
An Enhanced Deep Autoencoder-based Approach for DDoS Attack

Detection

SAMAR SINDIAN, SAMER SINDIAN
CCE Department – Faculty of Engineering

Islamic University of Lebanon (IUL)
P.O.Box: 30014 -Wardanyeh

LEBANON

Abstract: - Intrusion detection systems play a crucial role in preventing security threats and defending networks
from attacks. Among the attacks, distributed Denial-of-Service (DDoS) attacks literally get into the network and,
in addition, they are terribly troublesome to avoid. With the advent of unknown threats, traditional machine
learning approaches are impacted by lower detection rates and higher false-positive rates. As a result, the DDoS
detection system requires an over-performing machine learning classifier with minimal false-positive and high
detection accuracy. In this context, we propose an Improved Deep Sparse Autoencoder-based Framework
(EDSA) for DDoS Attack Detection with a cost minimization strategy. The sparse autoencoder is used for dataset
extraction functionality, while the softmax layer is used for traffic classification as malicious or bengin. However,
intrusion detection includes the risk elements of inaccurate prediction; hence, we have used research metrics such
as accuracy, precision, detection rate and specificity for our model analysis. The proposed solution uses the
CICDDoS 2019 datasets and demonstrates high detection accuracy with a much less false positives percentage.

Key-Words: - Denial-of-service - Deep learning neural network - Cost minimization - Detection accuracy- False
reduction – Autoendcoder – Security

Received: May 26, 2020. Revised: October 30, 2020. Accepted: November 19, 2020. Published: December 9, 2020.

1 Introduction

Nowadays, DDoS attacks are increasingly easy to
implement. The Intrusion Detection System (IDS) is
a special security tool that is being used by the
network experts to keep the network safe and secure
from network attacks which can come from many
different sources [2]. It has emerged as one of the
basic and powerful tool in order to deal with data
security and availability issues over the
communication networks. The necessity to filter false
alarms in the event that the user (device or security
administrator) is overloaded with data is one major
limitation of current IDS technologies.
 IDSes, including active and passive, network-
based and host-based, and knowledge-based and
behavior-based, are categorized in several different
ways: An active IDS (now more widely referred to as
an intrusion prevention system) is a system that is
configured without any intervention needed by an
operator to automatically block suspected attacks in
progress. A passive IDS is a system that is only
designed to monitor and evaluate the behavior of

network traffic and alert an operator to possible
vulnerabilities and attacks. A network-based IDS
usually consists of a network computer (or sensor)
with a promiscuous-mode Network Interface Card (
NIC) and a separate management interface. The IDS
is located along a line or boundary of the network and
controls all traffic on that line. A host-based IDS
involves the installation of small programs (or
agents) on individual systems to be tracked. Only the
individual host systems on which the agents are
mounted can be monitored by a host-based IDS; it
does not track the entire network. To detect active
intrusion attempts, a knowledge-based (or signature-
based) IDS references a database of prior attack
profiles and documented device vulnerabilities. IDS
based on information is actually more popular than
IDS based on actions. To detect successful intrusion
attempts, a behavior-based (or statistical anomaly-
based) IDS references a baseline or learned pattern of
regular device operation. Deviations from this
baseline or trend cause an alarm.
 These attacks have a major influence of the
networks and the systems as they include network
performance, data security, loss of intellectual

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.72 Samar Sindian, Samer Sindian

E-ISSN: 2224-2856 716 Volume 15, 2020

mailto:samar.sindian@iul.edu.lb
mailto:samer.sindian@iul.edu.lb

property [3] and a real liability for the compromised
notes or networks data and that is why we need a
powerful IDS. Researchers are considerably
reviewing the DDoS detection techniques. Neural
networks are considered as one of the foremost
applied methods in IDS systems. In short, there are
many contributions to our proposed DDoS detection
model: it introduces a novel hybrid malicious
network flow detection technique focused on
Autoencoder and deep neural networks. The
suggested model can also prevent overfitting to
predefined malicious patterns. The key motivation of
this study is the concept that an autoencoder model
could create a more precise classifier model behind a
deep neural network model that is comparable to the
traditional neural network model to detect malicious
computer network traffic. Our key tasks are to create
a data representation model using autoencoder
techniques and to create a malicious network flow
detection model using a deep neural network.

 The remainder of this paper is organized as
follows. The related works are introduced in Section
II. Section III describes the deep neural network
(DNN), auto encoder and the dropout techniques.
Section IV proposes a novel intrusion detection
model and shows in detail how the model works.
Section V demonstrates the experimental details and
results. Finally, Section VI highlights some
conclusions and further work.

2 Related Work
DDoS and DoS mitigation has been researched for
many years, and several, different approaches have
been proposed to enhance the IDS using artificial
neural networks. However, deep learning models
have recently been used in the field of intrusion
detection. Deep learning methods can automatically
extract features and perform classification, such as
AutoEncoder [1][2], DNN [3], and recurrent neural
network (RNN) [4]. The introduction of deep
learning into the security systems made it possible to
these systems to screen benign from malicious traffic
separately.

 A neuro-based clustering algorithm for both wired
and wireless networks was proposed by the authors
of [5]. The detection of anomalies is carried out at
regular intervals to monitor the analyzed traffic by
means of statistical variance.
Detection of the change detects the statistical
variance of the volume of traffic. The NS2 simulator
was used for implementing this algorithm for a
different dataset and showed better performance.

 Grzegorczyk et al. in [6], suggested a DDoS
defense system that includes decision tree attack
detection and traceback of attackers with traffic
pattern matching. It is based on the observation that
the network traffic under DDoS attack would differ
from the normal traffic situation and the decision tree
(C4.5) generating algorithm is applied.

 Stacked AutoEncoders are used to detect attacks
with an overall precision of 98.60 percent on IEEE
802.11 networks [7]. A hybrid method combining
spectral clustering and deep neural networks was
presented by Ma et al. [8] to detect attacks on the
NSL-KDD dataset with an overall precision of 72.64
percent. A software-defined network (SDN)
intrusion detection system with an accuracy of 89
percent was built using the gated recurrent unit
recurrent neural network (GRU-RNN) [9]. In order to
detect attacks, Shone et al . [1] used a stacked non-
symmetric AutoEncoder and random forest (RF).

 Muna et al. [10] suggested a deep learning model-
based anomaly detection technique for Internet
Industrial Control Systems (IICSs), using deep auto-
encoders for feature extraction and deep feedforward
neural networks for classification.

3 Deep Neural Network
Deep learning refers to a class of algorithms for
machine learning. Deep learning extracts features
and uses nonlinear functions to transform them. The
method of learning can be either supervised or
unsupervised. Unsupervised feature learning is able
to learn discriminative and effective features from a
large amount of unlabeled data Σφάλμα! Το αρχείο

προέλευσης της αναφοράς δεν βρέθηκε.. DDoS
attacks are hard to detect in the sense of network
security. Therefore, an efficient solution to attack
detection can be given by unsupervised feature
learning. In the proposed context, most representative
features from the CICDDoS 2019 dataset Σφάλμα!

Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε.
are extracted by the Sparse Autoencoder (SAE)
combined with the denoising module. Then, with
dropout, the learned features are fed into a neural
network classifier. The following sections explain the
details of the framework.

3.1 Auto-encoder
An auto-encoder is a symmetrical neural network
that, by minimizing reconstruction errors, can learn
the functions in an unsupervised learning manner.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.72 Samar Sindian, Samer Sindian

E-ISSN: 2224-2856 717 Volume 15, 2020

One of the key benefits of using this type of model is
its ability to evaluate the important parts of the input
by pressuring it to learn the useful properties of the
data it provides during training. In autoencoders,
dimensionality reduction and regularization are
primarily two methods used for dimension selection.
Dimensionality reductions arise when there are fewer
nodes in each hidden layer of the model than in the
previous layer. Regularization chooses the nodes that
have the greatest positive effect on the outcome of the
model and eliminates the effect of the other nodes.
The auto-encoder’s basic structure is shown in Fig. 1,
where in the hidden layer it attempts to learn an
approximation such that the input data at the output
layer can be reconstructed perfectly.

 The transformation of input data into code from
high-dimensional space into low-dimensional space
is the mechanism of the encoder network.

Fig. 1 the structure of auto-encoder neural network

 However, the auto-encoder’s fundamental issues,
such as simply copying the input layer to the hidden
layer, make it ineffective to extract meaningful
features, although its output can be a perfect input
data retrieval. A SAE can learn relatively sparse
features as an extension of the auto-encoder by
adding a sparse penalty term (a regularizing function)
to the usual loss function of an autoencoder.

 Using Kullback-Leibler divergence is one way to
enforce a sparsity penalty. KL-divergence, used to
calculate their similarities or dissimilarities, is of the
divergence between two distributions of probability.

3.2 Scaling Data
Improving model accuracy, reducing loss, and
improving convergence times are the reasons for
scaling distinct features to better relate to each other.
The SAE is built on the architecture of a neural
network, and one way a neural network learns is by

looking at changes in the traffic flows of the network
features.

 A difficulty with this is that the absolute values of
features are perceived by deep learning based
models, and not the relative difference. The loss
feature is aggressive, first trying to maximize it on
massive values. That is why, in order to maintain the
weights of all input features of equal relative
importance, we should scale the data.

 In this research, by mapping the IP (Internet
Protocol) address to an integer representation, a
preprocessing feature is applied to the CICDDoS
2019 dataset [12]. Both the source IP address (Src IP)
and the destination IP address (Dst IP) are included
in the mapped IP. These two are transformed to a
number representation of an integer. This research
divides the knowledge into a training set and a test set
with a 75:25 ratio.
New statistical features are extracted from network
traffic using the autoencoder in the preprocessing
stage.

 The normalization module continued in this step,
followed by feature extraction. The normalization
module's input is the extracted functionality. To
normalize the extracted features, the min-max
normalization procedure is used in such a way that
the training dataset consists of (0 , 1). The above
value is fed to the machine learning algorithm as an
input. To scale the attributes, the range (0 , 1) is used.
In the classifier, the actual number between 0 and 1
is given in Eq. 1:

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥max − 𝑥𝑚𝑖𝑛
 (1)

where 𝑥𝑖 is the value of a particular feature, 𝑥𝑚𝑖𝑛 is
the minimum value, 𝑥max is the maximum value,
and 𝑥𝑛𝑜𝑟𝑚 is the normalized value of the input that
lies between [0,1].

3.3 Sparse Auto-encoder

For the auto encoder, a neural network of three layers
identical to that in Fig. 1 can be constructed, where
the sigmoid function is selected as the network
activation function. The input layer consists of D
neurons, and the hidden layer consists of C neurons,
where the input vector dimension is D, and the
function vector dimension is C.

 The objective is to learn and obtain a function
expression on a hidden layer for the unlabeled input

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.72 Samar Sindian, Samer Sindian

E-ISSN: 2224-2856 718 Volume 15, 2020

data X. To efficiently represent the input vector, the
encoder converts it to code (features). The decoder
input is the hidden layer output, and the decoder
output is the auto-encoder output. From the code
created by the encoder, the decoder tries to
reconstruct the original input vector.

Let us consider X as an input vector as X={𝑥1 , 𝑥2,
𝑥3, ….𝑥𝑛} where 𝑥𝑖 is the input vector represent the
original features. The mapping of input to output in
encoder can be given by Eq. (2)

ℎ(𝑥(𝑖), 𝑊, 𝑏) = 𝑓(𝑊𝑥(𝑖) + 𝑏), 𝑖 = 1, … 𝑛 (2)

Where 𝑓 is an activation function, for which we used
the sigmoid function defined as in Eq. 3

𝑓(𝑧) =
1

1+exp (−𝑧)
 (3)

The weights between the input layer and the hidden
layer are denoted by W and the biases are
represented by b so that the output,

𝑦 = 𝑓(𝑊𝑇ℎ(𝑥(𝑖), 𝑊, 𝑏) + 𝑏′) (4)

is identical to the input or refactored. Where 𝑊𝑇 is
the weight matrix which represents weight of the link
connecting hidden layer neuron to the neurons in the
output layer of the network, y is the reconstructed
input vector, 𝑏′ is the bias vector.

The auto encoder is trained by minimizing the sparse
cost (loss) function defined as:

𝐶𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) = 𝐸𝑀𝑆𝐸 + 𝐸𝑅𝑒𝑔 + 𝐸𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 (5)

where 𝐸𝑀𝑆𝐸 , 𝐸𝑅𝑒𝑔 , 𝐸𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 represents the mean
square error, the regularization factor and the sparsity
factor respectively. The mean square error, 𝐸𝑀𝑆𝐸 can
be calculated by

𝐸𝑀𝑆𝐸 =
 1

𝑛
∑ ||𝑥𝑖 − 𝑦𝑖||2𝑛

𝑖=1 (6)

Where 𝑦 is the reconstruction of 𝑥.

 In the training data set, DNN learn every point,
thus leading to overfitting of the model. This is a
problem with deep networks, as the model results in
poor output on new test data. To overcome this

problem, the regularization factor 𝐸𝑅𝑒𝑔 is taken into
account in the objective function that can be

determined using

𝐸𝑅𝑒𝑔 =
λ

2
 (∑ ∑ ∑ 𝑊𝑖𝑗 (𝑙)𝐶

𝑗=1
𝐷
𝑖=1

𝑙𝑠−1
𝑙=1) (7)

where λ is chosen to control the regularization term
of all the weights in a particular layer, 𝑙 denotes the
layer number and ls denotes the total number of
layers

 Sparsity constraint enables a model to learn from
the data about the interesting features. One solution
is to incorporate an additional term in the loss
function during training to penalize the KL
divergence Σφάλμα! Το αρχείο προέλευσης της

αναφοράς δεν βρέθηκε. in order to place a sparsity
constraint on the hidden units. Sparsity factor
𝐸𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦can be calculated using,

𝐸𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = β ∑ 𝐾𝐿(ρ|| ρ𝑗)
𝐶

𝑗=1

(8)

where β is the sparsity weight term and 𝐾𝐿(ρ|| ρ𝑗) is
the KL divergence given by

𝐾𝐿(ρ|| ρ𝑗) = ρ 𝑙𝑜𝑔
ρ

ρ𝑗
 + (1 − ρ) log

1− ρ

1− ρ𝑗
 (9)

where sparsity parameter constant is given by ρ ,
whereas ρj represents average activation value of jth
neuron in the hidden layer which can be calculated
using

ρ𝑗 =
1

𝑛
 ∑ [ℎ𝑗(𝑥(𝑖), 𝑊, 𝑏)]𝑛

𝑖=1 (10)

where ℎ𝑗(𝑥(𝑖), 𝑊, 𝑏) represents the activation
function of the jth neuron in the hidden layer of
autoencoder.

 The sparse penalty term actually works on the
hidden layer to control the number of “active”
neurons. To control the number of “active” neurons,
the sparse penalty term actually works on the hidden
layer. "In practice, the neuron is called “active” if the
output of a neuron is close to 1, otherwise it is"
inactive". Most of the time, it is easier to keep the
neurons of the hidden layer “inactive”.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.72 Samar Sindian, Samer Sindian

E-ISSN: 2224-2856 719 Volume 15, 2020

 In this process, the average activation of each
hidden neuron ρ𝑗 is expected to be close to zero,
namely the neurons of the hidden layer is mostly
“inactive”. To achieve this, the sparse term
represented in Eq. 8 is added to the objective function
in Eq. 5 that penalizes ρ𝑗 if it deviates significantly
from ρ .

 This penalty function possesses the property that
𝐾𝐿(ρ|| ρ𝑗) = 0 if ρ𝑗 = ρ. Otherwise, it increases
monotonically as ρ𝑗 diverges from ρ, which acts as
the sparsity constraint. The cost function of the neural
network (Eq. 5) can now be written as:

𝐶 (𝑊, 𝑏) =
 1

𝑛
∑ ||𝑥𝑖 − 𝑦𝑖||

2𝑛
𝑖=1 +

λ

2
 (∑ ∑ ∑ 𝑊𝑖𝑗 (𝑙)𝐶

𝑗=1
𝐷
𝑖=1

𝑙𝑠−1
𝑙=1)

(11)

Adding the sparse penalty term to the cost function,
it can be modified as:

𝐶𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) =
 1

𝑛
∑ ||𝑥𝑖 − 𝑦𝑖||

2𝑛
𝑖=1 +

λ

2
 (∑ ∑ ∑ 𝑊𝑖𝑗 (𝑙)𝐶

𝑗=1
𝐷
𝑖=1

𝑙𝑠−1
𝑙=1) +

 β ∑ ρ 𝑙𝑜𝑔
ρ

ρ𝑗
 + (1 − ρ) log

1− ρ

1− ρ𝑗

𝐶
𝑗=1

(12)

 The optimal parameters of W and b need to be
defined during the coding process. As the sparse cost
function shown in equation (9) is directly related to
the parameters W and b, it can be solved in order to
obtain these two parameters by
minimizing 𝐶𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏).

 The back-propagation algorithm can be used to
understand this, where the stochastic gradient descent
method is used for training and the parameters W and
b in each iteration can be modified as:

𝑊𝑖𝑗 ≔ 𝑊𝑖𝑗 − 𝜀
𝜕

𝜕𝑊𝑖𝑗
 𝐶𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) (13)

𝑏𝑖 ≔ 𝑏𝑖 − 𝜀
𝜕

𝜕𝑏𝑖
 𝐶𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) (14)

where 𝜀 is the learning rate.

 To compute the average activation 𝛿𝑗 in order to
get the sparse error, a forward pass on all training
examples is used, then the back-propagation
algorithm works to update the parameters. After that,
the SAE can learn efficient sparse feature
representations.

3.4 Dropout

 Dropout is a technique that, when training a neural
network with small training data set [15], can help
minimize 'overfitting'. Generally, the overfitting
issue arises when the known training data set is
insufficient, leading to poor output on the test data.
 The dropout technique is applied to SAE-based
DNN training in this study in order to avoid complex
co-adaptations to training data and repeatedly prevent
the same features from being extracted.

 Technically, by setting the output of certain hidden
neurons to zero, the "dropout" can be realized so that
these neurons will not be active in the training phase
for forward propagation.

 It should be noted that certain differences exist
between the training phase and the dropout testing
process. During testing, the dropout is switched off,
which ensures that the outputs of all hidden neurons
during testing will not be masked. This will help to
enhance the SAE-based DNN's feature extraction and
classification capability.

4 Proposed Framework

A two-hidden-layer sparse auto-encoder with
sigmoid activation functions is used in the proposed
EDSA system. In the CICDDoS 2019 dataset, the
input layer has 80 neurons representing the selected
features (explained in section V) and the complete
description of these features is presented in Σφάλμα!

Το αρχείο προέλευσης της αναφοράς δεν

βρέθηκε..

 The structure of the EDSA method is shown in
Fig.2, where it is composed of three steps:

(1) Feature extraction using sparse autoencoder and
normalization
(2) Deep neural network training
(3) Classification research for one of the two classes:
Benign and Malicious

Step (1): The SAE is used to learn characteristics
from data and initialize the DNN structure by taking
advantage of unsupervised learning, as shown in
Fig.2 (a). Autoencoder is a feature engineering
technique focused on a neural network that can learn
the hidden features of the data through an iterative
training process. Autoencoder discovers the
association and intermediate relationship between the
individual attributes in this learning process and
derives the optimal knowledge from the features thus
extracting the most representative features.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.72 Samar Sindian, Samer Sindian

E-ISSN: 2224-2856 720 Volume 15, 2020

The original features are first used to train the SAE,
using the following steps:

I) Set up the learning rate, sparse rate and denoising
parameters, dropout rate, etc., and initialize the
weight W and b randomly.

II) Use the training method of stochastic batches in
the forward propagation algorithm to measure
the average sparsity activation ρ𝑗 for sparsity.

III) Measure as in Eq. (12): the sparse cost function.
IV) Update the W and b parameters based on Eq. (13)

and Eq. (14).

Step (2): Then, to train a neural network classifier
with a dropout module for DoS attack diagnosis, the
learned sparse feature representation of the auto-
encoder is used as shown in Fig.2 (b). In addition, in
a well-trained SAE, the parameters of the DNN
classifier with the corresponding parameters are
initialized and then further modified as follows:

I) To initialize the first layer of the DNN, use the
parameters of the SAE.

II) Set the training parameters and the dropout rate
and perform the forward propagation algorithm
to extract for classification the labeled features.

III) Using Eq. (11), compute the mean square error
for the cost function of the DNN.

IV) Perform the algorithm of back-propagation the
same as before with the exception of the sparse
term

V) To change the weights and fine-tune the entire
network, except for the sparse term (set sparse
penalty term to 0), perform the back-propagation
algorithm the same as before.

Step (3): Finally, in order to identify network
traffic as either benign (normal) or malicious
(DoS attack), the test data set is used to verify the
efficacy of the presented SAE-based DNN as
shown in Fig.2 (c).

5 Experimental Results

The suggested method experiment is conducted by
the CICIDS 2017 [17] dataset instead of the KDD
cup dataset using Python [18]. While, for many years,
the KDD'99 dataset has been the trusted dataset for
researchers, the key reason for not using it in our
work is that it is highly redundant, containing traffic
from almost 20 years ago.

 In addition, the total NSL-KDD (which is an
improved version of KDD-CUP99) instances are

125,923 in training and 22,544 in testing, while
ICIDS2017 has 2,830,108 instances and is generated
on the basis of real network traffic.

CICIDS 2017 was developed over a span of 5 days
within an emulated environment and includes
network traffic in a packet-based and bidirectional
flow-based format.

Fig. 2 Structure of the EDSA network

 For our DDoS intrusion detection system we used
the CICDDoS2019. The latter contains benign and
the most up-to-date common DDoS attacks, which
resembles the true real-world data (PCAPs). It also
includes the results of the network traffic analysis
using CICFlowMeter-V3 with labeled flows based on
the time stamp, source, and destination IPs, source
and destination ports, protocols and attack (CSV
files).

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.72 Samar Sindian, Samer Sindian

E-ISSN: 2224-2856 721 Volume 15, 2020

 The authors of [19] have extracted more than 80
features for each flow, and include additional
metadata on IP addresses and attacks. The extracted
traffic features are explained in [12]. A part of these
features are shown in Table 1. With regard to the
mentioned features except the Flow ID (1), Time
Stamp (7), Flow length (8) and Label (84), the total
number of features we used in our analysis comprises
80.

Table 1. Listed features of network traffic in

CICDDoS2019

No. Feature No. Feature
1 Flow ID 11 Total Length of Fwd

Pck
2 Source IP 12 Total Length of Bwd

Pck
3 Source Port 13 Fwd Packet Length

Max
4 Destination IP 14 Fwd Packet Length

Min

5 Destination Port 15 Fwd Pck Length
Mean

6 Protocol 16 Fwd Packet Length
Std

7 Time Stamp . .

8 Flow duration . .

9 Total Fwd
packets

. .

10 Total Backward
packets

84 Label

 In this work, the first layer of the SAE included the
original features represented by 80 neurons. With a
reasonable error approximation, the first hidden layer
of the sparse auto-encoder was able to successfully
reduce the dimensions to 68 features. Additionally, in
the second secret layer, the features were reduced to
61. The resulting sparse auto encoder can be used to
perform the classification in the final stage once the
weights are educated.

 The sparse representation parameters are set as
follows: λ = 0.0006. The parameter sparsity is β =
0.04, and the term sparsity penalty is β = 7. Sparsity
and penalty parameters are built to limit the
activation of the hidden units, thus reducing the
dependence between the features. In Table 2, these
parameters are presented.

Table 2. Simulation parameters

Parameters Value

λ 0.0006
ρ 0.04

Parameters Value

β 7

Firstly, a comparison study was carried out to check
the efficiency of our approach that uses the sparse
auto-encoder to learn features for the DNN and uses
the "dropout" technique to resolve overfitting during
the training process, where conventional SAE is used
as the basis.

 The performance classification under the different
sizes of the labeled training data set was examined,
where the size of the training data shifted from 120 to
600, with a phase size of 120. The outcomes are
shown in Fig. 3.

 It can be shown that the solution proposed has
shown better performance than the SAE alone.
Secondly, the purpose of the approach proposed is to
avoid the expense of false alarms and to refuse access
to legitimate users.

Fig. 3 Accuracy % using SAE with and without
dropout

The detection accuracy of the system proposed is
assessed using the following equations:

Accuracy : 𝐴𝑐𝑐 =
𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
 (13)

Detection rate (DR): 𝐷𝑅 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠 + 𝐹𝑛𝑒𝑔
 (14)

Precision (PR): 𝑃𝑅 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠 + 𝐹𝑝𝑜𝑠
 (15)

Specificity (SP) : 𝑆𝑃 =
𝑇𝑛𝑒𝑔

𝑇𝑛𝑒𝑔 + 𝐹𝑝𝑜𝑠
 (16)

70

75

80

85

90

95

100

0 100 200 300 400 500 600

A
C

C
U

R
A

C
Y

 %

LABELED TRAINING DATA SIZE

SAE SAE+dropout

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.72 Samar Sindian, Samer Sindian

E-ISSN: 2224-2856 722 Volume 15, 2020

The following parameters are used to test such
equations:

 True positive (Tpos) = Number of samples
correctly predicted as a class of attack.

 False positive (Fpos) = Number of wrongly
predicted samples as the class of attack.

 True negative (Tneg) = Number of samples
as a normal class correctly predicted.

 False negative (Fneg) = Number of wrongly
predicted samples as a normal class

 The experimental analysis of proposed EDSA was
compared with a benchmark of 3 network models as
presented in Table 3.

It was shown after studies that the accuracy of
detection for the CICDDoS2019 dataset is 90 percent
with 7.2 percent false positives for DNN, 92.9
percent with 5 percent false positives for DNN based
on autoencoder with one hidden layer, 96.3 percent
with 3.26 percent false positives for DNN based on
autoencoder with one hidden layer and fine tuning
and finally 98 percent with 1.4 percent false positives
for the proposed EDSA with two-hidden layer SAE,
fine tuning and cost minimization.

Table 3 Results for classification using DNN
algorithm and DNN based on SAE

Algorithm Acc

(%)

DR

(%)

PR

(%)

SP

(%)
False

positive

(%)
DNN 90 79.1 79.5 89 7.2

DNN based

on

autoencoder

with one

hidden layer

92.9 82.9 82.8 92 5

DNN based

on

autoencoder

with one

hidden layer

and fine

tuning

96.3 96.35 88.3 96.3 3.26

Proposed

EDSA with

two hidden

layers and

fine tuning

98 98.1 91 98 1.4

 Fig. 4 demonstrates the normalized mean square
error (NMSE) variation of the proposed EDSA
method with the number of training epochs. The
NMSE over time of the EDSA method is smaller than
that of the DNN method. It converges after
approximately 100 epochs to a value of 0.05, while

the DNN approach converges to 0. In addition, the
mean square error after 300 epochs is less than 0.01,
which is a very satisfactory outcome. After the 350
epochs, the model converges to its steady-state
location.

Fig. 4 NMSE of EDSA compared to DNN

6 Conclusion

For the detection of DDoS attacks, an Enhanced
Deep Sparse Autoencoder-based Approach with two
hidden layers is proposed in this paper. The main
objective of this paper is to extract the representative
features from CICDDoS2019 dataset using the
autoencoder, minimize the classification error and
correctly detect the DDoS attack.

The experimental analysis of proposed EDSA
showed its high detection accuracy. A high
percentage of enhancement is obtained in comparison
with other network models for many performance
indicators (accuracy, detection rate, precision,
specificity) of the proposed technique. Whereas, the
false positive percentage is much smaller. For the
CICDDoS2019 dataset, the proposed technique
obtained 98 percent of detection accuracy and 1.4
percent of false positive. In the future, it is possible
to perform recent computer algorithms such as K-
means clustering and introduce more layers on the
level of the SAE in order to reduce more the features
dimensions and apply classification algorithms other
than the softmax function.

 References:

[1] N. Shone, T.N. Ngoc, V.D. Phai, Q. Shi, “A deep
learning approach to network intrusion

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.72 Samar Sindian, Samer Sindian

E-ISSN: 2224-2856 723 Volume 15, 2020

detection”, IEEE Transactions on Emerging
Topics in Computational Intelligence , 2018, 2,
41–50.

[2] M. Lopez-Martin, B. Carro, A. Sanchez-
Esguevillas, J. Lloret, “Conditional variational
autoencoder for prediction and feature recovery
applied to intrusion detection in iot” , Sensors
2017, 17, 1967.

[3] R.K. Malaiya, D. Kwon, J. Kim, S.C. Suh, H.
Kim, I. Kim, “An Empirical Evaluation of Deep
Learning for Network Anomaly Detection”, in
Proceedings of the 2018 International
Conference on Computing, Networking and
Communications (ICNC), Maui, HI, USA, 5–8 ,
2018; pp. 893–898.

[4] C. Li, J. Wang, X. Ye, “Using a Recurrent Neural
Network and Restricted Boltzmann Machines for
Malicious Traffic Detection”, NeuroQuantology,
2018, 16.

[5] K. Saravanan, “Neuro-fuzzy-based clustering of
DDoS attack detection”, International Journal of
Critical Infrastructure Protection, 2017, 13:46–
56

[6] K. Grzegorczyk, M. Kurdziel, P. Wojcik ,
“Encouraging orthogonality between weight
vectors in pretrained deep neural networks”,
Neurocomputing , 2016, 202:84–90

[7] V.L. Thing , “IEEE 802.11 network anomaly
detection and attack classification: A deep
learning approach”, Proceedings of IEEE
Wireless Communications and Networking
Conference (WCNC),San Francisco, CA, USA,
19–22 , 2017; pp. 1–6.

[8] T. Ma, F. Wang, J. Cheng, Y. Yu, X. Chen, “A
hybrid spectral clustering and deep neural
network ensemble algorithm for intrusion
detection in sensor networks”, Sensors 2016, 16,
1701.

[9] T. Tang, S.A.R. Zaidi, D. McLernon, L.
Mhamdi, M. Ghogho, “Deep Recurrent Neural
Network for Intrusion Detection in SDN-based
Networks”, Proceedings of 4th IEEE Conference
on Network Softwarization and Workshops
(NetSoft), Montreal, QC, Canada, 2018.

[10] A.H. Muna, N. Moustafa, E. Sitnikova,
“Identification of malicious activities in
industrial internet of things based on deep
learning models”, Journal of Information
Security and Applications, 2018, 41, 1–11.

[11] A. M. Cheriyadat, “Unsupervised feature
learning for aerial scene classification”, IEEE
Trans. Geosci. Remote Sens. 52 (2014) 439-451.

[12] CIC. Canadian Institute of Cybersecurity. List of
Extracted Traffic Features by CICFlowMeter-
V3. 2017. Available online:

https://www.unb.ca/cic/datasets/ids-2017.html
(accessed on 23 January 2019).

[13] S. Kullback, R. A. Leibler, “On information and
sufficiency”, Annals of Mathematical Statistics
22, 1951, pp: 79-86.

[14] G. E. Hinton, N. Srivastava, A. Krizhevsky, I.
Sutskever, R. R. Salakhutdinov, “Improving
neural networks by preventing co-adaptation of
feature detectors”, arXiv preprint
arXiv:1207.0580, 2012.

[15] A. Coates, A. Y. Ng, H. Lee, “An analysis of
single-layer networks in unsupervised feature
learning”, Jour. Mach. Learn. Res. 15, 2011 ,215-
223.

[16] M. Tavallaee, E. Bagheri, W. Lu, A. Ghorbani,
“A detailed analysis of the KDD CUP 99 data
set”, IEEE symposium on computational
intelligence for security and defense
applications, 2009, pp 1-6

[17] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani,
“Toward Generating a New Intrusion Detection
Dataset and Intrusion Traffic Characterization”,
International Conference on Information
Systems Security and Privacy (ICISSP), 2018,
pp. 108–116. doi:10.5220/ 0006639801080116.

[18] P. S. Foundation. Python Language Reference,
Version 3.6. https://www. python.org/. 2016.

[19] I. Sharafaldin, A. H. Lashkari, S. Hakak, and
A.A. Ghorbani, “Developing Realistic
Distributed Denial of Service (DDoS) Attack
Dataset and Taxonomy”, IEEE 53rd
International Carnahan Conference on Security
Technology, Chennai, India, 2019

Author Contributions: Please, indicate the role

and the contribution of each author:

Samer sindian, carried out the simulation and the
optimization.

Samar sindian, developed the model and wrote the
paper.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.72 Samar Sindian, Samer Sindian

E-ISSN: 2224-2856 724 Volume 15, 2020

