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Abstract: In this paper we apply the h-generated fuzzy implications to prove a number of results which are of
fundamental importance to the theory of fuzzy and vague functional and multivalued dependencies defined on
given scheme. Our research is motivated by the fact that some analogous results already hold true for the families of
f - and g-generated fuzzy implications, and the fact that these three collections of implications share many similar
mutual properties. While some of the aforementioned implications are introduced in order to be applied in
approximate reasoning, the results derived in this paper represent the main tool in the process of automation and are
alsousedtocomplementtheresolutionprinciple.Moreprecisely,themainresultofthisresearchstatesthatthe

fact that some fuzzy (vague) relation instance r, |r| = 2, satisfies some fuzzy (vague) functional or fuzzy (vague)

multivalued dependency c /∈C (under assumption that r satisfies some set C of fuzzy (vague) functional and fuzzy
(vague) multivalued dependencies), yields that the fuzzy formula attached to c is valid whenever all of the fuzzy
formulas attached to the elements of C are valid. What is more important is that the opposite claim is also proven.
Its importance stems from the fact that the verification by hand, which means purely theoretical verification, thatC
implies c is not required anymore. Now, in order to prove that someC yields some c, it is enough to make the use of
the resolution principle, and automatically verify whether or not the set of the attached fuzzy formulas yields the
fuzzy formula attached to c. In the case of affirmative answer, the desired dependency follows. The research
conducted in this paper represent a natural generalization of our previous research since it includes and considers
both,fuzzyandvaguetheories.
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1 Introduction
From Yager’s paper [1], it can be seen that the inter-
est to introduce families of f - an g-generated implica-
tions stems from a desire to consider and apply fuzzy
implications in approximate reasoning (see, also [2]).

As it is known, Yager’s collection of fuzzy im-
plications is derived from functions which are either
strictly decreasing or increasing, with the real inter-
val [0, 1] taken to be their domain, and the interval
[0,+∞] taken to be their codomain.

Thus, it is quite natural to try to obtain fuzzy im-
plications from such functions, whose codomain is
also [0, 1].

Indeed, Balasubramaniam, in [3] and [4], intro-
duces a new family of fuzzy implications called h-
generated implications (these implications are derived
from the multiplicative generators of t-conorms).

More precisely, if h : [0, 1] → [0, 1] is a strictly
decreasing and continuous function with h (0) = 1,
then the function I : [0, 1]2→ [0, 1], defined by

I (x, y) = h(−1) (xh (y))

is a fuzzy implication.
Here, h(−1) : [0, 1]→ [0, 1] is the function defined

by

h(−1) =

{
h−1 (x) , x ∈ [h (1) , 1],
1, x ∈ [0, h (1)],

and is called the pseudo-inverse of h.
Clearly, fuzzy implication I (x, y) can be written

without explicitly using the pseudo-inverse h(−1), i.e.,
in the form

I (x, y) = h−1 (max {xh (y) , h (1)}) .
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Any function h satisfying the properties listed
above, is called an h-generator (of fuzzy implication
I).

Additionally, I is called an h-implication, and if I
is generated from h, then we usually write Ih instead
of I .

Thus,

Ih (x, y) = h−1 (max {xh (y) , h (1)}) .

While the g-generators resp. the f -generators of
the g-generated resp. f -generated implications are
unique up to a positive constant, the h-generator of an
h-generated implication is uniquely determined, i.e.,
h1, h2 are h-generators such that Ih1 = Ih2 if and only
if h1 = h2.

It is worth to note that if h is an h-generator of Ih,
then, the natural negation NIh is a continuous fuzzy
negation, NIh is a strict if and only if h (1) = 0, and
NIh is strong negation if and only if h = h−1.

Moreover, Ih satisfies the left neutrality property,
i.e.,

Ih (1, y) = y

for y ∈ [0, 1].
Ih satisfies the exchange property, i.e.,

Ih (x, Ih (y, z)) = Ih (y, Ih (x, z))

for x, y, z ∈ [0, 1].
Ih satisfies the identity principle Ih (x, x) = 1, x

∈ [0, 1], if and only if h (1) > 0 and xh (x) ≤ h (1)
for every x ∈ [0, 1].

The ordering property, x ≤ y if and only if
Ih (x, y) = 1, x, y ∈ [0, 1], is not satisfied.

Finally, the contrapositive symmetry with
respect to fuzzy negation N , i.e., Ih (x, y) =
Ih (N (y) , N (x)), x, y ∈ [0, 1], is satisfied if and only
if h = h−1 and N = NIh .

In this paper, we apply the h-generated implica-
tions to derive some results which are closely related
to the theory of fuzzy and vague database relations.
The classical, ordinary database [5], accepts only the
known and the exact data, the fact that forces the de-
veloper to create a restricted design which stores only
such type of data. If the data is assumed to be fuzzy,
then the classical relation theory is not able to answer
accordingly anymore. Three approaches are devel-
oped in order to overcome these difficulties: fuzzy
membership values [6], [7], possibility distributions
[8], [9], [10], and the similarity relations [11], [12],

[13]. Our research follows the third approach. In
this approach attribute values are described by some
sets of crisp values, and the similarities between them
are calculated by appropriately selected similarity re-
lations [14]. Following the similarity based fuzzy
relation concept, Yazici in [15], introduced the for-
mal definitions of fuzzy functional and fuzzy multival-
ued dependencies, describing the corresponding infer-
ence rules and proving them to be sound and com-
plete. The research is continued in [16], [17], and
further on in [18], [19], [20], [21] and [22], in the
case of vague functional and vague multivalued de-
pendencies setting. The current research generalizes
the previous ones by assuming both theories together,
fuzzy and vague at the same time. In the main re-
sult of this paper, Theorem 2, the authors prove that
the theoretical approach to new fuzzy (vague) func-
tional (multivalued) dependencies may be circum-
vented, and replaced by the automated one which as-
sumes the use of software to verify whether or not
some fuzzy (vague) functional (multivalued) depen-
dency follows from some set of fuzzy (vague) func-
tional and fuzzy (vague) multivalued dependencies.
Note that the authors do not offer an application to
support their results. However, it is clear that such an
application could be made by following step by step
instructions described in detail by Example 1.

2 Preliminary Results
Suppose that (X,m, Y, θ, F ) resp. (X,m, Y, θ, V )
is satisfied by r, and that Con (t1, t2, A) ≥ θ for all
A ∈ X , where (X,m, Y, θ, F ) resp. (X,m, Y, θ, V )
is a fuzzy resp. vague multivalued dependency on
given scheme Sch (A1, A2, ..., An), r = {t1, t2} is
a two-element fuzzy (vague) relation instance on
Sch (A1, A2, ..., An), and Con (t1, t2, A) is the con-
formance between tuples t1 and t2 on attribute A ∈X
⊆ {A1, A2, ..., An}.

Our research will not depend on the choice be-
tween (X,m, Y, θ, F ) and (X,m, Y, θ, V ).

Hence, we shall focus our attention to the first,
fuzzy case.

Since (X,m, Y, θ, F ) is satisfied by r, and the in-
equalities Con (t1, t2, A) ≥ θ hold true for A ∈ X , it
easily follows that either the inequalities

Con (t1, t2, X) ≥ θ, Con (t1, t2, Y ) ≥ θ,

or the inequalities

Con (t1, t2, X) ≥ θ, Con (t1, t2, Z) ≥ θ,
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hold also true (note that the opposite assertion holds
also true), where (for example)

Con (t1, t2, X) = min {Con (t1, t2, A) : A ∈ X}

is the conformance between tuples t1 and t2 on
set of attributes X (⊆ {A1, A2, ..., An}), and Z =
{A1, A2, ..., An} \ (X ∪ Y ) (see, e.g., [21]).

For the sake of simplicity and clarity, suppose that

Con (t1, t2, X) ≥ θ, Con (t1, t2, Y ) ≥ θ.

Since Con (t1, t2, X) ≥ θ, Con (t1, t2, Y ) ≥ θ,
we obtain that Con (t1, t2, A) ≥ θ, A ∈ X , and
Con (t1, t2, B) ≥ θ, B ∈ Y .

Consequently, V alθr (A) >
1
2 , A ∈ X , and

V alθr (B) > 1
2 , B ∈ Y , where V alθr denotes a valua-

tion determined by r and θ.
Hence,

V alθr (&A∈XA) =min
{
V alθr (A) : A ∈ X

}
>

1

2
,

V alθr (&B∈YB) =min
{
V alθr (B) : B ∈ Y

}
>

1

2
.

Note that this discussion yields that
Con (t1, t2, X) ≥ θ if and only if V alθr (&A∈XA) >
1
2 (in the same way as Con (t1, t2, A) ≥ θ if and only
if V alθr (A) >

1
2 ).

Let

FmX,Y = (&A∈XA)→ ((&B∈YB) ‖ (&C∈ZC))

be the fuzzy formula attached to (X,m, Y, θ, F ).
It follows that

V alθr
(
FmX,Y

)
=V alθr ((&A∈XA)→ ((&B∈YB) ‖ (&C∈ZC)))

=h−1

(
max

{
V alθr (&A∈XA)×

× h
(
V alθr ((&B∈YB) ‖ (&C∈ZC))

)
, h (1)

})

=h−1

(
max

{
V alθr (&A∈XA)×

× h
(
max

{
V alθr (&B∈YB) , V alθr (&C∈ZC)

})
,

h (1)

})
.

Denote,

x =V alθr (&A∈XA) ,

y =max
{
V alθr (&B∈YB) , V alθr (&C∈ZC)

}
.

Hence,

V alθr
(
FmX,Y

)
= h−1 (max {xh (y) , h (1)}) .

Since V alθr (&A∈XA) >
1
2 , V alθr (&B∈YB) > 1

2 ,
it follows that x > 1

2 , and

y =max
{
V alθr (&B∈YB) , V alθr (&C∈ZC)

}
>

1

2
.

Suppose that

max {xh (y) , h (1)} = h (1) .

It follows immediately that

V alθr
(
FmX,Y

)
= h−1 (h (1)) = 1 >

1

2
.

Now, suppose that

max {xh (y) , h (1)} = xh (y) .

Since 1
2 < x ≤ 1, we know that xh (y) ≤ h (y).

The fact that h is a strictly decreasing function,
and 1

2 < y, imply that h
(
1
2

)
> h (y).

Thus, xh (y) < h
(
1
2

)
, so
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V alθr
(
FmX,Y

)
=h−1 (xh (y)) > h−1

(
h

(
1

2

))
=
1

2
.

Thus, the fact that Con (t1, t2, X) ≥ θ,
Con (t1, t2, Y ) ≥ θ, yields that Con (t1, t2, X) ≥ θ,
and V alθr

(
FmX,Y

)
> 1

2 .
Now, it is clear that the assumption

Con (t1, t2, X) ≥ θ, Con (t1, t2, Z) ≥ θ, would yield
that Con (t1, t2, X) ≥ θ, and V alθr

(
FmX,Y

)
> 1

2 .
This actually means that the fact that

(X,m, Y, θ, F ) is satisfied by r, and Con (t1, t2, A)
≥ θ, A ∈ X , imply that Con (t1, t2, X) ≥ θ, and
V alθr

(
FmX,Y

)
> 1

2 .

Now suppose that Con (t1, t2, X) ≥ θ, and
V alθr

(
FmX,Y

)
> 1

2 .
We have,

V alθr
(
FmX,Y

)
= h−1 (max {xh (y) , h (1)}) > 1

2
,

where, as earlier,

x =V alθr (&A∈XA) ,

y =max
{
V alθr (&B∈YB) , V alθr (&C∈ZC)

}
.

As noted above, Con (t1, t2, X) ≥ θ implies that
x = V alθr (&A∈XA) >

1
2 .

Since V alθr
(
FmX,Y

)
> 1

2 , and h is a decreasing
function, it follows that

max {xh (y) , h (1)} < h

(
1

2

)
.

If max {xh (y) , h (1)} = h (1), then

xh (y) ≤ h (1) < h

(
1

2

)
.

Otherwise, if max {xh (y) , h (1)}= xh (y), then
we immediately have that xh (y) < h

(
1
2

)
.

If h (y) = 0, then the fact that h is a strictly de-
creasing function, implies that y = 1.

Namely, if we assume that y < 1, then, for any a,
such that y < a < 1, holds that 0 = h (y) > h (a).

This is a contradiction, however.
Thus, y = 1 > 1

2 .
Suppose that h (y) > 0.
We obtain,

x <
h
(
1
2

)
h (y)

.

Note that x > 1
2 .

This means that the inequality x <
h( 1

2)
h(y) must be

true for all 1
2 < x ≤ 1.

In particular, the inequality 1<
h( 1

2)
h(y) must be sat-

isfied.
We obtain, h (y) < h

(
1
2

)
, and hence y > 1

2 .
We conclude that the inequality y > 1

2 holds al-
ways true.

Since y =
max

{
V alθr (&B∈YB) , V alθr (&C∈ZC)

}
, it follows

that V alθr (&B∈YB) > 1
2 and V alθr (&C∈ZC) >

1
2 .

As noted before, we obtain that Con (t1, t2, Y )≥
θ and Con (t1, t2, Z) ≥ θ.

Thus, Con (t1, t2, X) ≥ θ, Con (t1, t2, Y ) ≥
θ or Con (t1, t2, X) ≥ θ, Con (t1, t2, Z) ≥ θ, so
(X,m, Y, θ, F ) is satisfied by r, and Con (t1, t2, A)
≥ θ, A ∈ X .

Combining what we derived above, we end up
with the conclusion that (X,m, Y, θ, F ) is satisfied
by r, and Con (t1, t2, A) ≥ θ, A ∈ X , if and only
if Con (t1, t2, X) ≥ θ, and V alθr

(
FmX,Y

)
> 1

2 .

3 Main Result
Besides fuzzy resp. vague multivalued dependen-
cies (X,m, Y, θ, F ) resp. (X,m, Y, θ, V ), we con-
sider fuzzy resp. vague functional dependencies
(X, f, Y, θ, F ) resp. (X, f, Y, θ, V ).

Since the discussion does not depend on the
choice between (X, f, Y, θ, F ) and (X, f, Y, θ, V ),
we shall pay our attention to fuzzy functional resp.
fuzzy multivalued dependencies (X, f, Y, θ, F ) resp.
(X,m, Y, θ, F ).

We already attached the fuzzy formula FmX,Y to
fuzzy multivalued dependency (X,m, Y, θ, F ).

Now, we put

F fX,Y = (&A∈XA)→ (&B∈YB)
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to be fuzzy formula attached to (X, f, Y, θ, F ).
In the sequel, we shall denote by C, the set of

fuzzy functional and fuzzy multivalued dependencies
(K, f, L, θ2, F ) and (K,m,L, θ2, F ).

Consequently, we shall put C
′

to be the cor-
responding set of fuzzy formulas F fK,L and FmK,L,
where, in the multivalued case, the difference
{A1, A2, ..., An} \ (K ∪ L) will be denoted by M .

Besides the set C, we shall consider some
fuzzy functonal resp. fuzzy multivalued dependency
(X, f, Y, θ1, F ) resp. (X,m, Y, θ1, F ).

The corresponding fuzzy formula F fX,Y resp.
FmX,Y will be denoted by c

′
, with {A1, A2, ..., An} \

(X ∪ Y ) denoted by Z.
As it is usual, we say that (X, f, Y, θ1, F ) is sat-

isfied by r (r is arbitrary), if for t1, t2 ∈ r,

Con (t1, t2, Y ) ≥ min {θ1, Con (t1, t2, X)} .

For the sake of simplicity, if (X, f, Y, θ1, F ) is
satisfied by r, we shall say that (t1, t2, Y, θ1, X, r)

holds true (or that
(
t
′
, t

′′
, Y, θ1, X, r

)
holds true, with

the obvious meaning).
Furthermore, we say that (X,m, Y, θ1, F ) is sat-

isfied by r (r is arbitrary), if for t1, t2 ∈ r, there is t3
∈ r, such that

Con (t3, t1, X) ≥min {θ1, Con (t1, t2, X)} ,
Con (t3, t1, Y ) ≥min {θ1, Con (t1, t2, X)} ,
Con (t3, t2, Z) ≥min {θ1, Con (t1, t2, X)} .

Thus, if (X,m, Y, θ1, F ) is satisfied by r, we
shall say that (t3, t1, t2, X, Y, Z, θ1, r) holds true.

For example, if we say that(
t
′′′
, t

′′
, t

′
,K, L,M, θ2, r

′
)

holds true, then, for t
′
, t

′′

∈ r′ , there is t
′′′ ∈ r′ , such that

Con
(
t
′′′
, t

′′
,K
)
≥min

{
θ2, Con

(
t
′′
, t

′
,K
)}

=min
{
θ2, Con

(
t
′
, t

′′
,K
)}

,

Con
(
t
′′′
, t

′′
, L
)
≥min

{
θ2, Con

(
t
′
, t

′′
,K
)}

,

Con
(
t
′′′
, t

′
,M
)
≥min

{
θ2, Con

(
t
′
, t

′′
,K
)}

.

Now, suppose that (X, f, Y, θ1, F ) resp.
(X,m, Y, θ1, F ) is satisfied by r if (K, f, L, θ2, F ) is
satisfied by r, and (K,m,L, θ2, F ) is satisfied by r
for all (K, f, L, θ2, F ) ∈ C and all (K,m,L, θ2, F )
∈ C, where r is a two-element fuzzy relation instance
on given scheme Sch (A1, A2, ..., An).

We shall prove that V alβr
(
c
′
)
> 1

2 for every

valuation V alβr , such that V alβr
(
F fK,L

)
> 1

2 and

V alβr
(
FmK,L

)
> 1

2 for all F fK,L ∈ C
′

and all FmK,L
∈ C ′

.
Suppose that the last statement is not satisfied.
This means that there exists some valuation V alβr

(attached to some two-element r = {t1, t2} and β ∈
[0, 1]), such that V alβr

(
F fK,L

)
> 1

2 , F fK,L ∈ C
′
, and

V alβr
(
FmK,L

)
> 1

2 , FmK,L ∈ C
′
, but V alβr

(
c
′
)
≤ 1

2 .

Denote by Z
′

the set

Z
′
=

{
A ∈ {A1, A2, ..., An} : V alβr (A) >

1

2

}
.

First, suppose that Z
′ 6= ∅.

It follows that V alβr (A) ≤ 1
2 for all A ∈

{A1, A2, ..., An}.
Having in mind that V alβr

(
c
′
)
≤ 1

2 , we obtain

that V alβr
(
F fX,Y

)
≤ 1

2 resp. V alβr
(
FmX,Y

)
≤ 1

2 , i.e.,
that

V alβr ((&A∈XA)→ (&B∈YB))

=h−1

(
max

{
V alβr (&A∈XA)×

× h
(
V alβr (&B∈YB)

)
, h (1)

})
≤1

2

resp.

V alβr ((&A∈XA)→ ((&B∈YB) ‖ (&C∈ZC)))

=h−1

(
max

{
V alβr (&A∈XA)×

× h
(
V alβr ((&B∈YB) ‖ (&C∈ZC))

)
, h (1)

})

=h−1

(
max

{
V alβr (&A∈XA)×
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× h
(
max

{
V alβr (&B∈YB) , V alβr (&C∈ZC)

})
,

h (1)

})
≤1

2
.

Thus, the fact that h is a decreasing function,
yields that

max

{
V alβr (&A∈XA)×

× h
(
V alβr (&B∈YB)

)
, h (1)

}
≥ h

(
1

2

)
resp.

max

{
V alβr (&A∈XA)×

× h
(
max

{
V alβr (&B∈YB) , V alβr (&C∈ZC)

})
,

h (1)

}
≥ h

(
1

2

)
.

Since 1
2 < 1 and h is strictly decreasing, we have

that h
(
1
2

)
> h (1).

If

max

{
V alβr (&A∈XA)×

× h
(
V alβr (&B∈YB)

)
, h (1)

}
= h (1) ,

then, h (1) ≥ h
(
1
2

)
.

This is a contradiction.
Similarly, if

max

{
V alβr (&A∈XA)×

× h
(
max

{
V alβr (&B∈YB) , V alβr (&C∈ZC)

})
,

h (1)

}
= h (1) ,

then h (1) ≥ h
(
1
2

)
.

This is a contradiction.

We conclude,

V alβr (&A∈XA)h
(
V alβr (&B∈YB)

)
=max

{
V alβr (&A∈XA)×

× h
(
V alβr (&B∈YB)

)
, h (1)

}

≥h
(
1

2

)
(1)

resp.

V alβr (&A∈XA)h

(
max

{
V alβr (&B∈YB) ,

V alβr (&C∈ZC)

})

=max

{
V alβr (&A∈XA)×

× h

(
max

{
V alβr (&B∈YB) ,

V alβr (&C∈ZC)

})
, h (1)

}

≥h
(
1

2

)
.

(2)

If
h
(
V alβr (&B∈YB)

)
= 0 (3)

resp.

h

(
max

{
V alβr (&B∈YB) ,

V alβr (&C∈ZC)

})
= 0,

(4)

then, the assumptions on h yield that

V alβr (&B∈YB) = 1

resp.

max
{
V alβr (&B∈YB) , V alβr (&C∈ZC)

}
= 1.

Hence, V alβr (&B∈YB) = 1 or V alβr (&C∈ZC)
= 1.
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Since, for example,

V alβr (&B∈YB) =
{
V alβr (B) : B ∈ Y

}
,

it follows that 1
2 < 1 = V alβr (&B∈YB) = V alβr (B)

for some B ∈ Y ⊆ {A1, A2, ..., An}, and 1
2 < 1

= V alβr (&C∈ZC) = V alβr (C) for some C ∈ Z ⊆
{A1, A2, ..., An}.

Both of thee cases contradicts the fact that
V alβr (A) ≤ 1

2 for all A ∈ {A1, A2, ..., An}.
Therefore,

h
(
V alβr (&B∈YB)

)
> 0 (5)

resp.

h

(
max

{
V alβr (&B∈YB) ,

V alβr (&C∈ZC)

})
> 0.

(6)

We obtain that,

V alβr (&A∈XA)

≥
h
(
1
2

)
h
(
V alβr (&B∈YB)

) (7)

resp.

V alβr (&A∈XA) (8)

≥
h
(
1
2

)
h
(
max

{
V alβr (&B∈YB) , V alβr (&C∈ZC)

})
Since V alβr (A)≤ 1

2 for allA ∈ {A1, A2, ..., An},
we have that

V alβr (&B∈YB) =
{
V alβr (B) : B ∈ Y

}
≤ 1

2
.

Also, V alβr (&C∈ZC) ≤ 1
2 , so

max
{
V alβr (&B∈YB) , V alβr (&C∈ZC)

}
≤ 1

2
.

It follow that

h
(
V alβr (&B∈YB)

)
≥ h

(
1

2

)
resp.

h
(
max

{
V alβr (&B∈YB) , V alβr (&C∈ZC)

})
≥h
(
1

2

)
,

i.e.,

h
(
1
2

)
h
(
V alβr (&B∈YB)

) ≤ 1

resp.

h
(
1
2

)
h
(
max

{
V alβr (&B∈YB) , V alβr (&C∈ZC)

})
≤1.

Hence, V alβr (&A∈XA) = 1.
Reasoning as earlier, we conclude that V alβr (A)

= 1 > 1
2 for some A ∈ X ⊆ {A1, A2, ..., An}.

This contradicts the fact that V alβr (A)≤ 1
2 for all

A ∈ {A1, A2, ..., An}.
Since the assumption Z

′
= ∅ yields to contradic-

tion, it follows that Z
′ 6= ∅.

Second, suppose that Z
′
= {A1, A2, ..., An}.

It follows that V alβr (A) > 1
2 for all A ∈

{A1, A2, ..., An}
Once again, the fact that V alβr

(
c
′
)
≤ 1

2 , yields

that V alβr
(
F fX,Y

)
≤ 1

2 resp. V alβr
(
FmX,Y

)
≤ 1

2 , i.e.,
that (1) resp. (2) holds true.

If (5) resp. (4) holds true, then (1) resp. (2) im-
plies that h

(
1
2

)
≤ 0.

This is not possible, however.
It follows that (5) resp. (6) holds true, i.e., that

(7) resp. (8) holds true.
Note that V alβr (A) > 1

2 for A ∈
{A1, A2, ..., An}.

Hence, V alβr (&B∈YB) > 1
2 , V alβr (&C∈ZC) >

1
2 , so

max
{
V alβr (&B∈YB) , V alβr (&C∈ZC)

}
>

1

2
.

Now, reasoning as before, we conclude that
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h
(
V alβr (&B∈YB)

)
< h

(
1

2

)
resp.

h
(
max

{
V alβr (&B∈YB) , V alβr (&C∈ZC)

})
<h

(
1

2

)
,

i.e., that

h
(
1
2

)
h
(
V alβr (&B∈YB)

) > 1

resp.

h
(
1
2

)
h
(
max

{
V alβr (&B∈YB) , V alβr (&C∈ZC)

})
>1.

By (7) resp. (8), V alβr (&A∈XA) > 1.
This is not possible, however.
So, the assumption that Z

′
= {A1, A2, ..., An},

yields a contradiction.
It follows that Z

′ ⊂ {A1, A2, ..., An}.
We have, ∅ 6= Z

′ ⊂ {A1, A2, ..., An}.

For the sake of simplicity, we shall assume that
each of attributes in {A1, A2, ..., An} is defined on the
same two-element set {p, q}.

Strengths of the dependencies in C are
denoted by θ2, while the strength of the dependency
(X, f, Y, θ1, F ) resp. (X,m, Y, θ1, F ) is obviously
θ1.

We shall denote by θ
′
(< 1) the minimum of these

strengths, and select some θ
′′
< θ

′
.

Since domain of each of the attributes in
{A1, A2, ..., An} is {p, q}, the similarity
relation (defined on domains of the attributes in
{A1, A2, ..., An}), is given by Sim (p, q) = θ

′′
.

Clearly, Sim (p, q) = Sim (q, p) = 1.

Now the fact that ∅ 6= Z
′ ⊂ {A1, A2, ..., An} en-

ables us to define the following two-element, fuzzy
relation instance r

′
, by putting it to have t

′
, t

′′
val-

ues equal p on Z
′
, and t

′
, t

′′
values equal q on

{A1, A2, ..., An} \ Z
′
, where r

′
=
{
t
′
, t

′′
}

.

We shall prove that (K, f, L, θ2, F ) is satisfied by
r
′
, and that (K,m,L, θ2, F ) is satisfied by r

′
for all

(K, f, L, θ2, F ) ∈ C and all (K,m,L, θ2, F ) ∈ C.
Furthermore, we shall prove that r

′
violates

(X, f, Y, θ1, F ) resp. (X,m, Y, θ2, F ).
Let (K, f, L, θ2, F ) ∈ C.
By our assumption, V alβr

(
F fK,L

)
> 1

2 .
Hence,

V alβr ((&A∈KA)→ (&B∈LB))

=h−1

(
max

{
V alβr (&A∈KA)×

× h
(
V alβr (&B∈LB)

)
, h (1)

})
>
1

2
,

i.e.,

max

{
V alβr (&A∈KA)×

× h
(
V alβr (&B∈LB)

)
, h (1)

}
< h

(
1

2

)
.

Suppose that the maximum is h (1).
Then,

V alβr (&A∈KA)h
(
V alβr (&B∈LB)

)
≤h (1) < h

(
1

2

)
.

If the maximum is

V alβr (&A∈KA)h
(
V alβr (&B∈LB)

)
,

then, once again

V alβr (&A∈KA)h
(
V alβr (&B∈LB)

)
< h

(
1

2

)
.

If V alβr (&A∈KA) ≤ 1
2 , then V alβr (A) ≤ 1

2 for

all A ∈ K, so A /∈ Z ′
, and hence Con

(
t
′
, t

′′
, A
)
=

θ
′′
.

Thus, Con
(
t
′
, t

′′
,K
)
= θ

′′
.
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By our definition of similarity relations on do-
mains of attributes in {A1, A2, ..., An}, it immedi-
ately follows that Con

(
t
′
, t

′′
, Q
)
≥ θ

′′
for any Q ⊆

{A1, A2, ..., An}.
In particular, Con

(
t
′
, t

′′
, L
)
≥ θ′′ .

Hence,

Con
(
t
′
, t

′′
, L
)

≥θ′′ = min
{
θ2, θ

′′
}
= min

{
θ2, Con

(
t
′
, t

′′
,K
)}

,

i.e., (K, f, L, θ2, F ) is satisfied by r
′
, i.e.,(

t
′
, t

′′
, L, θ2,K, r

′
)

holds true.

If V alβr (&A∈KA) >
1
2 , then V alβr (A) > 1

2 for
all A ∈ K, so A ∈ Z

′
for all A ∈ K, and hence

Con
(
t
′
, t

′′
, A
)
= 1 for all A ∈K.

Thus, Con
(
t
′
, t

′′
,K
)
= 1.

If h
(
V alβr (&B∈LB)

)
= 0, then V alβr (&B∈LB)

= 1 > 1
2 .

Reasoning as in the case V alβr (&A∈KA)>
1
2 , we

obtain that Con
(
t
′
, t

′′
, L
)
= 1.

Hence,

Con
(
t
′
, t

′′
, L
)

=1 ≥ θ2 = min {θ2, 1}

=min
{
θ2, Con

(
t
′
, t

′′
,K
)}

,

i.e.,
(
t
′
, t

′′
, L, θ2,K, r

′
)

holds true.

Suppose that h
(
V alβr (&B∈LB)

)
> 0.

We obtain,

V alβr (&A∈KA) <
h
(
1
2

)
h
(
V alβr (&B∈LB)

) .
Since V alβr (&A∈KA) >

1
2 , it follows that

h
(
1
2

)
h
(
V alβr (&B∈LB)

) > 1,

i.e.,

h
(
V alβr (&B∈LB)

)
< h

(
1

2

)
,

i.e., V alβr (&B∈LB) > 1
2 .

Hence, as in the case V alβr (&B∈LB) = 1 > 1
2 ,

we conclude that
(
t
′
, t

′′
, L, θ2,K, r

′
)

holds true.

Now, let (K,m,L, θ2, F ) ∈ C.

By our assumption, V alβr
(
FmK,L

)
> 1

2 .
Thus,

V alβr ((&A∈KA)→ ((&B∈LB) ‖ (&C∈MC)))

=h−1

(
max

{
V alβr (&A∈KA)×

× h
(
V alβr ((&B∈LB) ‖ (&C∈MC))

)
, h (1)

})

=h−1

(
max

{
V alβr (&A∈KA)×

× h
(
max

{
V alβr (&B∈LB) , V alβr (&C∈MC)

})
,

h (1)

})
>
1

2
.

i.e.,

max

{
V alβr (&A∈KA)×

× h
(
max

{
V alβr (&B∈LB) , V alβr (&C∈MC)

})
,

h (1)

}
< h

(
1

2

)
.

Reasoning in the same way as in the fuzzy func-
tional case, we conclude that the last inequality yields
that

V alβr (&A∈KA)×

× h
(
max

{
V alβr (&B∈LB) , V alβr (&C∈MC)

})
<h

(
1

2

)
.

If V alβr (&A∈KA) ≤ 1
2 , then, as before,

Con
(
t
′
, t

′′
,K
)
= θ

′′
.
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Thus, there is t
′′′ ∈ r′ , t′′′ = t

′
, such that(

t
′′′
, t

′
, t

′′
,K, L,M, θ2, r

′
)

holds true.

If V alβr (&A∈KA) >
1
2 , then, as earlier,

Con
(
t
′
, t

′′
, L
)
= 1.

If

h
(
max

{
V alβr (&B∈LB) , V alβr (&C∈MC)

})
= 0,

then

max
{
V alβr (&B∈LB) , V alβr (&C∈MC)

}
= 1.

Hence, V alβr (&B∈LB) = 1 or V alβr (&C∈MC)

= 1, so, as before, Con
(
t
′
, t

′′
, L
)
= 1 or

Con
(
t
′
, t

′′
,M
)
= 1.

If Con
(
t
′
, t

′′
, L
)
= 1, then, there exists t

′′′ ∈ r′ ,

t
′′′

= t
′′
, such that

(
t
′′′
, t

′
, t

′′
,K, L,M, θ2, r

′
)

holds
true.

IfCon
(
t
′
, t

′′
,M
)
= 1, then, there exists t

′′′ ∈ r′ ,

t
′′′

= t
′
, such that

(
t
′′′
, t

′
, t

′′
,K, L,M, θ2, r

′
)

holds
true.

Suppose that

h
(
max

{
V alβr (&B∈LB) , V alβr (&C∈MC)

})
> 0.

We obtain,

h
(
1
2

)
h
(
max

{
V alβr (&B∈LB) , V alβr (&C∈MC)

})
>V alβr (&A∈KA) .

Since, V alβr (&A∈KA) >
1
2 , it follows that

h
(
1
2

)
h
(
max

{
V alβr (&B∈LB) , V alβr (&C∈MC)

}) > 1,

i.e.,

h
(
max

{
V alβr (&B∈LB) , V alβr (&C∈MC)

})
<h

(
1

2

)
,

i.e.,

max
{
V alβr (&B∈LB) , V alβr (&C∈MC)

}
>

1

2
.

Consequently, V alβr (&B∈LB) > 1
2 or

V alβr (&C∈MC) >
1
2 .

Hence, as in the case V alβr (&B∈LB) = 1 >
1
2 or V alβr (&C∈MC) = 1 > 1

2 , we conclude that(
t
′′′
, t

′
, t

′′
,K, L,M, θ2, r

′
)

holds true.

Now, we prove that r
′

satisfies (X, f, Y, θ1, F )
resp. (X,m, Y, θ1, F ).

By our assumption, we have that V alβr
(
F fX,Y

)
≤ 1

2 resp. V alβr
(
FmX,Y

)
≤ 1

2 .
Reasoning in exactly the same way as above, we

obtain that (1) resp. (2) holds true.
Without loss of generality, we may assume that

(3) resp. (4) does not hold.
This actually means that (5) resp. (6) holds true.
Hence, (7) resp. (8) holds true.
If V alβr (&A∈XA) ≤ 1

2 , then, (7) resp. (8) yields
that

h
(
1
2

)
h
(
V alβr (&B∈YB)

) = 0

resp.

h
(
1
2

)
h
(
max

{
V alβr (&B∈YB) , V alβr (&C∈ZC)

})
=0,

i.e., that h
(
1
2

)
= 0.

This is a contradiction, however.
Consequently, V alβr (&A∈XA) >

1
2 .

This fact, and (7) resp. (8) imply that

h
(
1
2

)
h
(
V alβr (&B∈YB)

) ≤ 1

2
(< 1)

resp.

h
(
1
2

)
h
(
max

{
V alβr (&B∈YB) , V alβr (&C∈ZC)

})
≤1

2
(< 1) ,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2020.15.49

Dzenan Gusic, Adis Alihodzic, 
Sanela Nesimovic

E-ISSN: 2224-2856 499 Volume 15, 2020



i.e.,

V alβr (&B∈YB) <
1

2
resp.

max
{
V alβr (&B∈YB) , V alβr (&C∈ZC)

}
<

1

2
,

i.e., V alβr (&B∈YB) < 1
2 resp. V alβr (&B∈YB) < 1

2 ,
V alβr (&C∈ZC) <

1
2 .

Now, in the fuzzy functional case, we have
that V alβr (&A∈XA) >

1
2 , V alβr (&B∈YB) < 1

2 , so

Con
(
t
′
, t

′′
, X
)
= 1, Con

(
t
′
, t

′′
, Y
)
= θ

′′
.

It follows that

Con
(
t
′
, t

′′
, Y
)

=θ
′′
< θ

′ ≤ θ1 = min {θ1, 1}

=min
{
θ1, Con

(
t
′
, t

′′
, X
)}

.

In other words, r
′

violates (X, f, Y, θ1, F ).
In the fuzzy multivalued case, we have that

V alβr (&A∈XA) >
1
2 , V alβr (&B∈YB) < 1

2 , and

V alβr (&C∈ZC) <
1
2 , so Con

(
t
′
, t

′′
, X
)
= 1,

Con
(
t
′
, t

′′
, Y
)
= θ

′′
, and Con

(
t
′
, t

′′
, Z
)
= θ

′′
.

Thus, if t
′′′ ∈ r′ , t′′′ = t

′
, then

Con
(
t
′′′
, t

′′
, Z
)

=θ
′′
< θ

′ ≤ θ1 = min {θ1, 1}

=min
{
θ1, Con

(
t
′
, t

′′
, X
)}

.

Similarly, if t
′′′ ∈ r′ , t′′′ = t

′′
, then

Con
(
t
′′′
, t

′
, Y
)

=θ
′′
< min

{
θ1, Con

(
t
′
, t

′′
, X
)}

.

These inequalities mean that(
t
′′′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

does not hold, i.e.,

that r
′

violates (X,m, Y, θ1, F ).

Now, suppose that V alβr
(
c
′
)
> 1

2 for every

valuation V alβr , such that V alβr
(
F fK,L

)
> 1

2 and

V alβr
(
FmK,L

)
> 1

2 for all F fK,L ∈ C
′

and all FmK,L
∈ C ′

.
We shall prove that (X, f, Y, θ1, F ) resp.

(X,m, Y, θ1, F ) is satisfied by r if (K, f, L, θ2, F ) is
satisfied by r, and (K,m,L, θ2, F ) is satisfied by r,
for all (K, f, L, θ2, F ) ∈ C and all (K,m,L, θ2, F )
∈ C, where r is a two-element fuzzy relation instance
on given scheme Sch (A1, A2, ..., An).

Suppose that the last statement is not satisfied.
This means that there exists some r

′
={

t
′
, t

′′
}

, such that (K, f, L, θ2, F ) is satisfied by

r
′
, and (K,m,L, θ2, F ) is satisfied by r

′
, for all

(K, f, L, θ2, F ) ∈ C, and all (K,m,L, θ2, F ) ∈ C,
but (X, f, Y, θ1, F ) resp. (X,m, Y, θ1, F ) is not sat-
isfied by r

′
.

Denote by Z
′

the set

{
A ∈ {A1, A2, ..., An} : Con

(
t
′
, t

′′
, A
)
= 1
}
.

First, suppose that Z
′
= ∅.

It follows that Con
(
t
′
, t

′′
, A
)
= θ

′′
for all A ∈

{A1, A2, ..., An}.
Thus,

Con
(
t
′
, t

′′
, Q
)

=min
{
Con

(
t
′
, t

′′
, A
)

: A ∈ Q
}
= θ

′′

for any Q ⊆ {A1, A2, ..., An}.
By our assumption, (X, f, Y, θ1, F ) resp.

(X,m, Y, θ1, F ) is not satisfied by r
′
, i.e.,(

t
′
, t

′′
, Y, θ1, X, r

′
)

resp.
(
t
′′′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

does not hold.
Note that Con

(
t
′
, t

′′
, X
)
= θ

′′
, Con

(
t
′
, t

′′
, Y
)

= θ
′′
, and Con

(
t
′
, t

′′
, Z
)
= θ

′′
.

So, the fact that
(
t
′
, t

′′
, Y, θ1, X, r

′
)

does not

hold, yields a contradiction since min
{
θ1, θ

′′
}
= θ

′′
.

Similarly,
(
t
′′′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

does not

hold, so, in particular,
(
t
′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

does
not hold.

This is a contradiction, since, once again

θ
′′
= min

{
θ1, θ

′′
}
= min

{
θ1, Con

(
t
′
, t

′′
, X
)}

.
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Since the assumption Z
′
= ∅ yields to contradic-

tion, it follows that Z
′ 6= ∅.

Second, suppose that Z
′
= {A1, A2, ..., An}.

It follows that Con
(
t
′
, t

′′
, A
)
= 1 for all A ∈

{A1, A2, ..., An}.
Thus,

Con
(
t
′
, t

′′
, Q
)

=min
{
Con

(
t
′
, t

′′
, A
)

: A ∈ Q
}
= 1

for any Q ⊆ {A1, A2, ..., An}.
Now, Con

(
t
′
, t

′′
, X
)
= 1, Con

(
t
′
, t

′′
, Y
)
= 1,

and Con
(
t
′
, t

′′
, Z
)
= 1.

Since (X, f, Y, θ1, F ) is not satisfied by r
′
, we

have that 1 is strictly smaller than min {θ1, 1} = θ1.
This is a contradiction.
Similarly, (X,m, Y, θ1, F ) is not satisfied by r

′
,

so
(
t
′′′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

does not hold, and then(
t
′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

does not hold.
We obtain that 1 is strictly smaller than

θ1 = min {θ1, 1} = min
{
θ1, Con

(
t
′
, t

′′
, X
)}

.

Hence, a contradiction.
So, the assumption that Z

′
= {A1, A2, ..., An}

yields a contradiction.
It follows that Z

′ ⊂ {A1, A2, ..., An}.
We have, ∅ 6= Z

′ ⊂ {A1, A2, ..., An}.
In the sequel, we shall consider the valuation

V al1
r′

.

We shall prove that V al1
r′

(
F fK,L

)
> 1

2 and

V al1
r′

(
FmK,L

)
> 1

2 for all F fK,L ∈ C
′

and all FmK,L ∈

C
′
, but V al1

r
′

(
c
′
)
≤ 1

2 .

Let F fK,L ∈ C
′
.

Suppose that V al1
r′

(
F fK,L

)
≤ 1

2 resp.

V al1
r′

(
FmK,L

)
≤ 1

2 .
We obtain,

V al1
r′
((&A∈KA)→ (&B∈LB))

=h−1

(
max

{
V al1

r′
(&A∈KA)×

× h
(
V al1

r′
(&B∈LB)

)
, h (1)

})

≤1

2

resp.

V al1
r′
((&A∈KA)→ ((&B∈LB) ‖ (&C∈MC)))

=h−1

(
max

{
V al1

r′
(&A∈KA)×

× h
(
max

{
V al1

r′
(&B∈LB) , V al1

r′
(&C∈MC)

})
, h (1)

})
≤1

2
,

i.e.,

max

{
V al1

r′
(&A∈KA)×

× h
(
V al1

r′
(&B∈LB)

)
, h (1)

}
≥ h

(
1

2

)
resp.

max

{
V al1

r′
(&A∈KA)×

× h
(
max

{
V al1

r′
(&B∈LB) , V al1

r′
(&C∈MC)

})
, h (1)

}
≥ h

(
1

2

)
.

The fact that 1
2 < 1, implies that h

(
1
2

)
> h (1).

Therefore,

V al1
r
′ (&A∈KA)h

(
V al1

r′
(&B∈LB)

)
=max

{
V al1

r
′ (&A∈KA)×

× h
(
V al1

r′
(&B∈LB)

)
, h (1)

}
≥ h

(
1

2

) (9)

resp.

V al1
r′
(&A∈KA)h

(
max

{
V al1

r′
(&B∈LB) ,

V al1
r′
(&C∈MC)

})
≥ h

(
1

2

)
.

(10)
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We may assume, without loss of generality, that

h
(
V al1

r′
(&B∈LB)

)
> 0

resp.

h

(
max

{
V al1

r′
(&B∈LB) ,

V al1
r′
(&C∈MC)

})
> 0.

If V al1
r′
(&A∈KA) ≤ 1

2 , then Con
(
t
′
, t

′′
,K
)
=

θ
′′
, and (9) resp. (10) implies that

h
(
1
2

)
h
(
V al1

r′
(&B∈LB)

) = 0

resp.

h
(
1
2

)
h
(
max

{
V al1

r′
(&B∈LB) , V al1

r′
(&C∈MC)

})
=0,

i.e., that h
(
1
2

)
= 0.

This is contradiction, however.
Consequently, V al1

r′
(&A∈KA) >

1
2 , so

Con
(
t
′
, t

′′
,K
)
= 1, and (9) resp. (10) yields that

V al1
r′
(&B∈LB) <

1

2

resp.

max
{
V al1

r′
(&B∈LB) , V al1

r′
(&C∈MC)

}
<

1

2
,

i.e., that Con
(
t
′
, t

′′
, L
)
= θ

′′
resp. Con

(
t
′
, t

′′
, L
)

= θ
′′
, Con

(
t
′
, t

′′
,M
)
= θ

′′
.

Since (K, f, L, θ2, F ) is satisfied by r
′

for all
(K, f, L, θ2, F ) ∈ C, we obtain a contradiction that
θ2 = min {θ2, 1} is not larger than θ

′′
.

Moreover, by our assumption, (K,m,L, θ2, F ) is
satisfied by r

′
for all (K,m,L, θ2, F ) ∈ C.

This means that
(
t
′′′
, t

′
, t

′′
,K, L,M, θ2, r

′
)

holds true for some t
′′′ ∈ r′ .

This, however, is not possible since we have that
θ2 = min {θ2, 1} is larger that θ

′′
.

Hence, a contradiction.
Thus, our assumption that V al1

r′

(
F fK,L

)
≤ 1

2

resp. V al1
r′

(
FmK,L

)
≤ 1

2 is not valid.

Therefore, V al1
r
′

(
F fK,L

)
> 1

2 and V al1
r
′

(
FmK,L

)
> 1

2 for all F fK,L ∈ C
′

and all FmK,L ∈ C
′
.

Finally, we prove that V al1
r′

(
c
′
)
≤ 1

2 , i.e., that

V al1
r′

(
F fX,Y

)
≤ 1

2 resp. V al1
r′

(
FmX,Y

)
≤ 1

2 .

Suppose that V al1
r′

(
F fX,Y

)
> 1

2 resp.

V al1
r′

(
FmX,Y

)
> 1

2 .
Reasoning in the same way as in the case

V alβr
(
F fK,L

)
> 1

2 resp. V alβr
(
FmK,L

)
> 1

2 , we ob-
tain that

V al1
r′
(&A∈XA)h

(
V al1

r′
(&B∈YB)

)
<h

(
1

2

) (11)

resp.
V al1

r′
(&A∈XA)×

× h

(
max

{
V al1

r′
(&B∈YB) ,

V al1
r′
(&C∈ZC)

})
< h

(
1

2

)
.

(12)

Note that by our assumption, (X, f, Y, θ1, F )

resp. (X,m, Y, θ1, F ) is not satisfied by r
′
, i.e.,(

t
′
, t

′′
, Y, θ1, X, r

′
)

resp.
(
t
′′′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

does not hold.
Without loss of generality, we shall assume that

h
(
V al1

r′
(&B∈YB)

)
> 0

resp.

h
(
max

{
V al1

r
′ (&B∈YB) , V al1

r′
(&C∈ZC)

})
> 0.

If V al1
r′
(&A∈XA) ≤ 1

2 , then Con
(
t
′
, t

′′
, X
)
=

θ
′′
.
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Since Con
(
t
′
, t

′′
, Q
)
≥ θ′′ for any Q ⊆

{A1, A2, ..., An}, it follows that Con
(
t
′
, t

′′
, Y
)
≥

θ
′′
.

Moreover, min
{
θ1, θ

′′
}
= θ

′′
.

This contradicts the fact that
(
t
′
, t

′′
, Y, θ1, X, r

′
)

does not hold.
On the other side, in the fuzzy multivalued case,

we obtain that
(
t
′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

holds true.

This contradicts the fact that(
t
′′′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

does not hold.

We conclude, V al1
r′
(&A∈XA) >

1
2 .

Hence, Con
(
t
′
, t

′′
, X
)
= 1, and (11) resp. (12)

yields that

h
(
V al1

r′
(&B∈YB)

)
< h

(
1

2

)
resp.

h
(
max

{
V al1

r′
(&B∈YB) , V al1

r′
(&C∈ZC)

})
<h

(
1

2

)
,

i.e., that V al1
r′
(&B∈YB) > 1

2 resp. V al1
r′
(&B∈YB)

> 1
2 or V al1

r′
(&C∈ZC) >

1
2 .

It follows that Con
(
t
′
, t

′′
, Y
)
= 1 resp.

Con
(
t
′
, t

′′
, Y
)
= 1 or Con

(
t
′
, t

′′
, Z
)
= 1.

Since Con
(
t
′
, t

′′
, Y
)
= 1, we obtain a contra-

diction in the fuzzy functional case with the fact that(
t
′
, t

′′
, Y, θ1, X, r

′
)

does not hold.

In the fuzzy multivalued case, we have that
Con

(
t
′
, t

′′
, X
)
= 1, Con

(
t
′
, t

′′
, Y
)
= 1 or

Con
(
t
′
, t

′′
, X
)
= 1, Con

(
t
′
, t

′′
, Z
)
= 1.

In the first case we obtain that(
t
′′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

holds true, while in the

second case, we obtain that
(
t
′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

holds true.
This contradicts the fact that(

t
′′′
, t

′
, t

′′
, X, Y, Z, θ1, r

′
)

does not hold.

Therefore, V al1
r′

(
F fX,Y

)
≤ 1

2 resp.

V al1
r′

(
FmX,Y

)
≤ 1

2 .

This contradicts our assumption that
V alβr

(
F fX,Y

)
> 1

2 resp. V alβr
(
FmX,Y

)
> 1

2 for ev-

ery valuation V alβr , such that V alβr
(
F fK,L

)
> 1

2 and

V alβr
(
FmK,L

)
> 1

2 for all F fK,L ∈ C
′

and all FmK,L ∈
C

′
.

This means that our assumption on r
′

is not valid.
Consequently, (X, f, Y, θ1, F ) resp.

(X,m, Y, θ1, F ) is satisfied by r if (K, f, L, θ2, F ) is
satisfied by r, and (K,m,L, θ2, F ) is satisfied by r
for all (K, f, L, θ2, F ) ∈ C and all (K,m,L, θ2, F )
∈ C, where r is a two-element fuzzy relation instance
on Sch (A1, A2, ..., An).

4 Concluding remarks
In order to complement the notation applied in the pre-
vious section, we note the following.

We say that (X, f, Y, θ, V ) is satisfied by
r (r is arbitrary vague relation instance on
Sch (A1, A2, ..., An)), if for t1, t2 ∈ r,

Con (t1, t2, Y ) ≥ min {θ, Con (t1, t2, X)} .

We also say that (t1, t2, Y, θ1, X, r) holds true
(see, [16, p. 6]).

Furthermore, we say that (X,m, Y, θ, V ) is satis-
fied by r (r is arbitrary), if for t1, t2 ∈ r, there is t3 ∈
r, such that

Con (t3, t1, X) ≥min {θ, Con (t1, t2, X)} ,
Con (t3, t1, Y ) ≥min {θ, Con (t1, t2, X)} ,
Con (t3, t2, Z) ≥min {θ, Con (t1, t2, X)} .

As in the case of fuzzy multivalued dependencies,
we say that (t3, t1, t2, X, Y, Z, θ, r) holds true (see,
[17, p. 5]).

The concept of conformance is introduced by
Definitions 3.1 and 3.2 in [15, pp. 165-166], and is
applied further on in [23], and also adapted in [16]
and [17].

In any case, it is based on application of appropri-
ate similarity relation.

In this and similar researches, is is usually com-
fortable to select a general similarity relation which is
reflexive, symmetric, and satisfies the max-min transi-
tivity condition (this definition is quite restrictive, but
also possible to occur in reality).
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However, in the vague functional case, the authors
are more relaxed during such selection [24], [25],
[26].

Furthermore, the concept of valuation (or an in-
terpretation) is adopted from [27], and adapted to our
setting.

In short, it enables us to translate the attributes
into fuzzy formulas.

Depending on the fact that Con (t1, t2, A) is
larger resp. smaller than some fixed value β ∈ [0, 1],
we define the corresponding valuation value V alβr (A)
> 1

2 resp. < 1
2 , with r = {t1, t2}.

As it can be seen from the previous section, we
assume that the fuzzy conjunction operator is modeled
by the minimum t-norm [28, p. 17].

Furthermore, the fuzzy disjunction is modeled by
the maximum t-conorm [28, p. 23] (see also, [29]).

The results derived in the previous section may be
formulated in the following form.

Theorem 1. Let Ih be an h - generated implication,
and (X,m, Y, θ, F ) resp. (X,m, Y, θ, V ) fuzzy resp.
vague multivalued dependency on
Sch (A1, A2, ..., An). Then, (t3, t1, t2, X, Y, Z, θ, r)
holds true and Con (t1, t2, A) ≥ θ for all A ∈ X if
and only if Con (t1, t2, X) ≥ θ and V alθr

(
FmX,Y

)
>

1
2 , where r = {t1, t2}.

Theorem 2. Let Ih be an h - generated implication,
and (X, f, Y, θ1, F ) ((X, f, Y, θ1, V ))
resp. (X,m, Y, θ1, F ) ((X,m, Y, θ1, V )) fuzzy
(vague) functional resp. fuzzy (vague) multivalued de-
pendency on Sch (A1, A2, ..., An). Then,
(t1, t2, Y, θ1, X, r) resp. (t3, t1, t2, X, Y, Z, θ1, r)
holds true if (t1, t2, L, θ2,K, r) and
(t3, t1, t2,K, L,M, θ2, r) hold true for all
(K, f, L, θ2, F ) ((K, f, L, θ2, V )), (K,m,L, θ2, F )
((K,m,L, θ2, V )) ∈ C, where r = {t1, t2}, if and
only if V alβr

(
F fX,Y

)
> 1

2 resp. V alβr
(
FmX,Y

)
> 1

2

for every valuation V alβr , such that V alβr
(
F fK,L

)
>

1
2 and V alβr

(
FmK,L

)
> 1

2 for all F fK,L ∈ C
′

and all

FmK,L ∈ C
′
.

Clearly, in Theorem 2, C denotes the set of fuzzy
(vague) functional and fuzzy (vague) multivalued de-
pendencies on Sch (A1, A2, ..., An), whileC

′
denotes

the corresponding set of fuzzy formulas.
Theorems 1 and 2 are derived for an h-generated

implication.

By [30, p. 179, Th. 13], Ih is an (S,N) - implica-
tion, where h is an h-generator, S is some t-conorm,
and N is contiuous negation.

Moreover, by Corollaries 2 and 3 in [30], Ih is
an (S,N)-implication generated from some t-conorm
and some strict (strong) negation if and only if h (1)
= 0 (h = h−1).

Taking into account these facts, it would be nat-
ural to try to verify the aforementioned results for
various individual definitions of S-implications, such
as Kleene-Dienes, Reichenbach, Most Strict, Largest,
Least Strict, Lukasiewicz implication, etc., or, gener-
ally, for entire family of S-implications. These ideas
may be regarded as the instructions for possible future
work. Regarding the limitations of this study and sug-
gested improvements of the work, we highlight that
the limiting case for the future directions would be the
case of the general fuzzy implication operator defini-
tion.

Note that the results given by Theorems 1 and 2
may be applied in the way described in [21] and [20].

5 Applications
We demonstrate the practical and the engineering ap-
plications of this study by the following example.

Example 1. Consider the fuzzy (vague)
functional dependencies ({A,B} , f, C, θ1, F (V ))
and ({A,B} , f,D, θ2, F (V )). We shall prove that
these two dependencies imply the fuzzy (vague) func-
tional dependency ({A,B} , f, {C,D} , θ, F (V )),
where θ = min {θ1, θ2}.

Here, we assume that the dependencies are given
on some scheme Sch (A,B,C,D), where, clearly,
{A,B}, {C}, {D} and {C,D} are subsets of the uni-
versal set of attributes {A,B,C,D}.

Of course, one way to derive
({A,B} , f, {C,D} , θ, F (V )) is to derive it by
hand. The augmentation rule for fuzzy (vague)
functional dependencies states that the fuzzy
(vague) functional dependency (X, f, Y, θ, F (V ))
yields the fuzzy (vague) functional dependency
(X ∪ Z, f, Y ∪ Z, θ, F (V )) for any subset Z ⊆
{A,B,C,D}. Moreover, the transitivity rule
for fuzzy (vague) functional dependencies says
that the fuzzy (vague) functional dependencies
(X, f, Y, θ1, F (V )) and (Y, f, Z, θ2, F (V ))
imply the fuzzy (vague) functional dependency
(X, f, Z, θ, F (V )), where θ = min {θ1, θ2}. Thus,
by assumption, ({A,B} , f, C, θ1, F (V )) holds
true. The augmentation with {A,B} gives us the de-
pendency ({A,B} , f, {A,B,C} , θ1, F (V )). If
we augment the dependency
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({A,B} , f,D, θ2, F (V )) with {C}, we obtain the
dependency ({A,B,C} , f, {C,D} , θ2, F (V )).
Now, the transitivity rule applied on
({A,B} , f, {A,B,C} , θ1, F (V )) and
({A,B,C} , f, {C,D} , θ2, F (V )) gives us the de-
pendency ({A,B} , f, {C,D} , θ, F (V )). This com-
pletes our proof by hand, that is, the proof obtained
by applying purely theoretical ingredients. This proof
shows that deriving of new dependencies in this, clas-
sical way is not guaranteed to be easy task. It can be
easy, of course. On the other side, it can also be very
hard task to be done. Having in mind these facts, it
is not so hard to conclude that this approach is not a
reliable one.

On the other hand, we may
apply Theorem 2 to obtain the dependency
({A,B} , f, {C,D} , θ, F (V )). Indeed,
suppose that r, |r| = 2 is a fuzzy (vague)
relation instance on Sch (A,B,C,D). Let β ∈ [0, 1]
be some number. Furthermore, suppose
that V alβr

(
F f{A,B},C

)
= V alβr ((A ∧B)⇒ C) >

1
2 , V alβr

(
F f{A,B},D

)
= V alβr ((A ∧B)⇒ D) >

1
2 . If we prove that V alβr

(
F f{A,B},{C,D}

)
=

V alβr ((A ∧B)⇒ (C ∧D))> 1
2 , then, in the view of

Theorem 2, we shall immediately have that
the dependency ({A,B} , f, {C,D} , θ, F (V )) fol-
lows. In order to prove that V alβr

(
F f{A,B},{C,D}

)
>

1
2 is satisfied, we assume the opposite, that

V alβr
(
F f{A,B},{C,D}

)
≤ 1

2 is valid. In other words,
we assume that the fuzzy formulas (A ∧B) ⇒ C,
(A ∧B) ⇒ D and ¬ ((A ∧B)⇒ (C ∧D)) hold
true. Since p ⇒ q ≡ ¬p ∨ q for any p and q, it
follows that ¬A ∨ ¬B ∨ C, ¬A ∨ ¬B ∨ D, and
A ∧ B ∧ (¬C ∨ ¬D) hold true. In order to obtain
a contradiction, we apply the resolution principle to
the conjunctive terms ¬A ∨ ¬B ∨ C, ¬A ∨ ¬B ∨
D, A, B and ¬C ∨ ¬D of the derived fuzzy formu-
las. Thus, resolving ¬A ∨ ¬B ∨ C by A and then
by B, we obtain C. Resolving ¬A ∨ ¬B ∨ D by A
and then by B, we obtain D. Finally, resolving ¬C ∨
¬D by C and then by D, we obtain a contradiction.
Hence, V alβr

(
F f{A,B},{C,D}

)
> 1

2 , so the dependency
({A,B} , f, {C,D} , θ, F (V )) holds true. Note that
the second proof may take more time to be done, but
is also more reliable one. Namely, it always gives a
solution, and it allows to be completely automated.

6 Discussion
Recall that the authors in [15] resp. [16], [17]

first introduced the definitions of fuzzy functional
and multivalued resp. vague functional and multival-
ued dependencies on the basis of conformance be-
tween attributes. With addition of the paper [18],
the inference rules are listed, and are shown to be
sound and complete. Based on these results, the au-
thors in [23] proved that the set of the inference rules
for fuzzy functional and fuzzy multivalued dependen-
cies is complete set in two-element fuzzy relation in-
stances (Theorem 7), and then, in general, in arbi-
trary fuzzy relation instances (Corollary 8). The cor-
responding results in vague setting are then derived in
[19], [20], [21] and [22]. The completeness in arbi-
trary relations enabled the authors to leave the clas-
sical approach and its disadvantages during the pro-
cess of derivation of new dependencies, and to auto-
mate the process by applying the resolution principle
(see, [23], [20], [21]). The advantages of the auto-
mated approach are clearly demonstrated by Example
1. On the other side, the disadvantages of the clas-
sical approach are more than obvious: large number
of inference rules, matter of their choice, unknown
number of steps, uncertainty of outcome, etc. In or-
der to obtain the completeness in arbitrary relations,
the authors applied a number of various fuzzy impli-
cation operators, like: Kleene-Dienes, Reichenbach
(Kleene-Dienes-Lukasiewicz), Yager, f -generated, g-
generated, Lukasiewicz, Klir-Yuan [31], etc. In this
paper we use the h-generated implications. This
means that Theorems 1 and 2, as well as the analogous
theorems, do not depend on the selection of the fuzzy
implication operator. Thus, the choice of the fuzzy
implication operator is auxiliary in its nature in such
research. More precisely, the results derived in this
paper do not affect the selected fuzzy implication at all
(the h-generated implication in particular). Quite op-
posite, the h-generated implication is exploited to help
us complete the investigation. Regarding the sound-
ness of the inference rules for vague functional and
multivalued dependencies, we also refer to [32] and
[33].
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[32] Dž. Gušić, Z. Šabanac, and S. Nesimović, On
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