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Abstract: In this paper, we study an assembly job shop scheduling problem with tree-structured precedence con-
straints and jobs characterized by specific bills of materials. We propose a mathematical model to deal with a
simplified version of the problem, as well as a fast and efficient constructive heuristic that is able to easily face
real-world-sized instances. The production schedule takes into account the actual availability of materials in stock
as well as the supply times and the capacity constraints, with the goal to minimize the average delay with respect to
the due dates associated to the customers’ orders. Computational results on data related to real-life instances show
that the mathematical model is able to solve (not always to optimality) small-sized instances only. On the other
hand, our heuristic approach is able to solve efficiently very large problems. Moreover, the proposed heuristic turns
out to be scalable as the instance size grows.
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1 Introduction

Operations scheduling in job shop systems has re-
ceived a lot of attention from the scientific community
in the last decades. In the general job shop schedul-
ing problem, n jobs (operations) must be scheduled
on m available resources, satisfying a set of routing
and factory constraints, with the objective of optimiz-
ing a given performance measure (typically, a func-
tion of the operations sequencing at each resource or,
alternatively, the makespan). According to its produc-
tion routine, each job is processed on machines with
a given processing time, and each machine can typ-
ically process only one type of operation. However,
in modern manufacturing plants, a machine may have
the flexible capability to be set up to process more than
one type of operations.

Relatively much less effort has been put on as-
sembly job Shop (AJS) problems in which end-items
are characterized by a bill of materials (BOM). The
BOM generates complex operations precedence struc-
tures in the form of assembly trees with different lev-
els. End-items are produced by means of sequences
of fabrication and assembly operations and their com-

ponents may have specific BOMs. A higher level
item cannot be processed unless all preceding lower
level items have been completely processed and as-
sembled. AJS problems suffer from the same combi-
natorial explosion ill-effect of the “classical” job shop
problem, for which significant research has been car-
ried out. Although some authors have proposed exact
methods (see, e.g., [5] or [4]), they are obviously not
appropriate to deal with large problems, because of
the NP-hardness of the problem. Thus, the attention
of researchers has been devoted to the development of
heuristic or metaheuristic algorithms with the aim to
find good feasible solutions within a short computa-
tional time.

In this paper (that is an extension of [11]) we aim
at devising both a mathematical model and a fast and
efficient constructive heuristic for operations schedul-
ing in AJS systems. Indeed, the need of a fast heuristic
steams from two aspects. First, as we report in Section
6.2, the mathematical model (which is the result of a
number of assumptions and simplifications) is able to
deal with very small instances only. Second, when a
salesman visits new possible customers, he/she must
be able to get a quick and reliable response about the
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possibility to incorporate new orders without delay-
ing the previously scheduled orders. In this sense, our
procedure is able to easily deal with real-world-sized
instances. The production schedule must take into ac-
count the actual availability of materials in stock as
well as the supply times and the capacity constraints.
The goal is to minimize the average delay with respect
to the due dates associated to customers’ orders.

The remainder of the paper is organized as fol-
lows. In Section 2 we review relevant literature. In
Section 3 we provide the statement of the problem we
study, whereas in Section 4 we propose a mathemati-
cal model to solve a simplified version of the original
problem. In Section 5 we describe our heuristic solu-
tion approach and in Section 6 we illustrate our com-
putational results on a number of instances resembling
a real-life test case. Finally, concluding remarks fol-
low in Section 7.

2 Literature review
Significant research has been done in the area of job
shop scheduling. Although most versions of this prob-
lem are NP-hard ([20]), several authors have proposed
exact methods based, for instance, on dynamic pro-
gramming ([5], [12]) and branch and bound ([19], [2],
[4], [24]).

Even some ‘simplified versions’ of the problem
are still NP-Hard. Examples are problems with three
machines and three jobs with an arbitrary number of
operations per job (a job may have to visit a machine
more than once) [3]; three machines and unitary pro-
cessing times [3]; three machines and no more than
two operations per job [20]; two machines and no
more than three operations per job [20]. Some partic-
ular cases of the job-shop scheduling problem can be
solved in polynomial time, such as the problem with
two machines and no more than two operations per job
[18] and the problem with two machines and unitary
processing times [14].

One popular research direction is to solve the
scheduling problem via heuristic or metaheuristic al-
gorithms. These algorithms include the shifting bot-
tleneck procedure ([1], [22], [41]), tabu search and
simulated annealing ([32], [39], [31], [27]), memetic
algorithms [13], genetic and evolutionary algorithms
([25], [29], [26]), artificial bee colony [37], neigh-
borhood search algorithms [30], particle swarm op-
timization [21]. In [1] the authors propose an ap-
proximation method for solving the job shop schedul-
ing problem by minimizing the makespan. Machines

are sequenced one at a time by selecting at each it-
eration, among the machines not sequenced yet, the
one classified as a bottleneck. Afterwards, all pre-
viously defined sequences are locally reoptimized.
Both the bottleneck identification and the local reop-
timization procedures are based on repeatedly solv-
ing one-machine scheduling problems. In [22] a hy-
brid shifting bottleneck procedure (HSBP) algorithm
combined with Tabu Search (TS) is developed to deal
with the parallel-machine job-shop scheduling prob-
lem. The authors propose an algorithm to decompose
the parallel-machine job-shop scheduling problem in
a set of single-machine scheduling and/or parallel-
machine scheduling subproblems. [41] consider job
shop scheduling problems with transportation con-
straints and bounded processing times. They repre-
sent the characteristics and constraints of the con-
sidered problem by means of a modified disjunctive
graph and use a modified shifting bottleneck proce-
dure to solve the problem. [32] describe an approxi-
mation algorithm based on Simulated Annealing (SA)
for the problem of identifying the solution with the
minimum makespan in a job shop system. [39] de-
velop a heuristic search approach combining SA and
Tabu Search (TS). The basic idea is first to use SA
to find promising solutions, and then to employ TS to
improve such solutions. For the same problem, [21]
define a hybrid algorithm consisting of particle swarm
optimization, SA and a multi-type individual enhance-
ment scheme. [27] present an algorithm incorporating
TS into the framework of path relinking to generate
solutions to the job shop scheduling problem. This al-
gorithm comprises a relinking procedure to effectively
construct a path linking, as well as a reference solu-
tion determination mechanism. [31] address the clas-
sic job shop scheduling problem with sequence de-
pendent setup times and develop a TS algorithm with
a sophisticated neighborhood structure. [13] describe
a memetic algorithm for solving a job shop scheduling
problem. They propose three priority rules, (partial re-
ordering, gap reduction and restricted swapping) and
use a local search algorithm. [29] design some ge-
netic operators. To increase the diversity of the popu-
lation, they give a mixed selection operator based on
the fitness value and the concentration value. More-
over, in order to make full use of the characteristics
of the problem, they design a new crossover operator
based on the machine and mutation operator.

In addition to the basic job shop scheduling prob-
lem, some authors have also studied its flexible vari-
ant. [10] propose an improved GA to solve the Dis-
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tributed and Flexible Job-shop Scheduling problem.
They make use of a new local-search-based oper-
ator to improve available solutions by refining the
most promising individuals of each generation. [36]
devise a parallel variable neighborhood search algo-
rithm based on the application of multiple indepen-
dent searches to improve the exploration of the search
space. [40] study a problem similar to [36] and pro-
pose an effective GA with the goal of minimizing the
makespan. [7] face the flexible job shop scheduling
problem with parallel machines and reentrant process.
Their procedure is based on a GA and a Grouping
GA and consists of two main modules: a machine
selection module (MSM) and an operation schedul-
ing module (OSM). MSM helps an operation to se-
lect one of the parallel machines to process the job,
whereas OSM is then used to arrange the sequences of
all operations assigned to each machine. [34] address
a multiobjective flexible job-shop scheduling problem
with three objectives: minimizing the makespan, the
total workload, and the maximum workload. For this
problem the authors develop a hybrid multiobjective
evolutionary approach. More recently, [42] focus on
the flexible job shop scheduling problem with uncer-
tainties due to urgently arrival jobs, working condition
of the machines, etc. They propose an inserting algo-
rithm and use condition-based maintenance to reduce
machines unavailability.

As far as AJS scheduling problems are concerned,
earlier contributions are due to [9] and [8]. The for-
mer authors consider the presence of BOM and face
the issue of integrally scheduling parts that are re-
lated through a BOM. The goal is to improve the
on-time performance of products as well as reduc-
ing work-in-process inventory, by employing a tech-
nique based on Lagrangian relaxation (LR). [8] pro-
pose a constructive heuristic for minimizing the pro-
duction time of jobs involving both machining and as-
sembly operations in a production shop. [38] analyze
the requirements of a real-life AJS scheduling prob-
lem. First, the authors model the problem by means
of timed colored Petri nets. Then, they solve it in a
Branch and Bound fashion. [28] devise a new heuris-
tic method for simulating and supporting the opera-
tions scheduling process in AJS systems. The method
is based on the assumption that an improvement in
operations synchronization at fabrication and assem-
bly stations allows forth better achievement of due
dates. The method implements two scheduling ap-
proaches: a backward approach satisfying due date
completely and a forward approach satisfying capac-

ity restrictions completely. The two approaches work
iteratively within two different simulation models of
the production system, a deterministic one and a prob-
abilistic one. [23] deal with an AJS scheduling prob-
lem for which the propose an integrated application
of order review/release mechanism and dispatching
rules. [35] consider an assembly scheduling problem
with tree-structured precedence constraints and pro-
pose a mixed-integer linear programming formulation
solved with a LR approach. [33] develop a hybrid GA
and a hybrid particle swarm optimization procedure
to minimize the makespan of a job shop scheduling
problem including the assembly stage.

The main contribution of this paper to the exist-
ing literature is twofold. First, we introduce a new
version of the AJS scheduling problem with some pe-
culiar constraints. Second, we present a fast and effec-
tive constructive heuristic procedure which is able to
deal with real-world-sized instances, with up to 6500
jobs to be scheduled and 400 work centers. As a mi-
nor contribution, we propose a mathematical model to
deal with a simplified version of the problem.

3 Problem statement
In this paper, we consider an AJS system involving
a manufacturing facility with U units (e.g., cutting,
bending, machining, welding) and W work centers.
Each unit u = 1, . . . , U is made up of Wu work cen-
ters (e.g., the cutting unit can host work centers for
plasma cutting, laser cutting, or oxifuel cutting), and
each work center w = 1, . . . ,W consists of mw func-
tionally identical machines. Given an end product
(which could eventually require to be produced at a
known lot size), its Bill-of-Materials (BOM) defines
the assembly relationships between components and
has a tree-like precedence structure with a number of
levels. Each node of the tree represents a part that
must be produced or bought in order to realize the end
product. Figure 1 reports a sample BOM, in which
there are four levels (level 0 represents the end prod-
uct). In this figure, the end product requires four parts
in order to be assembled. In turn, each part of level 1
(except for node 2) has its own BOM, requiring other
parts in order to be manufactured, and so on.
We make the following assumptions:

• a machine can perform at most one operation at
a time;

• an operation can be performed on at most one
machine at a given time;

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
Gianpaolo Ghiani, Antonio Grieco, 

 Antonio Guerrieri, Andrea Manni, Emanuele Manni

E-ISSN: 2224-2899 163 Volume 12, 2015



Figure 1: A sample Bill-of-Materials

• processing time of all operations are determinis-
tic and known;

• several production phases could be needed in or-
der to produce a part; in this case, each phase is
characterized by a work center and a processing
time;

• backlogging is permitted, in that some machines
could have some operations to complete (i.e.,
their capacity is reduced by the sum of the pro-
cessing times of such operations) at the begin-
ning of the planning horizon.

Before presenting the heuristic approach we devise for
operations scheduling in AJS systems, we introduce
the following further notation:

• T is the planning horizon;

• ew is the machines’ productivity in work center
w. This parameter is used to reduce the capac-
ity of work centers in case of known downtimes
such as those due to maintenance operations;

• swt is the number of shifts of work center w in
the day t;

• Qwjt is the residual capacity of work center w
for shift j in the day t;

• D is the set of customers’ demands;

• τd is the due date of demand d;

• qd is the quantity required by demand d;

• IDd is the identifier of the end product required
by demand d;

• ad is the priority of demand d;

• gd is the number of days to transport the end
product of demand d from the manufacturing fa-
cility to the customer;

• P is the set of parts;

• Op is the set of purchase orders already issued
for part p;

• ro is the ready time of purchase order o;

• no is the number of parts that will be delivered
with purchase order o;

• Ip is the inventory level of part p;

• Cp is the set of phases for producing part p;

• mtc is the machine time for production phase c;

• wc is the work center for production phase c;

• UMp is the unit of measure of the lot for part p;

• lp is the lot size for part p;

• mlp is the size of multiple lot for part p;

• BOMp is the BOM of part p;

• Fp is the set containing the children of part p in
the BOM;

• for each part p and for each f ∈ Fp, bf is the
number of pieces of f to be mounted on the fa-
ther p;

• avp is the average number of units of part p uti-
lized daily;

• LBOMp is the number of levels in the BOM of
part p;

• Bip is the set of parts of level i in the BOM of
part p.

The decisions aspects related to the proposed ap-
proach involve the possibility to satisfy customers’
demands in several ways. First, if a demand can
be satisfied with the available stock of end-product,
there is no need to schedule anything. Otherwise, for
each node of each level of the BOM we must decide
whether the requirements of the various components
can be satisfied with the stock or we must schedule
their production. In the former case, we do not need
to decide anything for the node and all its children

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
Gianpaolo Ghiani, Antonio Grieco, 

 Antonio Guerrieri, Andrea Manni, Emanuele Manni

E-ISSN: 2224-2899 164 Volume 12, 2015



along the current branch of the BOM tree. In the lat-
ter case, we must decide how much to produce, taking
into account policies involving setup minimization, or
requirements about the production with minimum or
multiple lots. Furthermore, when deciding to produce
a given quantity of a component, it is crucial to iden-
tify the time slots in which to allocate each of its pro-
duction phases.

4 A mathematical model
In this section, we present a mathematical model for
our assembly job shop problem. However, due to the
complexity of the whole problem, it was necessary to
make some simplifying assumptions in order to make
it tractable. In particular:

• the mathematical model is focused on a high-
level scheduling at the departments level in place
of a detailed schedule at the work centers level;

• the model provides the scheduling of end prod-
ucts in place of parts;

• the processing of an end product in a department
is completed in a working day.

Before presenting the mathematical model, we intro-
duce the following further notation:

• DEP is the set of company departments;

• DEPd is the set of departments where the end
product required by demand d must be realized;

• Ar is the capacity of department r;

• adr is the time needed to realize the end product
of demand d in the department r ∈ DEPd.

Thus, a mathematical formulation, that minimizes the
overall delay for customers’ demand, is:

(P ) min
∑
d∈D

∑
r∈DEPd

∑
t≥τd

(t− τd)xdrt (1)

s.t.
∑

d∈D:r∈DEPd

T∑
t=1

adrqdxdrt ≤ Ar,

∀r ∈ DEP

(2)

∑
r∈DEPd

xdrt ≤ 1, ∀d ∈ D,∀t ∈ T (3)

∑
t∈T

xdrt = 1, ∀d ∈ D,∀r ∈ DEPd (4)

xdr′t′ ≤ 1− xdrt, ∀d ∈ D;

∀r, r′ ∈ DEPd : r′ > r;

∀t, t′ ∈ T : t′ ≤ t; .
(5)

xdrt ∈ {0, 1}, ∀d ∈ D,∀r ∈ DEPd,∀t ∈ T. (6)

Here, variables xdrt (d ∈ D, r ∈ DEPd, t ∈ T )
are binary variables taking value 1 if the end product
required by demand d is processed in department r
in working day t. Inequalities (2) represent capacity
constraints at the department level. In particular, they
impose that the products processed in a working day
in a specific department do not exceed the total capac-
ity of the department. Constraints (3) ensure that an
end product is processed, at most, by a single depart-
ment on a single working day. Constraints (4) force
the processing of an end product in a department to
be completed in a single working day. Constraints (5)
require that the machining operations are carried out
in sequence starting from the first available working
day. Moreover, a machining operation cannot be car-
ried out before the previous one is completed. Finally,
constrains (6) define the domain of the variables.

5 A fast heuristic
The goal of our constructive heuristic procedure is
to define efficient and feasible production plans, tak-
ing into account the actual availability of materials at
stock as well as the supply times. The production
plan must also satisfy capacity constraints related to
the availability of work centers. Moreover, we aim at
meeting the due dates of customers’ demands as much
as possible. The basic idea is described in Algorithm
1. First of all, the demands are sorted with respect
to some criteria (e.g., with respect to due dates, priori-
ties, or a combination of both). Then, for each demand
d, we reduce the quantity qd by taking into account
stocks, and we update the inventory level (lines 4 and
5). If qd is still positive, we determine the quantity of
end product to be realized, by taking into account lots
(line 7). Then, we retrieve the structure of the BOM
for end product IDd and we prune it, by removing
branches of the tree that do not need to be produced
because of inventory availability (lines 8 and 9, CON-
STRUCTBOM and PRUNE procedures). Finally, on
the basis of the pruned BOM, we try to allocate the
nodes of the BOM to the work centers (line 10). If
this operation succeeds, we update the solution (line
12), and consider the next demand.

Algorithm 2 describes how to construct the BOM,
by taking into account the identifier of the end product
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Algorithm 1 A constructive heuristic for operations schedul-
ing in AJS systems
1: procedure SCHEDULE(W , T , D, P )
2: < sort demands in D >
3: for all d ∈ D do
4: qd ←max(0, qd − IIDd)
5: < update IIDd >
6: if qd > 0 then
7: qd ← COMPUTEQ(IDd, UMIDd , lIDd ,mlIDd , qd)
8: BOMIDd ← CONSTRUCTBOM(IDd, qd)
9: BOMIDd ← PRUNE(BOMIDd)

10: result← ALLOCATEDEMAND(BOMIDd)
11: if result == true then
12: < update the solution >
13: end if
14: end if
15: end for
16: end procedure

and the quantity required by demand d. In particular
the BOM tree and the current node are initially set to
null (lines 2 − 3). Then we set the identifier and the
quantity required by the node (lines 4 − 5) and the
current node is set as the root of the actual BOM tree
(line 6). Next, we construct the BOM tree by using
Algorithm 3 (line 7), and we output it (line 8).

Algorithm 3 is a recursive procedure for finding
the children of a node in the BOM. In particular, for
each child of a given end product or part, we set the
id and the quantity of the current child node (lines 4−
5). Then, we add the current child node to the BOM
tree (line 6). Next, we find the children nodes of the
current node by recursively calling the procedure (line
7). Finally, we output the BOM tree (line 9).

In Algorithm 4 we illustrate the procedure for
computing the amount of end product to be produced,
by taking into account the quantity required by the
customer and the information about lots. In particular,
the lot size is determined differently depending on the
value of the “unit of measure” parameter. If the unit
of measure is “days”, then the minimum lot to pro-
duce is equal to the overall demand of product IDd

in the subsequent lIDd days. If the unit of measure
is “quantity”, then the minimum lot size is obtained
as the maximum between qd and lIDd . If the unit of
measure is “units”, then the minimum lot size is com-
puted on the basis of the average daily consumption
of the product (line 8). Finally, the actual quantity to
produce is determined according to the minimum lot
size and the information about the need to produce the
part in multiples of a given value (Algorithm 5).

Algorithm 6 describes how to prune the BOM

Algorithm 2 The procedure for constructing BOM
1: procedure CONSTRUCTBOM(IDd, qd)
2: BOMtree← null
3: node← null
4: node.id← IDd
5: node.quantity← qd
6: < set node as the root of the BOM tree >
7: BOMtree← FINDCHILDREN(node,BOMtree)
8: return BOMtree
9: end procedure

Algorithm 3 The procedure for finding the children of a node
in the BOM
1: procedure FINDCHILDREN(node, BOMtree)
2: for all p ∈ Fnode.id do
3: childNode← null
4: childNode.id← p
5: childNode.quantity← node.quantity ∗ bp
6: < add childNode as child of node in BOMtree >
7: BOMtree← FINDCHILDREN(childNode,BOMtree)
8: end for
9: return BOMtree

10: end procedure

tree, by reducing the amount to be produced at each
node on the basis of the actual inventory levels. For
each level i of the BOM and for each part p to be pro-
duced at level i, we consider the number of pieces of
p to be mounted on its father. If the quantity bp is at
stock, then we remove p from level i as well as all its
children along the branch of the BOM and we update
the inventory level of p (lines 4 − 6). Otherwise, we
reduce the quantity bp by the inventory level Ip, and
we determine the new quantities bp of this branch of
the BOM tree (lines 7− 10).

Algorithms 7 and 8 represent the core of our con-
structive procedure for operations scheduling. In Al-
gorithm 7, by iterating on the levels of the BOM, for
each part p we first update the quantity bp in order
to meet lots requirements (line 9). Then, we check
whether there are purchase orders already issued, and
update quantities bp and the day t when the job is
scheduled, according to ready times and quantities of
the purchase orders (lines 10− 20). Next, if bp is still
positive, we allocate each production phase of part p,
by means of the ALLOCATEPHASE procedure (lines
21− 28).

The procedure for allocating each production
phases is described in Algorithm 8. The goal is to
identify couples day/shift in order to assign the job to
an appropriate work center. An important assumption
is that a job may be split among consecutive shifts. In
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Algorithm 4 The procedure for computing the quantity of end
product to be realized
1: procedure COMPUTEQ(IDd, UMIDd , lIDd ,mlIDd , qd)
2: minumumLot← 0
3: if UMIDd == “days” then
4: minimumLot← < find the need of end product IDd

in the next lIDd days >
5: else if UMIDd == “quantity” then
6: minimumLot← max(qd, lIDd)
7: else if UMIDd == “units” then
8: minimumLot← max(qd, lIDd ∗ avIDd)
9: end if

10: q ← COMPUTEMULTIPLE(minimumLot,mlIDd)
11: return q
12: end procedure

Algorithm 5 The procedure for determining the actual lot size
1: procedure COMPUTEMULTIPLE(minimumLot,mlIDd )
2: q ← 0
3: if mlIDd ≥ minimumLot then
4: q ← mlIDd

5: else
6: q ←< find the smallest multiple of mlIDd that is not

lower than minimumLot >
7: end if
8: return q
9: end procedure

fact, if the residual capacity of the work center wc un-
der consideration is enough to accommodate the job,
we are done (lines 6 − 10). Otherwise, we allocate
to wc a job involving a fraction of bp computed as
b residualCapacity

mtc
c, and we update bp and the machine

time needed to perform the job (lines 11− 15). Then,
we seek for another shift of the same day (or, alter-
natively, another working day) to assign the reduced
value of bp. The procedure iterates until the whole
quantity bp is allocated or we reach the end of the
planning horizon.

6 Computational results

In this section, we test the performance of our math-
ematical model and our heuristic on a set of real-life
instances, related to a manufacturing company. The
approach is coded in Java and is tested on a machine
equipped with an Intel i7 processor clocked at 3.0
GHz and 8 GB of RAM. In order to solve the opti-
mization models, we use the general-purpose black-
box MIP solver IBM ILOG CPLEX 12.5 [17].

Algorithm 6 The procedure for pruning the BOM
1: procedure PRUNE(BOMIDd )
2: for all i = 0, . . . , LBOMIdd

do
3: for all p ∈ BiIDp do
4: if bp < Ip then
5: < remove p from level i as well as all its

children along this branch >
6: Ip ← Ip − bp
7: else
8: bp ← bp − Ip
9: < update the quantities for all the children of

p along this branch >
10: Ip ← 0
11: end if
12: end for
13: end for
14: return BOMIDd

15: end procedure

6.1 Test problem

To test our approach, we use, as a benchmark, the
current situation of a manufacturing company. The
company consists of several departments such as cut-
ting, bending, machining, welding, painting, testing.
In particular in the cutting department there are 23
work centers using two cutting technologies (laser and
plasma). The bending department is composed of 29
working center with robots. The machining depart-
ment uses 32 horizontal and vertical computer numer-
ical control work centers. In the welding department
there are 45 robots. The painting department uses
two different painting technologies (primer painting
and wet top coat) and is composed of 4 painting sys-
tems with 12 work centers for the final assembly of
all items. Finally, the testing department performs a
three-dimensional control of measures and ultrasonic
tests for welding.

The instances considered for testing have up to
4300 jobs to be scheduled on about 400 work cen-
ters. The maximum number of production phases is
two. The average number of levels in the BOM of end
products is 11 (the maximum number of levels in the
BOM is 33, while the minimum number of levels in
the BOM is two).

6.2 Preliminary results for the optimization
model

In this section we report the results of some prelim-
inary tests performed on the mathematical model of
Section 4. In particular, we have considered 5 instance
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Algorithm 7 The procedure for allocating demand
1: procedure ALLOCATEDEMAND(BOMIDd )
2: t← 1
3: result← true
4: for all i = LBOMIDd

, . . . , 0 do
5: if result == false then
6: break
7: end if
8: for all p ∈ BiIDd do
9: bp ← COMPUTEQ(p, UMp, lp,mlp, bp)

10: for all o ∈ Op do
11: if no ≥ bp then
12: no ← no − bp
13: bp ← 0
14: t← ro
15: break
16: else
17: bp ← bp − no
18: no ← 0
19: end if
20: end for
21: if bp > 0 then
22: for all c ∈ Cp do
23: result← ALLOCATEPHASE(c, t, p, bp)
24: if result == false then
25: break
26: end if
27: end for
28: end if
29: end for
30: end for
31: return result
32: end procedure

types, each of which is characterized by a different
number of customers requests (between 25 and 100)
as well as a different length of the planning horizon
(between 2 months and 4 months). For each instance
type we have considered 10 instances. For each in-
stance, we set a maximum time limit of 3,600 sec-
onds. The results are presented in Table 1. First of
all, we observe that not every instance type can be
solved to optimality (this happens for the instances
having a non-zero value in the column ‘Optimality
gap’). In this case, the average optimality gap is about
23%. With respect to the average delay, the (optimal
or sub-optimal) solutions provided by the model have
an average value of 13.31 days, with a maximum de-
lay of about 20 days and a minimum delay of about 7
days. In addition, on the average about 47% of the
customers’ demands are scheduled before their due
date.

As can be observed from the table, as the instance
size grows, it becomes more and more difficult for the

Algorithm 8 The procedure for allocating production phases
1: procedure ALLOCATEPHASE(c, t, p, bp)
2: machineT← mtc ∗ bp
3: while bp > 0 && t ≤ T do
4: for all j = 1, . . . , swct do
5: residualCapacity← Qwcjt

6: if residualCapacity ≥ machineT then
7: < allocate to work center wc a job for the

production of bp units of p, taking mtc ∗ bp
time units >

8: < update the residual capacity of wc >
9: bp ← 0

10: break
11: else
12: < allocate to work center wc a job for

the production of b residualCapacity
mtc

c units of p,
taking b residualCapacity

mtc
c ∗mtc time units >

13: bp ← bp − b residualCapacity
mtc

c
14: machineT← machineT−b residualCapacity

mtc
c∗mtc

15: end if
16: end for
17: if bp > 0 then
18: t← t+ 1
19: end if
20: end while
21: if bp == 0 then
22: return true
23: else
24: return false
25: end if
26: end procedure

model to be solved to optimality. Thus, for real-world-
sized instances it is fundamental to employ a fast and
effective heuristic to face the problem.

6.3 Results for the heuristic

Table 2 reports the average results obtained by the
heuristic on 5 instance types, characterized by a differ-
ent number of customers requests as well as a different
length of the planning horizon. These characteristics
are reported in column ‘Instance features’. For each
instance type (and hence for each line of the table),
we have considered 10 instances. The average time
needed to schedule a single request is about 0.02 sec-
onds. As emerges from the table, the heuristic is scal-
able as the instance size grows. The average delay for
customers requests is 0.47 days, with a maximum de-
lay of about six days and a minimum (negative) delay
of about three days. A negative delay means that the
orders are scheduled to be produced before the due
date. Moreover, about 43% of the orders are sched-
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Table 1: Results of the tests performed on the mathematical model.
Instance features Time Optimality gap Average delay Orders without
(|D|, T ) (sec) (%) (days) delay (%)
(25, 2) 1,789 − 7.03 64.18
(40, 2) 2,864 − 9.18 51.96
(50, 3) 3,600 10.12 14.45 37.63
(75, 3) 3,600 19.41 15.87 39.77
(100, 4) 3,600 39.18 20.04 41.35

Table 2: Results of the tests performed on real-world-sized instances.
Instance features Time Average delay Orders without Average departments saturation (%)
(|D|, T ) (sec) (days) delay (%) 1 month 2 months 3 months 4 months
(4067, 20) 79.59 3.59 44.09 62.74 59.54 57.38 55.22
(3284, 15) 62.98 6.36 37.02 66.95 63.29 60.28 58.75
(3981, 18) 73.50 -2.64 38.69 61.83 62.16 59.26 57.24
(3946, 15) 80.19 -2.15 45.90 63.50 63.24 59.82 56.62
(4131, 14) 77.70 -2.81 47.93 61.34 60.35 59.10 56.84

Table 3: Results obtained by using the solutions provided by the company.
Instance features Average delay Orders without Average departments saturation (%)
(|D|, T ) (days) delay (%) 1 month 2 months 3 months 4 months
(4067, 20) 16.47 31.27 47.91 46.49 40.47 38.16
(3284, 15) 13.83 26.72 50.73 47.11 45.99 42.52
(3981, 18) 9.18 25.14 45.69 44.52 42.57 41.48
(3946, 15) 11.31 33.71 46.56 44.74 43.78 41.29
(4131, 14) 10.14 31.18 45.14 43.56 43.20 39.22

uled within the due date, on the average. Finally, an-
other important statistics concerns the average satura-
tion of departments. In particular, we have computed
these data with reference to the first four months of
scheduling, obtaining average values of about 63%,
62%, 59% and 57%, respectively. Apparently, these
results could seem not completely satisfactory. In-
deed, they are influenced by the presence of depart-
ments with a low workload. This would suggest to
the company the need of a partial reconfiguration of
its internal structure. In particular, this could be per-
formed by moving both human and material resources
from such under-utilized departments to those that are
completely saturated and thus represent bottlenecks.

In order to provide additional insights about the
effectiveness of our approach, in Table 3 we present
the results obtained by using the “manual” solutions
provided by the company on the same instances re-
ported in Table 2. In this case, the average delay
per request is 12.19 days, whereas the orders sched-
uled within the due date is about 38%, on the av-

erage. Moreover, the average saturation of depart-
ments is about 47%, 45%, 43% and 40%, for the first
four months of scheduling, respectively. Finally, it is
worthwhile to mention that it takes several working
days to obtain such “manual” solutions.

7 Conclusions
In this paper we have studied an assembly job shop
scheduling problem in which end-products are char-
acterized by complex bills of materials. For this prob-
lem, we have proposed a mathematical model (to face
a simplified version of the problem), as well as a fast
and efficient constructive heuristic that takes into ac-
count the actual availability of materials at stock as
well as the order due dates. Moreover, the production
plans must also satisfy capacity constraints related to
the availability of work centers as well as meet the
due dates of customers’ demands as much as possi-
ble. Computational results on data related to a real-
life test case have shown that our approach is able to
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easily deal with instances with up to 4200 jobs to be
scheduled on 390 work centers over a 20 months plan-
ning horizon. The effectiveness of our heuristic is at-
tested by an average delay for customers requests of
0.47 days (12.19 days for the “manual” solution), with
about 43% of the orders that are scheduled within the
due date (38% for the “manual” solution). Another
important remark concerns the computing time of our
heuristic procedure. Indeed, the average time needed
to schedule a single request is about 0.02 seconds.
More important, this time remains approximately con-
stant as the size of the instances grows.
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