yields a 

consistent estimator of the distribution function of 

( | )E X Y .Thus, OLP method that yields consistent 

estimators of random variables ( | )E X Y  can be used 

to evaluate the SPD. 
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6 Conclusion 

In this paper, we present alternative methods to 

evaluate the presence of arbitrage opportunities in 

the market. In particular, we examine the violation 

of the well-known put-call parity no-arbitrage 

relation and the nonnegativity of the SPD. Then, we 

propose different methods to estimate SPD.  

Particularly, we use two distinct methodologies for 

estimating the conditional expectation, namely the 

kernel method and the OLP method recently 

proposed by [18]. We deviate from previous studies 

in that we estimate SPD directly from the 

underlying asset under the hypothesis of BS model. 

To this end, firstly we examine the real mean return 

function using local polynomial smoothing 

technique. Then, we estimate the conditional 

expectation under real probability density. Under 

the hypothesis of BS model, we are able to derive a 

closed formula for approximating the conditional 

expectation under risk neutral probability. This 

analysis allows us extrapolating arbitrage 

opportunities and relevant information from 

different markets (futures and options) consistently 

with the analysis of the underlying. 
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