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Abstract: - Intrusion detection systems play a crucial role in preventing security threats and defending networks 
from attacks. Among the attacks, distributed Denial-of-Service (DDoS) attacks literally get into the network and, 
in addition, they are terribly troublesome to avoid. With the advent of unknown threats, traditional machine 
learning approaches are impacted by lower detection rates and higher false-positive rates. As a result, the DDoS 
detection system requires an over-performing machine learning classifier with minimal false-positive and high 
detection accuracy. In this context, we propose an Improved Deep Sparse Autoencoder-based Framework 
(EDSA) for DDoS Attack Detection with a cost minimization strategy. The sparse autoencoder is used for dataset 
extraction functionality, while the softmax layer is used for traffic classification as malicious or bengin. However, 
intrusion detection includes the risk elements of inaccurate prediction; hence, we have used research metrics such 
as accuracy, precision, detection rate and specificity for our model analysis. The proposed solution uses the 
CICDDoS 2019 datasets and demonstrates high detection accuracy with a much less false positives percentage. 
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1 Introduction 
 
Nowadays, DDoS attacks are increasingly easy to 
implement. The Intrusion Detection System (IDS) is 
a special security tool that is being used by the 
network experts to keep the network safe and secure 
from network attacks which can come from many 
different sources [2]. It has emerged as one of the 
basic and powerful tool in order to deal with data 
security and availability issues over the 
communication networks. The necessity to filter false 
alarms in the event that the user (device or security 
administrator) is overloaded with data is one major 
limitation of current IDS technologies. 
    IDSes, including active and passive, network-
based and host-based, and knowledge-based and 
behavior-based, are categorized in several different 
ways: An active IDS (now more widely referred to as 
an intrusion prevention system) is a system that is 
configured without any intervention needed by an 
operator to automatically block suspected attacks in 
progress. A passive IDS is a system that is only 
designed to monitor and evaluate the behavior of 

network traffic and alert an operator to possible 
vulnerabilities and attacks. A network-based IDS 
usually consists of a network computer (or sensor) 
with a promiscuous-mode Network Interface Card ( 
NIC) and a separate management interface. The IDS 
is located along a line or boundary of the network and 
controls all traffic on that line. A host-based IDS 
involves the installation of small programs (or 
agents) on individual systems to be tracked. Only the 
individual host systems on which the agents are 
mounted can be monitored by a host-based IDS; it 
does not track the entire network. To detect active 
intrusion attempts, a knowledge-based (or signature-
based) IDS references a database of prior attack 
profiles and documented device vulnerabilities. IDS 
based on information is actually more popular than 
IDS based on actions. To detect successful intrusion 
attempts, a behavior-based (or statistical anomaly-
based) IDS references a baseline or learned pattern of 
regular device operation. Deviations from this 
baseline or trend cause an alarm. 
       These attacks have a major influence of the 
networks and the systems as they include network 
performance, data security, loss of intellectual 
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property [3] and a real liability for the compromised 
notes or networks data and that is why we need a 
powerful IDS. Researchers are considerably 
reviewing the DDoS detection techniques.  Neural 
networks are considered as one of the foremost 
applied methods in IDS systems.  In short, there are 
many contributions to our proposed DDoS detection 
model: it introduces a novel hybrid malicious 
network flow detection technique focused on 
Autoencoder and deep neural networks. The 
suggested model can also prevent overfitting to 
predefined malicious patterns. The key motivation of 
this study is the concept that an autoencoder model 
could create a more precise classifier model behind a 
deep neural network model that is comparable to the 
traditional neural network model to detect malicious 
computer network traffic. Our key tasks are to create 
a data representation model using autoencoder 
techniques and to create a malicious network flow 
detection model using a deep neural network. 
 
    The remainder of this paper is organized as 
follows. The related works are introduced in Section 
II. Section III describes the deep neural network 
(DNN), auto encoder and the dropout techniques. 
Section IV proposes a novel intrusion detection 
model and shows in detail how the model works. 
Section V demonstrates the experimental details and 
results. Finally, Section VI highlights some 
conclusions and further work. 
 
 

2 Related Work 
DDoS and DoS mitigation has been researched for 
many years, and several, different approaches have 
been proposed to enhance the IDS using artificial 
neural networks. However, deep learning models 
have recently been used in the field of intrusion 
detection. Deep learning methods can automatically 
extract features and perform classification, such as 
AutoEncoder [1][2], DNN [3], and recurrent neural 
network (RNN) [4]. The introduction of deep 
learning into the security systems made it possible to 
these systems to screen benign from malicious traffic 
separately. 
 
   A neuro-based clustering algorithm for both wired 
and wireless networks was proposed by the authors 
of [5]. The detection of anomalies is carried out at 
regular intervals to monitor the analyzed traffic by 
means of statistical variance. 
Detection of the change detects the statistical 
variance of the volume of traffic. The NS2 simulator 
was used for implementing this algorithm for a 
different dataset and showed better performance. 

 
    Grzegorczyk et al.  in [6], suggested a DDoS 
defense system that includes decision tree attack 
detection and traceback of attackers with traffic 
pattern matching. It is based on the observation that 
the network traffic under DDoS attack would differ 
from the normal traffic situation and the decision tree 
(C4.5) generating algorithm is applied. 
 
    Stacked AutoEncoders are used to detect attacks 
with an overall precision of 98.60 percent on IEEE 
802.11 networks [7]. A hybrid method combining 
spectral clustering and deep neural networks was 
presented by Ma et al. [8] to detect attacks on the 
NSL-KDD dataset with an overall precision of 72.64 
percent.  A software-defined network (SDN) 
intrusion detection system with an accuracy of 89 
percent was built using the gated recurrent unit 
recurrent neural network (GRU-RNN) [9]. In order to 
detect attacks, Shone et al . [1]  used a stacked non-
symmetric AutoEncoder and random forest ( RF). 
 
   Muna et al. [10] suggested a deep learning model-
based anomaly detection technique for Internet 
Industrial Control Systems (IICSs), using deep auto-
encoders for feature extraction and deep feedforward 
neural networks for classification. 
 
 
3 Deep Neural Network 
Deep learning refers to a class of algorithms for 
machine learning. Deep learning extracts features 
and uses nonlinear functions to transform them. The 
method of learning can be either supervised or 
unsupervised. Unsupervised feature learning is able 
to learn discriminative and effective features from a 
large amount of unlabeled data Σφάλμα! Το αρχείο 

προέλευσης της αναφοράς δεν βρέθηκε.. DDoS 
attacks are hard to detect in the sense of network 
security. Therefore, an efficient solution to attack 
detection can be given by unsupervised feature 
learning. In the proposed context, most representative 
features from the CICDDoS 2019 dataset Σφάλμα! 

Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε. 
are extracted by the Sparse Autoencoder (SAE) 
combined with the denoising module. Then, with 
dropout, the learned features are fed into a neural 
network classifier. The following sections explain the 
details of the framework. 
 
3.1 Auto-encoder 
An auto-encoder is a symmetrical neural network 
that, by minimizing reconstruction errors, can learn 
the functions in an unsupervised learning manner. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2020.15.72 Samar Sindian, Samer Sindian

E-ISSN: 2224-2856 717 Volume 15, 2020



One of the key benefits of using this type of model is 
its ability to evaluate the important parts of the input 
by pressuring it to learn the useful properties of the 
data it provides during training.  In autoencoders, 
dimensionality reduction and regularization are 
primarily two methods used for dimension selection. 
Dimensionality reductions arise when there are fewer 
nodes in each hidden layer of the model than in the 
previous layer.  Regularization chooses the nodes that 
have the greatest positive effect on the outcome of the 
model and eliminates the effect of the other nodes. 
The auto-encoder’s basic structure is shown in Fig. 1, 
where in the hidden layer it attempts to learn an 
approximation such that the input data at the output 
layer can be reconstructed perfectly. 
 
   The transformation of input data into code from 
high-dimensional space into low-dimensional space 
is the mechanism of the encoder network.  

 

Fig. 1 the structure of auto-encoder neural network 

   However, the auto-encoder’s fundamental issues, 
such as simply copying the input layer to the hidden 
layer, make it ineffective to extract meaningful 
features, although its output can be a perfect input 
data retrieval. A SAE can learn relatively sparse 
features as an extension of the auto-encoder by 
adding a sparse penalty term (a regularizing function) 
to the usual loss function of an autoencoder. 

    Using Kullback-Leibler divergence is one way to 
enforce a sparsity penalty. KL-divergence, used to 
calculate their similarities or dissimilarities, is of the 
divergence between two distributions of probability. 

3.2 Scaling Data 
Improving model accuracy, reducing loss, and 
improving convergence times are the reasons for 
scaling distinct features to better relate to each other. 
The SAE is built on the architecture of a neural 
network, and one way a neural network learns is by 

looking at changes in the traffic flows of the network 
features. 
 
  A difficulty with this is that the absolute values of 
features are perceived by deep learning based 
models, and not the relative difference. The loss 
feature is aggressive, first trying to maximize it on 
massive values. That is why, in order to maintain the 
weights of all input features of equal relative 
importance, we should scale the data. 
 
   In this research, by mapping the IP (Internet 
Protocol) address to an integer representation, a 
preprocessing feature is applied to the CICDDoS 
2019 dataset [12]. Both the source IP address (Src IP) 
and the destination IP address (Dst IP) are included 
in the mapped IP. These two are transformed to a 
number representation of an integer. This research 
divides the knowledge into a training set and a test set 
with a 75:25 ratio. 
New statistical features are extracted from network 
traffic using the autoencoder in the preprocessing 
stage.  
 
    The normalization module continued in this step, 
followed by feature extraction. The normalization 
module's input is the extracted functionality. To 
normalize the extracted features, the min-max 
normalization procedure is used in such a way that 
the training dataset consists of (0 , 1). The above 
value is fed to the machine learning algorithm as an 
input. To scale the attributes, the range (0 , 1) is used. 
In the classifier, the actual number between 0 and 1 
is given in Eq. 1: 
 

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥max −  𝑥𝑚𝑖𝑛
 (1) 

where 𝑥𝑖 is the value of a particular feature, 𝑥𝑚𝑖𝑛 is 
the minimum value, 𝑥max  is the maximum value, 
and 𝑥𝑛𝑜𝑟𝑚 is the normalized value of the input that 
lies between [0,1].  

3.3 Sparse Auto-encoder 

For the auto encoder, a neural network of three layers 
identical to that in Fig. 1 can be constructed, where 
the sigmoid function is selected as the network 
activation function. The input layer consists of D 
neurons, and the hidden layer consists of C neurons, 
where the input vector dimension is D, and the 
function vector dimension is C. 

    The objective is to learn and obtain a function 
expression on a hidden layer for the unlabeled input 
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data X. To efficiently represent the input vector, the 
encoder converts it to code (features). The decoder 
input is the hidden layer output, and the decoder 
output is the auto-encoder output. From the code 
created by the encoder, the decoder tries to 
reconstruct the original input vector. 

Let us consider X as an input vector as X={𝑥1 , 𝑥2, 
𝑥3, ….𝑥𝑛} where 𝑥𝑖 is the input vector represent the 
original features. The mapping of input to output in 
encoder can be given by Eq. (2)  

ℎ(𝑥(𝑖), 𝑊, 𝑏) =  𝑓(𝑊𝑥(𝑖) + 𝑏), 𝑖 = 1, … 𝑛                    (2) 

Where 𝑓 is an activation function, for which we used 
the sigmoid function defined as in Eq. 3 

𝑓(𝑧) =
1

1+exp (−𝑧)
                                                             (3) 

The weights between the input layer and the hidden 
layer are denoted by W and the biases are 
represented by b so that the output,  

𝑦 = 𝑓(𝑊𝑇ℎ(𝑥(𝑖), 𝑊, 𝑏) + 𝑏′)                                         (4) 

is identical to the input or refactored. Where 𝑊𝑇 is 
the weight matrix which represents weight of the link 
connecting hidden layer neuron to the neurons in the 
output layer of the network, y is the reconstructed 
input vector, 𝑏′ is the bias vector. 

The auto encoder is trained by minimizing the sparse 
cost (loss) function defined as: 

𝐶𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) =  𝐸𝑀𝑆𝐸 + 𝐸𝑅𝑒𝑔 + 𝐸𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦                                          (5) 

where 𝐸𝑀𝑆𝐸 , 𝐸𝑅𝑒𝑔 , 𝐸𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 represents the mean 
square error, the regularization factor and the sparsity 
factor respectively. The mean square error, 𝐸𝑀𝑆𝐸 can 
be calculated by 

𝐸𝑀𝑆𝐸 =
  1

𝑛
∑ ||𝑥𝑖 −  𝑦𝑖||2𝑛

𝑖=1                                               (6) 

Where 𝑦 is the reconstruction of 𝑥. 

    In the training data set, DNN learn every point, 
thus leading to overfitting of the model. This is a 
problem with deep networks, as the model results in 
poor output on new test data. To overcome this 

problem, the regularization factor 𝐸𝑅𝑒𝑔 is taken into 
account in the objective function that can be  

determined using  

𝐸𝑅𝑒𝑔 =  
λ

2
 (∑ ∑ ∑ 𝑊𝑖𝑗 (𝑙)𝐶

𝑗=1
𝐷
𝑖=1

𝑙𝑠−1
𝑙=1 )                       (7) 

where λ is chosen to control the regularization term 
of all the weights in a particular layer, 𝑙 denotes the 
layer number and ls denotes the total number of 
layers 

    Sparsity constraint enables a model to learn from 
the data about the interesting features. One solution 
is to incorporate an additional term in the loss 
function during training to penalize the KL 
divergence Σφάλμα! Το αρχείο προέλευσης της 

αναφοράς δεν βρέθηκε. in order to place a sparsity 
constraint on the hidden units. Sparsity factor 
𝐸𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦can be calculated using, 

𝐸𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =  β ∑ 𝐾𝐿(ρ|| ρ𝑗)
𝐶

𝑗=1
 

(8) 

where β is the sparsity weight term and 𝐾𝐿(ρ|| ρ𝑗) is 
the KL divergence given by 

𝐾𝐿(ρ|| ρ𝑗) = ρ 𝑙𝑜𝑔
ρ

ρ𝑗
 + (1 − ρ) log

1− ρ

1− ρ𝑗
                   (9) 

where sparsity parameter constant is given by ρ , 
whereas ρj represents average activation value of jth 
neuron in the hidden layer which can be calculated 
using 

ρ𝑗 =  
1

𝑛
 ∑ [ℎ𝑗(𝑥(𝑖), 𝑊, 𝑏)]𝑛

𝑖=1                                              (10) 

where ℎ𝑗(𝑥(𝑖), 𝑊, 𝑏) represents the activation 
function of the jth neuron in the hidden layer of 
autoencoder. 

     The sparse penalty term actually works on the 
hidden layer to control the number of “active” 
neurons. To control the number of “active” neurons, 
the sparse penalty term actually works on the hidden 
layer. "In practice, the neuron is called “active” if the 
output of a neuron is close to 1, otherwise it is" 
inactive". Most of the time, it is easier to keep the 
neurons of the hidden layer “inactive”.  
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   In this process, the average activation of each 
hidden neuron ρ𝑗 is expected to be close to zero, 
namely the neurons of the hidden layer is mostly 
“inactive”. To achieve this, the sparse term 
represented in Eq. 8 is added to the objective function 
in Eq. 5 that penalizes ρ𝑗 if it deviates significantly 
from ρ  .  

    This penalty function possesses the property that  
𝐾𝐿(ρ|| ρ𝑗) = 0  if     ρ𝑗 = ρ. Otherwise, it increases 
monotonically as ρ𝑗 diverges from ρ, which acts as 
the sparsity constraint. The cost function of the neural 
network (Eq. 5) can now be written as: 

𝐶 (𝑊, 𝑏) =
  1

𝑛
∑ ||𝑥𝑖 −  𝑦𝑖||

2𝑛
𝑖=1 +

 
λ

2
 (∑ ∑ ∑ 𝑊𝑖𝑗 (𝑙)𝐶

𝑗=1
𝐷
𝑖=1

𝑙𝑠−1
𝑙=1 )  

   
(11) 

Adding the sparse penalty term to the cost function, 
it can be modified as: 

𝐶𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) =
  1

𝑛
∑ ||𝑥𝑖 −  𝑦𝑖||

2𝑛
𝑖=1 +

 
λ

2
 (∑ ∑ ∑ 𝑊𝑖𝑗 (𝑙)𝐶

𝑗=1
𝐷
𝑖=1

𝑙𝑠−1
𝑙=1 ) +

   β ∑ ρ 𝑙𝑜𝑔
ρ

ρ𝑗
 + (1 − ρ) log

1− ρ

1− ρ𝑗

𝐶
𝑗=1    

(12) 

    The optimal parameters of W and b need to be 
defined during the coding process. As the sparse cost 
function shown in equation (9) is directly related to 
the parameters W and b, it can be solved in order to 
obtain these two parameters by 
minimizing    𝐶𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏). 

    The back-propagation algorithm can be used to 
understand this, where the stochastic gradient descent 
method is used for training and the parameters W and 
b in each iteration can be modified as: 

𝑊𝑖𝑗 ≔ 𝑊𝑖𝑗 − 𝜀 
𝜕

𝜕𝑊𝑖𝑗
 𝐶𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏)                   (13) 

𝑏𝑖 ≔ 𝑏𝑖 −  𝜀
𝜕

𝜕𝑏𝑖
 𝐶𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏)                           (14) 

where 𝜀 is the learning rate.  

   To compute the average activation  𝛿𝑗 in order to 
get the sparse error, a forward pass on all training 
examples is used, then the back-propagation 
algorithm works to update the parameters. After that, 
the SAE can learn efficient sparse feature 
representations. 

3.4 Dropout 
 

  Dropout is a technique that, when training a neural 
network with small training data set [15], can help 
minimize 'overfitting'. Generally, the overfitting 
issue arises when the known training data set is 
insufficient, leading to poor output on the test data. 
    The dropout technique is applied to SAE-based 
DNN training in this study in order to avoid complex 
co-adaptations to training data and repeatedly prevent 
the same features from being extracted. 
 
    Technically, by setting the output of certain hidden 
neurons to zero, the "dropout" can be realized so that 
these neurons will not be active in the training phase 
for forward propagation. 
 
    It should be noted that certain differences exist 
between the training phase and the dropout testing 
process. During testing, the dropout is switched off, 
which ensures that the outputs of all hidden neurons 
during testing will not be masked. This will help to 
enhance the SAE-based DNN's feature extraction and 
classification capability. 
 
 
4 Proposed Framework 

A two-hidden-layer sparse auto-encoder with 
sigmoid activation functions is used in the proposed 
EDSA system. In the CICDDoS 2019 dataset, the 
input layer has 80 neurons representing the selected 
features (explained in section V) and the complete 
description of these features is presented in Σφάλμα! 

Το αρχείο προέλευσης της αναφοράς δεν 

βρέθηκε.. 

    The structure of the EDSA method is shown in 
Fig.2, where it is composed of three steps:  

(1) Feature extraction using sparse autoencoder and 
normalization  
(2) Deep neural network training  
(3) Classification research for one of the two classes: 
Benign and Malicious  

Step (1): The SAE is used to learn characteristics 
from data and initialize the DNN structure by taking 
advantage of unsupervised learning, as shown in 
Fig.2 (a). Autoencoder is a feature engineering 
technique focused on a neural network that can learn 
the hidden features of the data through an iterative 
training process. Autoencoder discovers the 
association and intermediate relationship between the 
individual attributes in this learning process and 
derives the optimal knowledge from the features thus 
extracting the most representative features. 
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The original features are first used to train the SAE, 
using the following steps: 

I) Set up the learning rate, sparse rate and denoising 
parameters, dropout rate, etc., and initialize the 
weight W and b randomly. 

II) Use the training method of stochastic batches in 
the forward propagation algorithm to measure 
the average sparsity activation ρ𝑗 for sparsity. 

III) Measure as in Eq. (12): the sparse cost function. 
IV) Update the W and b parameters based on Eq. (13) 

and Eq. (14). 

Step (2): Then, to train a neural network classifier 
with a dropout module for DoS attack diagnosis, the 
learned sparse feature representation of the auto-
encoder is used as shown in Fig.2 (b). In addition, in 
a well-trained SAE, the parameters of the DNN 
classifier with the corresponding parameters are 
initialized and then further modified as follows: 

I) To initialize the first layer of the DNN, use the 
parameters of the SAE.  

II) Set the training parameters and the dropout rate 
and perform the forward propagation algorithm 
to extract for classification the labeled features.  

III) Using Eq. (11), compute the mean square error 
for the cost function of the DNN.  

IV)  Perform the algorithm of back-propagation the 
same as before with the exception of the sparse 
term 

V) To change the weights and fine-tune the entire 
network, except for the sparse term (set sparse 
penalty term to 0), perform the back-propagation 
algorithm the same as before. 
 

Step (3):  Finally, in order to identify network 
traffic as either benign (normal) or malicious 
(DoS attack), the test data set is used to verify the 
efficacy of the presented SAE-based DNN as 
shown in Fig.2 (c). 
 

5 Experimental Results 

The suggested method experiment is conducted by 
the CICIDS 2017 [17] dataset instead of the KDD 
cup dataset using Python [18]. While, for many years, 
the KDD'99 dataset has been the trusted dataset for 
researchers, the key reason for not using it in our 
work is that it is highly redundant, containing traffic 
from almost 20 years ago. 
 
    In addition, the total NSL-KDD (which is an 
improved version of KDD-CUP99) instances are 

125,923 in training and 22,544 in testing, while 
ICIDS2017 has 2,830,108 instances and is generated 
on the basis of real network traffic. 
 
CICIDS 2017 was developed over a span of 5 days 
within an emulated environment and includes 
network traffic in a packet-based and bidirectional 
flow-based format.  

 

Fig. 2 Structure of the EDSA network 

    For our DDoS intrusion detection system we used 
the CICDDoS2019. The latter contains benign and 
the most up-to-date common DDoS attacks, which 
resembles the true real-world data (PCAPs). It also 
includes the results of the network traffic analysis 
using CICFlowMeter-V3 with labeled flows based on 
the time stamp, source, and destination IPs, source 
and destination ports, protocols and attack (CSV 
files).   
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   The authors of [19] have extracted more than 80 
features for each flow, and include additional 
metadata on IP addresses and attacks. The extracted 
traffic features are explained in [12]. A part of these 
features are shown in Table 1. With regard to the 
mentioned features except the Flow ID (1), Time 
Stamp (7), Flow length (8) and Label (84), the total 
number of features we used in our analysis comprises 
80. 

Table 1.  Listed features of network traffic in 

CICDDoS2019 

No. Feature No. Feature 
1 Flow ID 11 Total Length of Fwd 

Pck 
2 Source IP 12 Total Length of Bwd 

Pck 
3 Source Port 13 Fwd Packet Length 

Max 
4 Destination IP 14 Fwd Packet Length 

Min 

5 Destination Port 15 Fwd Pck Length 
Mean 

6 Protocol 16 Fwd Packet Length 
Std 

7 Time Stamp . . 

8 Flow duration . . 

9 Total Fwd 
packets 

. . 

10 Total Backward 
packets 

84 Label 

  In this work, the first layer of the SAE included the 
original features represented by 80 neurons. With a 
reasonable error approximation, the first hidden layer 
of the sparse auto-encoder was able to successfully 
reduce the dimensions to 68 features. Additionally, in 
the second secret layer, the features were reduced to 
61. The resulting sparse auto encoder can be used to 
perform the classification in the final stage once the 
weights are educated. 

   The sparse representation parameters are set as 
follows: λ = 0.0006. The parameter sparsity is β = 
0.04, and the term sparsity penalty is β = 7. Sparsity 
and penalty parameters are built to limit the 
activation of the hidden units, thus reducing the 
dependence between the features. In Table 2, these 
parameters are presented. 

Table 2. Simulation parameters 

Parameters Value 

λ 0.0006 
ρ 0.04 

Parameters Value 

β 7 

Firstly, a comparison study was carried out to check 
the efficiency of our approach that uses the sparse 
auto-encoder to learn features for the DNN and uses 
the "dropout" technique to resolve overfitting during 
the training process, where conventional SAE is used 
as the basis. 

  The performance classification under the different 
sizes of the labeled training data set was examined, 
where the size of the training data shifted from 120 to 
600, with a phase size of 120. The outcomes are 
shown in Fig. 3. 

    It can be shown that the solution proposed has 
shown better performance than the SAE alone.  
Secondly, the purpose of the approach proposed is to 
avoid the expense of false alarms and to refuse access 
to legitimate users. 

 

Fig. 3 Accuracy % using SAE with and without 
dropout 

The detection accuracy of the system proposed is 
assessed using the following equations: 

Accuracy :  𝐴𝑐𝑐 =  
𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
 (13) 

 

Detection rate (DR): 𝐷𝑅 =  
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠  + 𝐹𝑛𝑒𝑔
 (14) 

Precision (PR):   𝑃𝑅 =  
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠  + 𝐹𝑝𝑜𝑠
 (15) 

 

Specificity (SP) : 𝑆𝑃 =  
𝑇𝑛𝑒𝑔

𝑇𝑛𝑒𝑔  + 𝐹𝑝𝑜𝑠
 (16) 
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The following parameters are used to test such 
equations: 

 True positive (Tpos) = Number of samples 
correctly predicted as a class of attack. 

 False positive (Fpos) = Number of wrongly 
predicted samples as the class of attack. 

 True negative (Tneg) = Number of samples 
as a normal class correctly predicted. 

 False negative (Fneg) = Number of wrongly 
predicted samples as a normal class 

 

   The experimental analysis of proposed EDSA was 
compared with a benchmark of 3 network models as 
presented in Table 3.  

It was shown after studies that the accuracy of 
detection for the CICDDoS2019 dataset is 90 percent 
with 7.2 percent false positives for DNN, 92.9 
percent with 5 percent false positives for DNN based 
on autoencoder with one hidden layer, 96.3 percent 
with 3.26 percent false positives for DNN based on 
autoencoder with one hidden layer and fine tuning 
and finally 98 percent with 1.4 percent false positives 
for the proposed EDSA with two-hidden layer SAE, 
fine tuning and cost minimization. 

Table 3 Results for classification using DNN 
algorithm and DNN based on SAE 

Algorithm Acc 

(%) 

DR 

(%) 

PR 

(%) 

SP 

(%) 
False 

positive 

(%) 
DNN 90 79.1 79.5 89 7.2 

DNN based 

on 

autoencoder 

with one 

hidden layer 

92.9 82.9 82.8 92 5 

DNN based 

on 

autoencoder 

with one 

hidden layer 

and fine 

tuning 

96.3 96.35 88.3 96.3 3.26 

Proposed 

EDSA with 

two hidden 

layers and 

fine tuning 

98 98.1 91 98 1.4 

      Fig. 4 demonstrates the normalized mean square 
error (NMSE) variation of the proposed EDSA 
method with the number of training epochs. The 
NMSE over time of the EDSA method is smaller than 
that of the DNN method. It converges after 
approximately 100 epochs to a value of 0.05, while 

the DNN approach converges to 0. In addition, the 
mean square error after 300 epochs is less than 0.01, 
which is a very satisfactory outcome. After the 350 
epochs, the model converges to its steady-state 
location. 

 

Fig. 4 NMSE of EDSA compared to DNN 

6 Conclusion 

For the detection of DDoS attacks, an Enhanced 
Deep Sparse Autoencoder-based Approach with two 
hidden layers is proposed in this paper. The main 
objective of this paper is to extract the representative 
features from CICDDoS2019 dataset using the 
autoencoder, minimize the classification error and 
correctly detect the DDoS attack. 

The experimental analysis of proposed EDSA 
showed its high detection accuracy. A high 
percentage of enhancement is obtained in comparison 
with other network models for many performance 
indicators (accuracy, detection rate, precision, 
specificity) of the proposed technique. Whereas, the 
false positive percentage is much smaller.  For the 
CICDDoS2019 dataset, the proposed technique 
obtained 98 percent of detection accuracy and 1.4 
percent of false positive. In the future, it is possible 
to perform recent computer algorithms such as K-
means clustering and introduce more layers on the 
level of the SAE in order to reduce more the features 
dimensions and apply classification algorithms other 
than the softmax function. 
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