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Abstract - Financial theory is based on the trade-off between risk and return. However there is not a 
mathematical formulation of this dependence. Therefore, in this paper we estimate the dependence, through 
copula families, between risk and return in Latin markets, taking into consideration the U.S. market. For that, 
we use data from S&P500, Ibovespa, merval and IPC daily prices from January 2009 to December 2010, 
totaling 483 observations. In order to estimate risk we use a copula-based multivariate GARCH model. To 
test the copulas´ fit we use an adaptation of the Cramér-von Mises statistics. Results indicate that although 
linear correlation is not significant, risk and return are dependent on Latin markets. Further, there is a difference 
in the relationship between the studied markets.  
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1 Introduction 

Dependence between risk and return has always 
been of fundamental importance to financial 
economics. The study of volatility has great 
importance in finance, particularly in derivative 
pricing and risk management. Traditionally, the 
calculation of volatility estimates, as well as its 
application in determining value at risk (VaR) or 
hedging a portfolio relies on daily price changes 
[23].  

Since the proposal of Generalized Auto-
Regressive Conditional Heteroscedastic (GARCH) 
family models by [15] and [5] to account for 
variance heterogeneity in financial time series, a 
huge number of multivariate extensions of GARCH 
models have been introduced. The most 
consolidated models in literature are the Constant 
Conditional Correlation (CCC-GARCH) model of 
[6], the BEKK model of [16] and later the Dynamic 
Conditional Correlation (DCC-GARCH), developed 
by [14] and [38]. These models are based on 
multivariate Gaussian distributions, or a mixture of 
elliptical distributions, where care has to be taken to 
result in positive definite covariance matrices.  

However, this assumption is unrealistic, as 
evidenced by numerous empirical studies, which 
show that many financial asset returns are skewed, 
leptokurtic, and asymmetrically dependent ([30]; 

[1]; [33]). Hence, these characteristics should be 
considered in the specifications of any effective 
hedging model or estimative of portfolio VaR. 

These difficulties can be treated as a problem of 
Copulas. A copula is a function that links univariate 
marginals to their multivariate distribution. Since it 
is always possible to map any vector of random 
variables into a vector with uniform margins, we are 
able to split the margins of that vector and a 
summary of the dependence, which is the copula. 
The concept of copula was introduced by [37] and 
studied by many authors such as [10], [18]. The use 
of copulas for modeling the residual dependence 
between assets has recently appeared in empirical 
studies ([28]; [3]; [31]). 

Thus, this paper aims to determine which family 
of copulas is best suited for the relationship between 
risk and  return of the Latin American financial 
markets (Brazil, Argentina and Mexico) considering 
the U.S. market influence, analyzing the period after 
the 2007/2008 subprime crisis. [35] estimate 
conditional variance in these relationships and 
verify that Latin markets are relevant options for 
international diversification of investors with 
positions in U.S. assets. These Latin American 
emerging markets rank among the most mature 
markets within the universe of emerging countries 
and they actually attract a particular attention from 
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global investors because of their great market 
openness ([2]). This question is investigated testing 
the fitting performance of copulas for S&P500, 
Ibovespa, Merval and IPC from January, 3, 2009 to 
December, 31, 2010, totaling 483 observations.  

The econometric procedure by [36] estimates 
copula families to determine shape and magnitude 
of non-linear serial and cross-interdependence 
between returns and volatilities of financial assets. 
First, we estimate dynamic conditional covariance 
matrix through Copula-based multivariate GARCH 
models. This approach eliminates serial dependence, 
conditional heteroscedasticity and captures dynamic 
dependence between the Latin markets and the U.S. 
Secondly, we estimate the following copula 
families: Normal, student’s t, Frank, Gumbel and 
Galambos, in order to identify which model presents 
the best fit for the relationship between risk and 
return in these Latin markets. A rank-based version 
of the well-known Cramér–von Mises statistic is 
employed to determine which family of copula has 
the best fit for the studied data. 

The remainder of this paper is structured as 
follows:  Section 2 briefly presents the theory of 
multivariate volatility modeling and copula 
functions; Section 3 exposes the material and 
methods of the study; Section 4 presents  the results 
found and its discussion; Section 5 concludes the 
manuscript. 

 
2 Theory 

2.1 Multivariate Volatility Modeling 
Multivariate models of volatility have attracted 

considerable interest during the last decade. This 
may be associated to the increase in the availability 
of financial data, the increase of the processing 
capacity of computers, and the fact that the financial 
sector began to realize the potential advantages of 
these models. 

However, when it comes to the specification of a 
multivariate GARCH model, there is a dilemma. On 
one hand, the model should be flexible enough to be 
able to represent the dynamics of variance and 
covariance. On the other, as the number of 
parameters in a multivariate GARCH model often 
increases rapidly with the size of assets, the 
specification must be parsimonious enough to allow 
the model to be estimated easily, as well as allowing 
a simple interpretation of its parameters. 

A feature that must be taken into account in the 
specification is the restriction of positivity 
(covariance matrices must necessarily take its 
determinants defined as positive). Based on this 
idea, we consider the model with multivariate 
GARCH parameterization VECH, proposed by 

Bollerslev, Engle and Wooldridge (1988), 
represented by (1). 
𝑣𝑣𝑣𝑣𝑣𝑣ℎ(𝐻𝐻𝑡𝑡) = 𝐴𝐴0 + ∑ 𝛽𝛽𝑗𝑗𝑣𝑣𝑣𝑣𝑣𝑣ℎ(𝐻𝐻𝑡𝑡−1)𝑞𝑞

𝑗𝑗=1 +
∑ 𝐴𝐴𝑗𝑗𝑣𝑣𝑣𝑣𝑣𝑣ℎ�𝜀𝜀𝑡𝑡−𝑗𝑗 , 𝜀𝜀𝑡𝑡−𝑗𝑗′ �𝑝𝑝
𝑗𝑗=1  .                                    

(1)                                                                    
In (1), vech is the operator that contains the 

lower triangle of a symmetric matrix into a vector;  
𝐻𝐻𝑡𝑡  describes the conditional variance; the error term 
is𝜀𝜀𝑡𝑡 = 𝐻𝐻𝑡𝑡

1/2𝜂𝜂𝑡𝑡 ,𝜂𝜂𝑡𝑡~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0,1). The disadvantage of 
this model is that it has a large number of 
parameters and in order to ensure the positivity 
of 𝐻𝐻𝑡𝑡 , restrictions must be imposed. 

Thus, the BEKK parameterization method 
emerges as an alternative, as suggested by Engle 
and Kroner (1995). The BEKK parameterization, 
which essentially takes care of the problems 
mentioned above about the VECH model, is defined 
as shown in (2). 
𝐻𝐻𝑡𝑡+1 = 𝐶𝐶 ′𝐶𝐶 + 𝐵𝐵′𝐻𝐻𝑡𝑡𝐵𝐵 + 𝐴𝐴′𝜖𝜖𝑡𝑡𝜖𝜖𝑡𝑡′ .                         

(2) 
The matrices A, B and C, which contain the 

coefficients for the case with two assets, are defined 
as. 

𝐴𝐴 = �
𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

� , 𝐵𝐵 = �𝑏𝑏11 𝑏𝑏12
𝑏𝑏21 𝑏𝑏22

�,   

𝐶𝐶 = �
𝑣𝑣11 𝑣𝑣12
0 𝑣𝑣22

�.                            (3) 
In (2), 𝐻𝐻𝑡𝑡+1 is a conditional covariance matrix. 

In the bivariate case, the parameter B explains the 
relationship between the past conditional variances 
with the current ones (GARCH). The parameter A 
measures the extent to which conditional variances 
are correlated with past squared errors, i.e. it 
captures the effects of past shocks or volatility 
(ARCH). The total number of estimated parameters 
in bivariate occasion is eleven. In this case, the 
BEKK parameterization, the volatilities of the 
equation (2) are presented by formulations (4) and 
(5). 
ℎ11,𝑡𝑡+1 = 𝑣𝑣11

2 + 𝑏𝑏11
2 ℎ11,𝑡𝑡 + 2𝑏𝑏11𝑏𝑏12ℎ12,𝑡𝑡 +

𝑏𝑏21
2 ℎ22,𝑡𝑡 + 𝑎𝑎11

2 𝜀𝜀1,𝑡𝑡
2 + 2𝑎𝑎11𝑎𝑎12𝜀𝜀1,𝑡𝑡𝜀𝜀2,𝑡𝑡 +

𝑎𝑎21
2 𝜀𝜀2,𝑡𝑡

2 .                                                               
(4) 
ℎ22,𝑡𝑡+1 = 𝑣𝑣12

2 + 𝑣𝑣22
2 + 𝑏𝑏12

2 ℎ11,𝑡𝑡 +
2𝑏𝑏12𝑏𝑏22ℎ12,𝑡𝑡 + 𝑏𝑏22

2 ℎ22,𝑡𝑡 + 𝑎𝑎12
2 𝜀𝜀1,𝑡𝑡

2 +
2𝑎𝑎12𝑎𝑎22𝜀𝜀1,𝑡𝑡𝜀𝜀2,𝑡𝑡 +  𝑎𝑎22

2 𝜀𝜀2,𝑡𝑡
2 .                             

(5)                                                 
Nevertheless, the BEKK parameterization model 

has as a disadvantage the difficulty to interpret its 
estimated parameters. Formulations (4) and (5) 
show that even for the case of bivariate modeling, 
the interpretation of the coefficients can be 
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confusing because there are no parameters that are 
governed exclusively by an equation (Baur, 2006). 

Thus, an approach to circumvent the problem of 
interpretation of the parameters is the model of 
conditional covariance matrix, observed indirectly 
through the matrix of conditional correlations. The 
first model of this kind was the constant conditional 
correlation (CCC) proposed by Bollerslev (1990) 
and Bollerslev and Wooldridge (1992). The 
conditional correlation was assumed to be constant 
and only the conditional branches are variable in 
time. The CCC model can be defined as shown by 
formulation (6). 
𝐻𝐻𝑡𝑡 = 𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷𝑡𝑡 = �𝜌𝜌𝑖𝑖𝑗𝑗 �ℎ𝑖𝑖𝑖𝑖 ,𝑡𝑡ℎ𝑗𝑗𝑗𝑗 ,𝑡𝑡�.                         

(6) 
In formulation (6) 𝐷𝐷𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑 �ℎ11,𝑡𝑡

1/2 …ℎ𝑖𝑖𝑖𝑖,𝑡𝑡
1/2 �, 

where ℎ𝑖𝑖𝑖𝑖 ,𝑡𝑡  is defined similarly to any univariate 
GARCH model; 𝑅𝑅 = �𝜌𝜌𝑖𝑖𝑗𝑗 � is a symmetric positive 
definite matrix, with 𝜌𝜌𝑖𝑖𝑖𝑖 = 1,∀𝑖𝑖, i.e., R is the matrix 
containing the constant conditional correlations𝜌𝜌𝑖𝑖𝑗𝑗 . 

However, the assumption that the conditional 
correlation is constant over time is not convincing, 
since, in practice, the correlation between assets 
undergoes many changes over time. Thus, Engle 
and Sheppard (2001) and Tse ans Tsui (2002) 
introduced the model of dynamic conditional 
correlation (DCC). The DCC model is a two-step 
algorithm to estimate the parameters which makes it 
relatively simple to use in practice. In the first stage, 
the conditional variance is estimated by means of 
univariate GARCH model, respectively, for each 
asset. In the second step, the parameters for the 
conditional correlation, given the parameters of the 
first stage, are estimated. Finally, the DCC model 
includes conditions that make the covariance matrix 
positive definite at all points in time and the 
covariance between assets’ volatility a stationary 
process. The DCC model is represented by 
formulation (7).  
𝐻𝐻𝑡𝑡 = 𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷𝑡𝑡 .                                                     

(7) 
Where, 

𝑅𝑅𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑 �𝑞𝑞11,𝑡𝑡
−1

2 …𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡
−1

2 �  

𝑄𝑄𝑡𝑡𝑖𝑖𝑖𝑖𝑎𝑎𝑑𝑑 �𝑞𝑞11,𝑡𝑡
−1/2 …𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡

−1/2�                                   
(8) 

Since the square matrix of order N 
symmetric positive defined 𝑄𝑄𝑡𝑡 = �𝑞𝑞𝑖𝑖𝑗𝑗 ,𝑡𝑡� has the 
formulation proposed in (9). 

𝑄𝑄𝑡𝑡 = (1 − 𝛼𝛼 − 𝛽𝛽)𝑄𝑄� + 𝛼𝛼𝑢𝑢𝑡𝑡−1𝑢𝑢𝑡𝑡−1
′ +  

𝛽𝛽𝑄𝑄𝑡𝑡−1.                                                               (9) 

In (9), 𝑢𝑢𝑖𝑖,𝑡𝑡 = 𝜀𝜀𝑖𝑖 ,𝑡𝑡 �ℎ𝑖𝑖 ,𝑡𝑡⁄ ; 𝑄𝑄� is the N x N matrix 
composed by unconditional variance of 𝑢𝑢𝑡𝑡 ; α and β 
are non-negative scalar parameters satisfying α + β 
< 1. 

All of the models mentioned in the previous 
section are estimated under the assumption of 
multivariate normality. The use of a copula 
function, on the other hand, allows us to consider 
the marginal distributions and the dependence 
structure both separately and simultaneously (Hsu, 
Tseng and Wang, 2008). Therefore, the joint 
distribution of the asset´s return can be specified 
with full flexibility, which is more realistic. 

In that sense, Hansen (1994) proposes a GARCH 
model in which the first four moments are 
conditional and time varying. For the conditional 
mean and volatility, he built on the usual GARCH 
model. To control higher moments, he constructed a 
new density, which is a generalization of the 
Student-t distribution while maintaining the 
assumption of a zero mean and unit variance, in 
order to model the GARCH residuals. The 
conditioning is obtained by defining parameters as 
functions of past realizations (Jondeau and 
Rockinger, 2006). The conditional volatility model 
proposed by Hensen (1994), and later discussed in 
Theodossiou (1998) and Jondeau and Rockinger 
(2003) is represented by formulation (10). 

ℎ𝑖𝑖 ,𝑡𝑡2 = 𝑣𝑣𝑖𝑖 + 𝑏𝑏𝑖𝑖ℎ𝑖𝑖 ,𝑡𝑡−1
2 + 𝑎𝑎𝑖𝑖𝜀𝜀𝑖𝑖 ,𝑡𝑡−1

2 .                        
(10) 

Where 𝜀𝜀𝑖𝑖,𝑡𝑡 = ℎ𝑖𝑖 ,𝑡𝑡𝑧𝑧𝑖𝑖,𝑡𝑡 , 𝑧𝑧𝑖𝑖 ,𝑡𝑡~𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑣𝑣𝑖𝑖 − 𝑡𝑡(𝑧𝑧𝑖𝑖|𝜂𝜂𝑖𝑖 ,𝜙𝜙𝑖𝑖). 
The density of skewed-t distribution is represented 
by formulation (11). 
𝑖𝑖(𝑧𝑧|𝜂𝜂,𝜙𝜙)

=

⎩
⎪
⎨

⎪
⎧𝑏𝑏𝑣𝑣 �1 +

1
𝜂𝜂 − 2

�
𝑏𝑏𝑧𝑧 + 𝑎𝑎
1 − 𝜙𝜙

�
2

�
−𝜂𝜂+1/2

, 𝑧𝑧 < −
𝑎𝑎
𝑏𝑏

𝑏𝑏𝑣𝑣 �1 +
1

𝜂𝜂 − 2
�
𝑏𝑏𝑧𝑧 + 𝑎𝑎
1 − 𝜙𝜙

�
2

�
−𝜂𝜂+1/2

, 𝑧𝑧 > −
𝑎𝑎
𝑏𝑏

�. 

                                                                    (11) 
In (11), 𝑎𝑎 ≡ 4𝜙𝜙𝑣𝑣 𝜂𝜂−2

𝜂𝜂−1
; 𝑏𝑏 ≡ 1 + 3𝜙𝜙2 − 𝑎𝑎2; 

𝑣𝑣 ≡ Γ(𝜂𝜂+1/2)
�𝜋𝜋(𝜂𝜂−2)Γ(𝜂𝜂−2)

; η and ϕ are the kurtosis and 

asymmetry parameters, respectively. These are 
restricted to 4 < 𝜂𝜂 < 30 and −1 < 𝜙𝜙 < 8. 

 
2.2 Copula distribution functions 
2.2.1 Definition and concepts 
Dependence between random variables can be 

modeled by copulas. A copula returns the joint 
probability of events as a function of the marginal 
probabilities of each event. This makes copulas 
attractive, as the univariate marginal behavior of 
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random variables can be modelled separately from 
their dependence (Kovadinovic and Yan, 2010). 

The concept of copula was introduced by Sklar 
(1959). However, only recently its applications have 
become clear. A detailed treatment of copulas as 
well as their relationship to concepts of dependence 
is given by Joe (1997) and Nelsen (2006). A review 
of the applications of copulas to finance can be 
found in Embrechts et al. (2003) and in Cherubini et 
al. (2004). 

For simplicity, we restrict our attention to the 
bivariate case. The extensions to the n-dimentional 
case are straightforward. A function 𝐶𝐶 ∶  [0,1]2 →
[0,1] is a copula if, for 0 ≤ 𝑥𝑥 ≤ 1  and 𝑥𝑥1 ≤ 𝑥𝑥2 ,
𝑦𝑦1 ≤ 𝑦𝑦2 , (𝑥𝑥1 ,𝑦𝑦1), (𝑥𝑥2 ,𝑦𝑦2)  ∈  [0,1]2 , it fulfills 
the following properties: 

𝐶𝐶(𝑥𝑥, 1) = 𝐶𝐶(1, 𝑥𝑥) = 𝑥𝑥,     
𝐶𝐶(𝑥𝑥, 0) = 𝐶𝐶(0, 𝑥𝑥) = 0.                                      
(12)                                                             
𝐶𝐶(𝑥𝑥2 ,𝑦𝑦2) − 𝐶𝐶(𝑥𝑥2 ,𝑦𝑦1) − 𝐶𝐶(𝑥𝑥1 ,𝑦𝑦2) +
𝐶𝐶(𝑥𝑥1 ,𝑦𝑦1) ≥ 0.                                              
(13) 
Property (12) means uniformity of the margins, 

while (13), the n-increasing property means that 
𝑃𝑃(𝑥𝑥1 ≤ 𝑋𝑋 ≤ 𝑥𝑥2,𝑦𝑦1 ≤ 𝑌𝑌 ≤ 𝑦𝑦2) ≥ 0 for (X,Y) with 
distribution function C. 

In the seminal paper of Sklar (1959), it was 
demonstrated that a Copula is linked with a 
distribution function and its marginal distributions. 
This important theorem states that: 

(i) Let C be a copula and 𝐹𝐹1 and 𝐹𝐹2 univariate 
distribution functions. Then (14) defines a 
distribution function F with marginals 𝐹𝐹1 and 𝐹𝐹2. 

𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐶𝐶�𝐹𝐹1(𝑥𝑥),𝐹𝐹2(𝑦𝑦)�, (𝑥𝑥, 𝑦𝑦) ∈  𝑅𝑅2.       
(14) 

(ii) For a two-dimensional distribution function F 
with marginals 𝐹𝐹1 and 𝐹𝐹2, there is a copula C 
satisfying (14). This is unique if 𝐹𝐹1 and 𝐹𝐹2 are 
continuous and then, for every (𝑢𝑢, 𝑣𝑣) ∈  [0,1]2: 

𝐶𝐶(𝑢𝑢, 𝑣𝑣) = 𝐹𝐹 �𝐹𝐹1
−1(𝑢𝑢),𝐹𝐹2

−1(𝑣𝑣)�.                        
(15) 

In (15), 𝐹𝐹1
−1and 𝐹𝐹2

−1 denote the generalized left 
continuous inverses of 𝐹𝐹1 and 𝐹𝐹2. 

However, as Frees and Valdez (1997) note, it is 
not always obvious to identify the copula. Indeed, 
for many financial applications, the problem is not 
to use a given multivariate distribution but it 
consists in finding a convenient distribution to 
describe some stylized facts, for example the 
relationships between different asset returns. 

 
2.2.2 Families of copulas 

The most frequently used copulas are the 
Elliptical and the Archimedean (Yan and 
Kojadinovic, 2010). Among the elliptical copulas, 
which are characterized by the class of symmetric 
copulas, we highlight the Normal and Student’s t 
Copulas. In the class of Archimedean copulas, 
which best fit the asymmetric distributions, it stands 
out the families: Frank and Gumbel. The 
Archimedean copulas, which are of  one-parameter, 
may be constructed using a function 𝜙𝜙𝛼𝛼 ∶  [0,1]2 →
 𝑅𝑅∗+, continuous, decreasing, convex and such that 
𝜙𝜙(1) = 0. Such function 𝜙𝜙 is called a generator and 
𝛼𝛼 is a real parameter. The pseudo-inverse of 𝜙𝜙 is 
defined by formula (16). 

𝜙𝜙[−1](𝑢𝑢) = � 𝜙𝜙−1(𝑣𝑣)  0 ≤ 𝑢𝑢 ≤ 𝜙𝜙(0)
        0          𝜙𝜙(0) ≤ 𝑢𝑢 ≤ +∞

�.      

(16) 
This pseudo-inverse is such that, by composing it 

with the generator, it gives the identity, the same 
way as ordinary inverses do for functions with 
domain and range R. Formulation (17) defines this 
relation. 
𝜙𝜙[−1]�𝜙𝜙(𝑢𝑢)� = 𝑢𝑢, ∀ 𝑢𝑢 ∈  [0,1].               

(17) 
Given a generator and its pseudo-inverse, an 

Archimedean copula 𝐶𝐶𝐴𝐴 is generated as in (18). 
𝐶𝐶𝐴𝐴(𝑢𝑢, 𝑣𝑣) = 𝜙𝜙[−1]�𝜙𝜙(𝑢𝑢) + 𝜙𝜙(𝑣𝑣)�.                  (18) 
These four families of copulas (Normal, 

Students’ t, Frank and Gumbel) will be defined, 
according to Cherubini et al. (2004), presented 
below. 

The Gaussian is an elliptical copula, because of 
its symmetry. Although this copula is the most used 
due to its more tangible properties, it fails to 
represent the reality of the observed data in financial 
markets. 

Let Φ𝜌𝜌𝑋𝑋𝑌𝑌  be the joint distribution of a bi-
dimensional vector, with linear correlation 
coefficient 𝜌𝜌𝑋𝑋𝑌𝑌 . The Normal Copula is defined in 
(19). 

𝐶𝐶𝐺𝐺𝑎𝑎 (𝑢𝑢, 𝑣𝑣) = Φ𝜌𝜌𝑋𝑋𝑌𝑌 �Φ−1(𝑢𝑢),Φ−1(𝑣𝑣)�.            
(19) 

In (19), Φ−1 is the inverse of the standard 
univariate normal distribution function Φ. The 
Gaussian Copula generates the standard Gaussian 
joint distribution function, whenever the margins are 
standard normal. 

Another elliptical family of copulas is the 
Student’s t. Let ρ be the bivariate linear correlation, 
and υ the degrees of freedom of the student’s t 
distribution function, so the Student’s t copula is 
defined in (20). 
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𝑇𝑇𝜌𝜌 ,𝜐𝜐(𝑢𝑢, 𝑣𝑣) = 𝑡𝑡𝜌𝜌 ,𝜐𝜐�𝑡𝑡𝜐𝜐−1(𝑢𝑢), 𝑡𝑡𝜐𝜐−1(𝑣𝑣)�.                   
(20) 

In (20), 𝑡𝑡𝜐𝜐−1 is the inverse of the univariate 
Student’s t distribution function with 𝜐𝜐 degrees of 
freedom; and 𝑡𝑡𝜌𝜌 ,𝜐𝜐  is the bivariate distribution 
corresponding to 𝑡𝑡𝜐𝜐 . 

The Frank Copula is an Archimedean one. The 
generator is defined in (21), and the Copula in (22). 

𝜙𝜙𝛼𝛼(𝑢𝑢) = − ln exp (−𝛼𝛼𝑢𝑢 )−1
exp (−𝛼𝛼)−1

.                               (21) 

𝐶𝐶(𝑢𝑢, 𝑣𝑣) = − 1
𝛼𝛼

ln �1 + (exp (−𝛼𝛼𝑢𝑢 )−1)(exp (−𝛼𝛼𝑣𝑣)−1)
𝑣𝑣𝑥𝑥𝑝𝑝 (−𝛼𝛼)−1

� .                                                                     
                                                                      (22) 
In (22) the range for 𝛼𝛼 is (−∞, 0) ∪ (0, +∞). 
Another copula in this class is the Gumbel, 

which is defined as (23). 
𝐶𝐶(𝑢𝑢, 𝑣𝑣) = 𝑣𝑣𝑥𝑥𝑝𝑝�−[(− ln𝑢𝑢)𝛼𝛼 + (− ln𝑣𝑣)𝛼𝛼 ]1/𝛼𝛼�.  

                                                                       (23) 
In (23), the range for 𝛼𝛼 is[1, +∞). The 

coefficient of tail dependence is given by 𝜆𝜆𝑈𝑈 = 2 −
21/𝛼𝛼 . 

However, it is often reasonable to assume that 
the dependence structure of a bivariate continuous 
distribution belongs to the class of extreme-value 
copulas, as it is more efficient to model financial 
risk with these copulas, due to the fact that it is 
precise in the tails of the distribution of returns, that 
lies the biggest challenge of diversifying a portfolio 
(Genest et al., 2011). 

C is an extreme value copula when there is a 
function A: [0,1] → [0.5,1] such that for all (u,v) ∈ 
[0,1]2, there is a relation as expressed in (24). 

𝐶𝐶(𝑢𝑢, 𝑣𝑣) = 𝑢𝑢𝑣𝑣𝐴𝐴[log (𝑣𝑣)/ log (𝑢𝑢𝑣𝑣)].                          
(24) 

It was shown by Pickands (1981) that C is a 
copula if and only if A is convex and max(𝑡𝑡, 𝑡𝑡 −
1) ≤ 𝐴𝐴(𝑡𝑡) ≤ 1. By reference to this work, the 
function A is often referred to as the Pickands 
dependence function (Genest and Segers, 2009). 
Among the extreme value copulas, which are 
characterized by capturing the tail dependence, we 
highlight the families: Galambos and TEV. 

A family of extreme value copulas is the 
Galambos. It is represented by formulation (25).  
     𝐶𝐶(𝑢𝑢, 𝑣𝑣) = 𝑢𝑢𝑣𝑣exp 

�[(− ln𝑢𝑢)𝛼𝛼 + (− ln𝑣𝑣)−𝛼𝛼 ]−1/𝛼𝛼�.                    (25) 
In (25), the range for 𝛼𝛼 is [0,+∞). The 

coefficient of tail dependence is given by 𝜆𝜆𝑈𝑈 = 2 −
21/𝛼𝛼 . 

 
3 Material and Methods 

We collected data of the daily prices of S&P500, 
Ibovespa, Merval and IPC, from January, 3, 2009 to 
December, 31, 2010, totaling 483 observations. 

These indices were chosen because they are 
commonly used in academic papers as proxies for 
the financial markets in these countries. Both are 
compounds by the stocks that are more 
representative in terms of liquidity and value. We 
considered the period after the recent financial crisis 
of 2007/2008, in order to avoid possible vestiges 
that could cause some bias in the results. 

The ADF test (Augmented Dickey Fuller) was 
initially employed in prices and their logarithmic 
differences (returns), to eliminate problems of non-
stationarity. The ADF test, proposed by Dickey and 
Fuller (1981) is represented by (26). 

∆𝑃𝑃𝑡𝑡 = 𝛾𝛾𝑃𝑃𝑡𝑡−1 + ∑ 𝛿𝛿𝑖𝑖∆𝑃𝑃𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡𝑛𝑛
𝑖𝑖=1 .                 (26) 

In formulation (26), ∆𝑃𝑃𝑡𝑡  is the price change at 
time t, 𝛾𝛾 and 𝛿𝛿𝑖𝑖are constant, and 𝜀𝜀𝑡𝑡  is a white noise 
series. If the null hypothesis cannot be rejected, the 
price series {P} contains a unit root, non-stationary. 

We used an autoregressive vector (VAR) to 
obtain the average estimate of the return and the 
residual series of each index. The mathematical 
form of the bivariate VAR model used is 
represented by (27). 

𝑉𝑉𝐴𝐴𝑅𝑅(𝐿𝐿,𝐴𝐴) =

�
∆𝐿𝐿𝑗𝑗 ,𝑡𝑡 = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖∆𝐿𝐿𝑗𝑗 ,𝑡𝑡−𝑖𝑖

𝑛𝑛
𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗∆𝐴𝐴𝑡𝑡−𝑗𝑗 + 𝜀𝜀1,𝑡𝑡

𝑚𝑚
𝑗𝑗=1

∆𝐴𝐴𝑡𝑡 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖∆𝐴𝐴𝑡𝑡−𝑖𝑖𝑛𝑛
𝑖𝑖=1 + ∑ 𝛼𝛼𝑗𝑗∆𝐿𝐿𝑗𝑗 ,𝑡𝑡−𝑗𝑗 + 𝜀𝜀2,𝑡𝑡

𝑚𝑚
𝑗𝑗=1

�

.                                                                       (27) 
In (27), ∆𝐿𝐿𝑡𝑡  and ∆𝐴𝐴𝑡𝑡  are, respectively the daily 

returns of Latin American j and U.S. markets; 𝛽𝛽𝑠𝑠  
and 𝛼𝛼𝑠𝑠  are regression parameters; 𝜀𝜀1,𝑡𝑡  and 𝜀𝜀2,𝑡𝑡  are, 
correspondingly, the estimated residuals of returns. 

Subsequently, using the residuals that were 
obtained through the VAR applied to the series, we 
used the copula-based GARCH model, represented 
by (10). Through this inference, the estimates of 
conditional variances and covariance of these 
markets were obtained, taking in consideration the 
American market, due to its influence as a 
benchmark. After that, we sought to identify the 
presence of serial correlation on the residuals of the 
copula-based model, by using Q statistic of Ljung 
and Box (1978), represented by (28), which tests the 
null hypothesis that the data are random against the 
alternative of non-randomness of these. 

𝑄𝑄 = 𝑛𝑛(𝑛𝑛 + 2)∑ 𝜌𝜌�𝑠𝑠
2

𝑛𝑛−𝑠𝑠
ℎ
𝑠𝑠=1 .                                 

(28) 
In (28), n is the size of sample; 𝜌𝜌�𝑠𝑠2 is the 

autocorrelation of sample in lag k; h is the number 
of lags being tested; The Ljung-Box Q statistics 
follow a chi-squared (𝜒𝜒2) distribution with k 
degrees of freedom. In order to do this, the data was 
standardized into pseudo-observations 𝑼𝑼𝑗𝑗 =
�𝑈𝑈1𝑗𝑗 , … ,𝑈𝑈𝑖𝑖𝑗𝑗 � through the ranks as 𝑈𝑈𝑖𝑖𝑗𝑗 = 𝑅𝑅𝑖𝑖𝑗𝑗 /(𝑛𝑛 +
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1). The next step was, to estimate the copula’s 
parameters, it was employed the procedure of 
inversion of the copula based Kendall’s Tau (τ), that 
is used to measure the monotonic dependence, 
which is calculated as shown in (29). 

𝜏𝜏(𝑥𝑥,𝑦𝑦) = 4∫ ∫ 𝐶𝐶(𝑢𝑢, 𝑣𝑣)𝑖𝑖𝐶𝐶(𝑢𝑢, 𝑣𝑣) − 1.1
0

1
0            

(29) 
To determine which copula model best fits the 

residuals of the markets studied, we applied a rank-
based version of the familiar Cramér–von Mises 
statistic, discussed in Genest, Rémillard and 
Beaudoin (2009), and extended in Genest et. al. 
(2011), which enables to check the validity of the 
dependence structure separately from the margins. 
These authors emphasize that it is a blanket test, i.e., 
a procedure which implementation requires neither 
an arbitrary categorization of the data, nor any 
strategic choice of smoothing method, whether it 
could be kernel- or wavelet-based, or any of them. 
The goodness-of-fit test employed is defined in (30), 
which tests the null hypothesis that data is fitted by 
𝐶𝐶𝜃𝜃𝑛𝑛 , a copula with vector of parameters 𝜃𝜃. 

𝑆𝑆𝑛𝑛 = ∫ ℂ𝑛𝑛(𝒖𝒖)2
[0,1]𝑖𝑖 𝑖𝑖𝐶𝐶𝑛𝑛(𝑼𝑼).                            

(30) 
In (30), 𝐶𝐶𝑛𝑛(𝑼𝑼) = 1

𝑛𝑛
∑ 𝟏𝟏(𝑈𝑈𝑖𝑖1 ≤ 𝑢𝑢1; 𝑈𝑈𝑖𝑖2 ≤ 𝑢𝑢2)𝑛𝑛
𝑖𝑖=1  

is known as the empirical copula; 𝑼𝑼𝑗𝑗 =
�𝑈𝑈1𝑗𝑗 , … ,𝑈𝑈𝑖𝑖𝑗𝑗 � are the pseudo-observations; 𝒖𝒖 =
(𝑢𝑢1,𝑢𝑢2) ∈ [0,1]2; ℂ𝑛𝑛 = √𝑛𝑛(𝐶𝐶𝑛𝑛 − 𝐶𝐶𝜃𝜃𝑛𝑛 )  is the 
empirical process that assess the distance between 
the empirical copula and the estimation 𝐶𝐶𝜃𝜃𝑛𝑛 ; n is the 
number of observations. In practice, the limiting 
distributions of 𝑆𝑆𝑛𝑛  depend on the family of copulas 
under the composite null hypothesis, and on the 
unknown parameter value 𝜃𝜃 in particular. Thus, the 
probability associated with the 𝑆𝑆𝑛𝑛 , and not its 
calculated value, can be used to compare distinct 
estimated copula families as a selection criteria, so 
that the larger value indicates a better fit. 

 
4 Results and discussion 

Initially, we performed the ADF test of unit root 
in level and first difference for all series of 
logarithm (daily returns). As the presence of a unit 
root in all series was confirmed, we calculated the 
daily returns by the difference of logarithms of 
prices. Table 2 displays the descriptive statistics of 
these returns, whereas Figure 1 shows the temporal 
evolution of these series. 

The results in Table 2 confirm the fact that 
Brazil, Argentina and Mexico being emerging 
countries, should have a higher standard deviation, 
representing greater risk and therefore requiring 
higher returns, as it is verified by higher values for 

mean and median. The U.S. market, by contrast had 
lower mean and median and lower standard 
deviation of returns, representing a more stabilized 
economy. It is also noticed that all sets of returns are 
leptokurtic, a fact quite common, being widely 
recognized by financial professionals. 

Figure 1 endorses these results. It gives a visual 
confirmation of the greater dispersion of the daily 
returns of the Latin American markets compared to 
the U.S. It is noteworthy that there is a volatility 
cluster at the beginning of the observations, 
extending for about 100 trading days. It was the 
vestiges of the North American financial crisis. 

Subsequently, it was estimated a copula-based 
GARCH model to obtain the estimated variances 
and covariances of the bivariate relationship of the 
U.S. and Latin markets. Table 3 presents the results 
of these models.  

The results in Table 3 indicate that the 
conditional volatility of all markets studied was 
significantly affected at the level of 5% by the past 
squared shocks, and lagged volatility. Moreover, 
these impacts had similar magnitudes in the models 
estimated for the three bivariate relationships. 
Nevertheless, the shape of the probability 
distribution of conditional volatilities estimated 
showed differences between the analyzed markets 
regarding to the number of degrees of freedom of 
the skewed-t function. The degrees of freedom were 
7.94 for Brazil, 3.79 for Argentina and 4.69 for 
Mexico. These results emphasize that the return of 
Latin marketsare skewed and leptokurtic. 

Complementing, the estimated volatilities and 
dynamic correlations are shown, respectively, in 
Figure 2 and 3, for the bivariate relationships 
proposed in this study. Furthermore, the Q statistics 
are presented in Table 4, in order to verify the serial 
dependence of the residues of GARCH estimates.  

The results in Table 4 suggest that the estimated 
residuals from the copula-based GARCH model do 
not exhibit significant serial correlation. Therefore, 
the estimated models were able to fit the sample of 
bivariate relationships between the daily returns of 
the U.S. market with the Latin countries, filtering 
the serial dependence and the heteroscedastic 
dynamic behavior of data. Thus, the estimates of 
variance and covariance of the studied markets are 
valid for the computation of the optimal hedge ratio 
and the value of assets at risk in question. 

The plots of Figure 2 emphasize that after the 
observation 100, the vestiges of the American 
financial crisis of 2007/2008 began to disappear, 
returning to the stability period. It is noteworthy that 
with the resumption of normal variability of returns 
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in these markets, Mexico was more stable, followed 
by Brazil and Argentina. 

Figure 3, which exposes the dynamic 
correlations estimated for the series of returns of the 
markets studied, suggests the existence of a pattern 
behavior. At the beginning of the analyzed period, 
the dependence among the markets was higher, 
decreasing with the path of the sample. The 
Argentinean market was the first to show this 
reduction, followed by the Brazilian and the 
Mexican. It is worth noting also that the correlation 
coefficient between the Mexican and American 
markets was the highest among Latin American 
countries, followed by Brazil and Argentina. 

After this empirical analysis of the markets, as 
well as the estimation of their conditional 
volatilities, it was also estimated the parameters of 
the copulas Normal, Student’s t, Frank, Gumbel, 
and Galambos, through inversion of Kendall’s Tau. 
Then, it was statistically verified the goodness of fit 
of the estimated copulas by the 𝑆𝑆𝑛𝑛  test exposed in 
the method of this study. The results of the 
estimated parameters, as well as values and 
significance of the 𝑆𝑆𝑛𝑛  tests, for the period before 
crisis, are shown in Table 5. 

The results in Table 5 allow us to conclude, 
initially, that in Latin markets the correlation 
between risk and return is very close to zero, 
emphasizing that the use of linear models to capture 
the dependence of this relationship is inadequate. 
This is reinforced by the fact that most of the 
estimated copulas did not reject the null hypothesis 
of fit to the joint distribution of probability of risk 
and return in Latin markets. Exceptions, at the 5% 
level of significance, are the Gumbel and Galambos 
copulas for the Brazilian market; Normal, Student's t 
and Frank copulas for the Mexican market. 

Further, with respect to the fit, in the Brazilian 
market, the Normal copula had the largest value for 
the p-value of the 𝑆𝑆𝑛𝑛  test. The Frank copula had a 
closer value for the test and its p-value. In the 
Argentinean and Mexican markets, the Galambos 
copula had the largest p-value for the 𝑆𝑆𝑛𝑛  test. The 
difference is that for the Argentinean market none of 
the estimated copula families rejected the null 
hypothesis of fit the data, while for the Mexican 
market only extreme value copulas fitted the data. 
This result highlights the importance of risk 
management in these markets. This is because such 
results indicate empirically that risk and return in 
these markets have dependence in their probability 
distributions. 

This relationship between risk and return in the 
analyzed markets is very relevant to the 
international portfolio diversification because over 

the last ten years, the volatility of Latin American 
financial markets has become a key determinant for 
explaining the risk taking behaviors of investors, 
especially the substitution in their portfolios 
between different categories of securities (Dufrenot, 
Mignon and Péguin-Feissolle, 2011). 

 
5 Conclusion 

In this paper we analyzed the dependence 
between risk and return in Latin financial markets, 
considering the exerted influence of the United 
States. To do that, we used daily data from the 
Brazilian, Argentinean, Mexican and U.S. markets. 
Initially, we estimated copula-based multivariate 
GARCH models, in order to estimate the conditional 
variance and covariance of the bivariate 
relationships of the U.S. market with these three 
Latin markets. Thus, the estimated volatilities of the 
markets were obtained, being used as a proxy for the 
risk.  

After that, through a rank-based version of the 
familiar Cramér–von Mises statistic we determined 
which family of copula (Normal or Gaussian, 
student’s t, Frank, Gumbel and Galambos) had the 
best fit to the data. The results evidenced that the 
linear correlation between risk and return in these 
countries is not significant, emphasizing the lack of 
linear dependence   

However, this relationship in the three Latin 
markets studied was fitted by the estimated copulas, 
with exceptions of the Gumbel and Galambos 
copulas for the Brazilian market and Normal, 
Student's t and Frank copulas for the Mexican 
market. This result indicates that there is 
dependence in the joint probability distribution of 
risk and return in these markets, but not in a linear 
form. Thus, the use of linear models is unable to 
correctly estimate the dependence between risk and 
return of an asset traded in these Latin markets 
producing incorrect results and prompting investors 
to achieve optimal allocation of its portfolio ineptly.  

As suggestions for future studies, we highlight 
the application of a similar test to estimate the 
copula families of the joint probability of risk and 
return of Asian and European markets, taking into 
account the influence of a greater market. 
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Fig.1. Time series of daily returns of S&P500 (USA), Ibovespa (Brazil), Merval (Argentina) and IPC 
(Mexico). 
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Fig.2. Estimated conditional volatilities of the bivariate relationships of daily log-returns of S&P500 
with Ibovespa, Merval and IPC. 
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Fig.3. Estimated conditional correlation of the bivariate relationships of daily log-returns of S&P500 
with Ibovespa, Merval and IPC. 
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Table 1 Descriptive statistics of daily returns of S&P500 (USA), Ibovespa (Brazil), Merval 
(Argentina) and IPC (Mexico). 
 

Statistic Δln(USA) Δln(Brazil) Δln(Argentina) Δln(Mexico) 
Mean        0.0007 0.0011 0.0025 0.0011 
Median           0.0012   0.0014  0.0026 0.0020 
Minimum          -0.0543   -0.0540  -0.0770 -0.0563 
Maximum                 0.0684   0.0638  0.0712 0.0618 
Standard deviation         0.0151   0.0171  0.0201  0.0142 
Skewness    -0.0734   0.0432  -0.1404 0.0428 
Kurtosis             5.3436 4.6304 4.7111 6.0122 

 
 
Table 2 Results of the estimated copula-based GARCH models for the bivariate relationships of daily 
log-returns of S&P500 (USA) with Ibovespa (Brazil), Merval (Argentina) and IPC (Mexico). 
 

Statistic S&P500-Ibovespa S&P500-Merval S&P500-IPC 
Variable Coef. Error Prob. Coef. Error Prob. Coef. Error Prob. 
USA 𝑎𝑎𝑖𝑖  0.1130 0.0437 0.0097 0.0968 0.0356 0.0066 0.1089 0.0486 0.0251 
USA 𝑏𝑏𝑖𝑖  0.8799 0.0536 0.0000 0.8657 0.0253 0.0000 0.8825 0.0408 0.0000 
USA d.f. 6.3504 2.4676 0.0101 7.9201 2.9564 0.0074 6.3718 3.5838 0.0754 
Latin 𝑎𝑎𝑖𝑖  0.0836 0.0215 0.0001 0.0766 0.0277 0.0057 0.0555 0.0133 0.0000 
Latin 𝑏𝑏𝑖𝑖  0.8938 0.0519 0.0000 0.8984 0.1201 0.0000 0.9435 0.0128 0.0000 
Latin d.f. 7.9471 2.9435 0.0069 3.7965 1.7292 0.0281 4.6953 1.4610 0.0013 
AIC -11.8120 -11.5980 -12.6720 

*All estimated parameters obtained statistical significance at 5% level. 
 
 
Table 3 Ljung-Box Q statistic for residuals of daily returns of S&P500 (USA), Ibovespa (Brazil), 
Merval (Argentina) and IPC (Mexico) estimated by copula-based GARCH model. 
 

Lag 

S&P500-
Ibovespa 

Ibovespa S&P500-
Merval 

Merval S&P500-IPC IPC 

Q prob. Q prob. Q prob. Q prob. Q prob. Q prob. 
1 0.011 0.915 1.568 0.210 1.517 0.218 0.041 0.838 0.000 0.998 0.227 0.634 
2 0.904 0.636 3.102 0.212 1.685 0.430 1.423 0.490 0.116 0.943 0.291 0.865 
3 0.904 0.824 4.965 0.174 4.932 0.176 1.439 0.696 0.117 0.989 0.462 0.927 
4 2.287 0.683 5.762 0.217 5.167 0.270 1.442 0.836 1.964 0.742 0.462 0.977 
5 5.325 0.377 5.762 0.330 5.795 0.326 1.685 0.890 4.625 0.463 1.085 0.955 
6 7.012 0.319 7.805 0.252 6.267 0.393 1.720 0.943 6.496 0.369 1.439 0.963 
7 7.060 0.422 7.870 0.344 6.293 0.506 3.013 0.883 6.514 0.481 3.558 0.829 
8 7.753 0.457 9.780 0.280 6.300 0.613 3.372 0.908 7.284 0.506 4.632 0.796 
9 14.909 0.093 15.629 0.075 6.551 0.683 4.023 0.909 14.153 0.117 16.144 0.064 
10 15.042 0.130 16.827 0.078 6.833 0.741 4.792 0.904 14.372 0.156 16.170 0.095 
*All estimated parameters obtained statistical significance at 5% level. 
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Table 4 Estimated parameters of the copulas, values and significance of 𝑆𝑆𝑛𝑛  tests for the relationships 
of daily volatility and return of the Latin markets considering the influence of U.S. market. 
  

Copula 
Ibovespa Merval IPC 

Parameter 𝑆𝑆𝑛𝑛  test Sig. Parameter 𝑆𝑆𝑛𝑛  test Sig. Parameter 𝑆𝑆𝑛𝑛  test Sig. 
Normal 0.0375 0.0223 0.248* -0.0149 0.0208 0.321 0.0249 0.0823 0.000 
Student t 0.0375 0.0268 0.143* -0.0149 0.0321 0.055 0.0249 0.0926 0.000 
Frank 0.2148 0.0227 0.229 -0.0851 0.0209 0.304 0.1429 0.0823 0.000 
Gumbel 1.0244 0.148 0.037 1.0000 0.0235 0.672 1.0161 0.1225 0.053 
Galambos 0.2002 0.1449 0.042 0.0187 0.0235 0.7058 0.1791 0.1217 0.066* 
*All estimated parameters obtained statistical significance at 5% level 
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