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Abstract: The present paper concerns a Maximum Likelihood analysis for the Markov switching approach to
the forecasting problem of financial time series. In particular we model the volatility parameter characterizing
time series of interest as a state variable of a suitable Markov chain. Latter formulation is based on the idea of
describing abrupt changes in the behaviour of studied financial quantities due to, e.g., social or political factors
able to substantially change the economic scenarios we are interested in. A case study for the NASDAQ IXIC
index in the period 3rd Jan 2007 - 30th Dec 2013 is also provided.
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1 Introduction

Natural, physical and financial phenomena can be ef-
ficiently described as dynamical systems whose be-
haviours can rarely be defined by deterministic laws.
Difficulties grow when we try to extrapolate informa-
tion concerning a specific phenomenon solely by us-
ing empirical data. Latter approach can be success-
fully followed, e.g., in studying the Carbon-14 decay,
which follows the differential law

y′(t) = −ky(t), t ∈ [0,+∞) = R+, (1)

k being the decay constant, while y(t) is the con-
centration of Carbon-14 and k, y are the observable
variables. Nevertheless latter scenario is not feasi-
ble in most of the case since the dynamics in which
we are interested are governed by unobservable vari-
ables characterizing the peculiarities of the particular
studied scenario. Such a result of our ignorance about
describing the dynamic of our interest is the core of
many research areas like pattern recognition, financial
forecasting, quantum mechanics, population dynam-
ics, interacting particle systems, etc.

In this work we are going to deal with discrete
state-space models (DSSM) in the financial frame-
work in order to efficiently forecasting economical
quantities starting by the study of related time series
{yt}Tt=1, 1 < T ∈ N+ being a certain expiration date
or, simply, the maximum length of the series we can
achieve, e.g., from the market indexes. In particular

we are interested in system of the following form:
yt = f(St, θ, ψt−1)

St = g
(
S̃t, ψt−1

)
St ∈ Λ

(2)

where ψt := {yk : k = 1, . . . , t}, Λ represents the set
of the all the possible states, g is the switching-state
law, namely a function of both the past states and the
observed data, and f can be thought as the black-box
realizing the value of the time series at time t with
respect to the information carried by St, ψ and θ, rep-
resenting the set of the descriptive parameters.

2 Regime Switching
A crucial point in the DSSM theory concerns the iden-
tification of the transition law between states, namely
the function g in (2). From our financial perspective,
such a law has to be capable of capture and quan-
tify structural break which have become quite com-
mon in finance, particularly due to the extreme finan-
cialization of derivatives and related markets as well
as concerning rapid changing of political scenarios in
most of the so-called emerging economies whose be-
haviour deeply influences many aspects of the world-
wide economy. If the switching between two different
financial states happens, e.g., at time t+ 1, for a given
t ∈ N+, being determined only by the state St of the
system at the immediate preceding time t, non mat-
ter about what is happened in the past, namely in the
discrete time interval {0, 1, . . . , t− 1}, we say that St
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is a Markov process and we are in the framework of
Markov Switching. In particular the switching law can
be described by a time homogeneous Markov chain
whit transition matrix P := {pij}i,j∈Ω, Ω being the
set of all the possible states for the system.

In what follows we explicitly consider the case
of a first order autoregressive pattern with regime
switching, the latter being the standard choice in fi-
nancial time series analysis, and we extend this ap-
proach considering a state variable for the mean and
the variance of the error term, namely we study the
following system:

yt = φ1yt−1 + µSt + σStzt,

zt ∼ N (0, 1),

St ∈ Ω = {1, . . . ,M} ,
pij = P (St = j|St−1 = i) ,

π0 = [P (S0 = 1) , . . . ,P (S0 = M)] ,

σ2
St

= σ2
j if St = j ∀j = 1, . . . ,M,

µSt = µj if St = j ∀j = 1, . . . ,M.

(3)

Our model structure belongs to the Gaussian
State-Space models family and it is widely used in
many research topics such, e.g., in population dynam-
ics, see [6], or for wind forecasting, see [1].

3 Filtering
The system described by eq. (3) is non-linear in the
parameter St, so we can not exploit the usual tools of
inference related to Linear Gaussian DSSM, namely
the Kalman filter. An alternative is given by the
Hamilton filter, a modification of the Kalman ap-
proach, proposed by Hamilton in 1989, see [3]. Fol-
lowing latter approach, we suppose to be able to esti-
mate the state probabilities P (St = j|ψt), the transi-
tion probabilities pij and the steady-state probability
π0 = [P(S0 = 1|ψ0), . . . ,P(S0 = M |ψ0)], where ψ0

is a formal expression for the state value at the initial
time, while ψt is the observed time series until time t,
namely ψt = {yτ : τ = 1, . . . , t}. We also consider
the marginal distribution of yt, conditional to St, St−1

and ψt−1, to be

f (yt|St, St−1, ψt−1) =

e

(
yt−µSt−φ

(
yt−1−µSt−1

))2

2σ2
St√

2πσ2
St

(4)

Examples that show how to compute aforementioned
objects can be found, e.g., in citeDiP14 and [5].

From a concrete point of view it is useful to describe
the Hamilton filter exploiting the following operative
recipe

Filtering procedure

1. Compute the transition probabilities P = pij .

2. Compute the steady-state probabilities.

3. Perform the following steps for t = 2, . . . , T :

(a) Compute the probability of each state j at
time t conditional to the dataset ψt−1:

P (St = j) =
M∑
i=1

pijP (St−1 = i|ψt−1) .

(5)

(b) Compute the joint density of yt, St and
St−1 given ψt−1 and its marginal density
with respect to yt:

f(yt, St, St−1|ψt−1) = f (yt|St, St−1, ψt)

P (St = j, St−1 = i|ψt−1) , (6)

and

f (yt|ψt−1) =

M∑
j=1

M∑
i=1

f (yt|St, St−1, ψt−1)

P (St = j, St−1 = i|ψt−1) . (7)

(c) Update the joint probabilities of St and
St−1 given ψt:

P (St = j, St−1 = i|ψt) =

f (yt, St = j, St−1 = i|ψt)
f (yt|ψt−1)

(8)

(d) Compute the updated probabilities of St
given ψt for all j = 1, . . . ,M :

P (St = j|ψt) =

M∑
i=1

P (St = j, St−1 = i|ψt) . (9)

3.1 Smoothed probabilities
The output of the previously determined filtering pro-
cedure consists in the probabilities set of being in a
state St conditioned on the past or at most on the past
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history of the process plus its present values. Some-
times it could be also interesting to compute the prob-
abilities conditioned on the whole time series, e.g., if
we wanted to write an expression for

E (µt|ψT ) =
M∑
j=1

µjP (St = j|ψT ) , (10)

E
(
σ2
t |ψT

)
=

M∑
j=1

σ2
jP (St = j|ψT ) , (11)

and, in order to do that, we need to exploit a smoothing
algorithm, which is a backward procedure that returns
the set {P (St = j|ψT ) : t = 1, . . . , T}, see, e.g., [2,
4, 5], for details, while in what follows we will only
give a sketch of the related procedure.

1. Consider the fact that in the framework of
DMSM the knowledge of yt+1 does not provide
more information about St than {St+1, ψt}, at
least if the data are uncorrelated or at most first-
order autoregressive.

2. Prove the following formula, see, e.g., [2]:

P (St = i|St+1 = j, ψT ) =

P (St = i|St+1 = j, ψt) . (12)

3. Exploiting the Bayes’ rule, show that the follow-
ing relation holds:

P (St = i, St+1 = j|ψT ) =

P (St+1 = j|ψT )
P (St = i, St+1 = j|ψt)

P (St+1 = j|ψt)
.

(13)

4. Compute the needed quantity :

P (St = i|ψT ) =

M∑
j=1

P (St = i, St+1 = j|ψT ) . (14)

4 Identification
The next problem we have to face consists in identi-
fying the parameters µ, σ and pij of the system (3).
Using the standard approach provided by maximum
likelihood technique, we can exploit the Maximum-
Likelihood Estimation (MLE) which allows us to
rephrase the problem in terms of the optimization of
the functional

lnL :=

T∑
t=1

ln
(
fyt|ψt−1,St,St−1

)
. (15)

Since we are dealing with a recursive filter, we just
need to insert the identification step at some point in
the filtering procedure described above. In particular,
we start with the initialization of the log-likelihood
function ` (t = 0) = 0 and after the 3b-step, we up-
date it computing

` (θ, ψt) = ` (θ, ψt−1) + ln (f (yt|ψt−1)) , (16)

then we maximize it with respect to

θt = [µ1, . . . , µM , σ1, . . . , σM ]t (17)

under the constraint σ1 < · · · < σM , and we use
the estimated θ for the last steps computations of the
filtering procedure.

5 Case study
In what follows we shall apply previously obtained
results considering the weekly returns of the NAS-
DAQ index in the period 3rd Jan 2007 - 30th Dec
2013. Note that latter time series has zero-mean,
hence the model is reduced to a switching variance
problem. Moreover the related AR(1) coefficient is
of order φ ∝ 10−2, therefore we can take into account
the serially uncorrelated version of the Hamilton filter.
We have chosen to implement a three states DMSM
since this is the standard choice in financial applica-
tions, see, e.g., [5] and the obtained results are given
by

Parameter Est.Value

σ2
1 1.4865e− 04
σ2

2 4.1009e− 04
σ3

2 9.0873e− 04

with transition matrix

P =

0.96 0.19 0.00
0.00 0.81 0.09
0.04 0.00 0.91

 . (18)

We want to test the goodness of our fit through the
analysis of the standardized residuals. From the as-
sumptions of our model we would like to observe that
they follow a Gaussian distribution, hence we start
with a normal probability plot for a visual analysis,
see figure 1. We see that there are some outliers that
could lead to the failure of a normality test, but the
elimination of the biggest two of them lets us to not
reject the normality test with a significance level of
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the 5%. We also report the plot of the smoothed prob-
abilities of the three states in figure 2 and the condi-
tional standard error in figure 3. The first graph shows
how the high volatility state has a cyclic nature, which
corresponds to the fact that great changes within the
information technology economy are usually shown
in the same period of the year. The second plot repre-
sents the implied volatility, which is a measure of how
much we expect the price of the index differs from the
previous value, namely it constitutes a common risk
representation widely used by traders.

6 Conclusion
The plot of the implied volatility and of the smoothed
probabilities are compatible in the highly risky states
identifications. Moreover we had only a 0.5% of non
significant data, being obliged to cut only two values
over 365 to satisfy the normality test. It follows that
our model provides a concrete and affective descrip-
tion of the risk related to investments concerning the
NASDAQ IXIC index.
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Figure 1: Normal Probability Plot of the standardized
residuals.
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Figure 2: Blue = state 1, red = state 2, yellow = state 3.

0 50 100 150 200 250 300 350

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

Figure 3: Conditional standard error.
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