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Abstract: - The identification of a permanent magnet DC motor model including non-linearities dead zone, 
Coulomb friction, and viscous friction, is presented. The dead zone considered here is the so call "hard" dead 
zone, whereas the friction force is modeled in two different ways: first, considering the value of viscous 
coefficient  friction as a constant and second, approximating viscous coefficient by a polynomial depending on 
motors rotor velocity. The polynomial representation of the viscous friction value allows it to be adjusted 
automatically as a function of the speed of the system, as occurs in real systems. Therefore, a model capable of 
better representing the real motor behavior along a wide range of operation is obtained. The non-linear model is 
validated and compared using real-time data obtained from Quanser's direct current motor control trainer 
system, using the numerical tool Matlab®/Simulink™. 
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1 Introduction 

 
The most common type of actuator in 

electromechanical systems is the direct current (DC) 
motor. The permanent magnet DC motor is the 
simplest type of these devices. They have been 
extensively used due to their small physical size, 
relatively low cost, and high efficiency in a wide 
variety of applications such as: windshield wipers, 
personal computer fans or as electromagnetic 
actuators in biomedical equipment, robotic 
manipulators and many other industrial applications, 
[1]–[3]. 

The simplicity of its construction makes the 
permanent magnet DC (PMDC) motor relatively 
easy to understand and control. These motors do not 
have field winding; therefore, the control is through 
the armature winding. The general control methods 
for these devices are based on the classic PID 
controllers, modern and intelligent controllers. [4], 
[5]. 

Usually, this type of motors is modeled as 
second order linear system neglecting or 
disregarding the non-linearities present in the 
system like the dead zone and Coulomb friction, [6], 
[7]. Neglecting or ignoring these non-linearities can 
affect the performance of control systems, 

especially in those cases where the control system is 
designed to operate at low speeds or for position 
control objectives. That is, in the case of speed 
control systems this simplification does not affects 
its performance as these non-linearities acts at very 
low or zero speed. However, for position control 
purposes, where the motor operates around zero 
speed, these nonlinearities induce oscillations in the 
motor response, avoiding the possibility of 
achieving zero steady state error. Moreover, 
including these non-linearities becomes a must 
when high precision is required specially under 
variable loads, [8]– [10]. Obtaining good models for 
electromechanical systems, including DC motors, 
involves modeling non-linearities such as dead zone 
and friction. Also, not only the modeling but the 
identification of these non-linearities is not trivial, 
so building an accurate model is a difficult task, 
[11], [12]. Different strategies had been applied to 
estimate motors parameters based on transient 
responses analysis as those reported in [13,14]. 
Nonetheless, in this paper the Strejc method is 
adopted because its simplicity for the identification 
of first order systems and, also because the model is 
subdivided into two first order systems. 

 However, in the case of speed control, where 
viscous friction coefficient is assumed constant, it is 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2020.15.51

C.A Pérez-Gómez, 
J.U. Liceaga-Castro, I.I. Siller-Alcalá

E-ISSN: 2224-2856 527 Volume 15, 2020



well known that it depends on the velocity affecting 
the constant time and steady state gain of linear 
motor models. Therefore, modeling viscous friction 
for a long range of speeds is also required for speed 
control purposes. 

 In recent years, new approaches have been 
developed to obtain more precise models better 
representing the behavior of systems such as electric 
motors. Also, by having better and more accurate 
models, the validation and testing of different 
control approaches through digital simulations 
allows reducing real time implementation problems 
in the actual process, [15]. In this paper a validate 
PMDC motor non-linear model is obtained. The 
model includes dead zone and friction, whose 
parameters are identified by experimental tests. The 
selected PMDC motor is the Maxon motor of the 
Quanser DC Motor Control Trainer (DCMCT) 
system. The dead zone is modeled by the “hard dead 
zone” model and the friction model used is the 
Coulomb plus viscous friction model. Likewise, a 
new approach to the viscous friction model is 
obtained through a polynomial fit, to get a model of 
the PMDC motor capable of representing the real 
system in a wider range of speeds. 

The main objective of this paper is to provide a 
validated nonlinear model for a PMDC motor which 
includes the most important nonlinearities for 
position and speed control purposes with a 
methodology for its identification. 

The paper is structure as follows. Section 2 
presents the model for the PMDC motor and the 
non-linearities. Section 3 explains the system’s 
parameters estimation. Section 4 describes the 
design model in Matlab®/Simulink™ including the 
dead zone and Coulomb plus viscous friction. The 
model is validated in Section 5, the polynomial 
approximation of friction is obtained in Section 6 
and, finally in Section 7 conclusions are presented. 
 

2 Mathematical Modeling 
 
2.1 PMDC Motor Model 

The PMDC motor can be modeled using two 
linear equations for the electrical and mechanical 
subsystems. 
 

𝑣(𝑡) = 𝑅𝑖(𝑡) + 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝐸𝑎 (1) 

 
 
 

𝑇𝑚(𝑡) = 𝑘𝑚𝑖(𝑡) = 𝐽
𝑑2𝜃(𝑡)

𝑑𝑡2
+ 𝑏

𝑑𝜃

𝑑𝑡
 (2) 

 
Equation (1) represents the electrical subsystem 

where 𝑣(𝑡) is the applied armature voltage, 𝑖(𝑡) is 

the armature current, 𝐸𝑎 = 𝑘𝑚
𝑑

𝑑𝑡
𝜃(𝑡) counter 

electromotive force and, 𝐿 and 𝑅 represent the 
inductance and resistance of armature winding, 
respectively. In this model the counter electromotive 
force present in the motor is assumed negligible 
because the motor is operating at very low speed, 
that is,  𝑑

𝑑𝑡
𝜃(𝑡) ≈ 0. 

 
Expression (2) represents the mechanical 

subsystem where 𝑇𝑚(𝑡) is the magnetic torque, 𝑘𝑚  

is the motor constant, 𝐽 is the motors rotor 
equivalent moment of inertia, 𝑏 is the friction 
coefficient and 𝜃 is the angular position of the rotor.  
 

Transfer function 𝐺𝑒(𝑠) of the electrical 
subsystem results in: 
 
 

𝐺𝑒(𝑠) =
𝐼(𝑠)

𝑉(𝑠)
=

1

𝑅

(
𝐿

𝑅
𝑠 + 1)

=
𝐾𝑒

(𝜏𝑒𝑠 + 1)
 (3) 

 
Where the steady state gain 𝐾𝑒  of the electrical 

subsystem is given by 1/𝑅 and the time constant 
𝜏𝑒 = 𝐿/𝑅. 

Expression (4) shows the transfer function for 
the mechanical subsystem with 𝜔(𝑡) = �̇� as the 
rotor velocity. 
 
 

𝐺𝑚(𝑠) =
𝜔(𝑠)

𝑇𝑚(𝑠)
=

1

𝑏

(
𝐽

𝑏
𝑠 + 1)

 ; 

 𝑇𝑚(𝑠) = 𝑘𝑚𝐼(𝑠) 

(4) 

 
Therefore, the transfer function relating rotors 

velocity 𝜔(𝑡) to input voltaje 𝑣(𝑡) is given by: 
 
 𝜔(𝑠)

𝑉(𝑠)
=

𝑘𝑚

𝑅𝑏

(
𝐽

𝑏
𝑠 + 1) (

𝐿

𝑅
𝑠 + 1)

 (5) 

 
Transfer function (5) can be simplified by pole 

dominance because the electrical mode is faster than 
the mechanical mode, [7], [16]; thus, the PMDC 
motor transfer function reduces to: 
 
 𝜔(𝑠)

𝑉(𝑠)
=

𝑘𝑚

𝑅𝑏

(
𝐽

𝑏
𝑠 + 1)

=
𝐾𝑚𝑜𝑡

𝜏𝑚𝑜𝑡𝑠 + 1
 (6) 

 
where the steady state gain of the PMDC motor 
𝐾𝑚𝑜𝑡  is 𝑘𝑚/𝑅𝑏 and the time constant is 𝜏𝑚𝑜𝑡 = 𝐽/
𝑏. 
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From (3) and (4) is clear that is possible to 
identify mechanical and electrical subsystems 
transfer functions by the analysis of their step 
responses. 
 
2.2 Dead Zone Model 

Commonly, the non-linear dead zone is 
represented by the “smooth” dead zone shown in the 
figure 1, 
 

 
Fig. 1. “Smooth” dead zone. 

where 𝑢(𝑡) is the input, 𝑣(𝑡) is the output, 𝑏𝑙  and 𝑏𝑟  

are the left and right break points while 𝑚𝑙  and 𝑚𝑟  

are the slopes of the dead zone, respectively. When 
the dead zone is symmetric 𝑏𝑙 = 𝑏𝑟  and 𝑚𝑙 = 𝑚𝑟, 
[15], [16]. Nevertheless, this approximation does 
not necessarily accurately represent the real physical 
phenomenon in the case of electric motors. That is, 
even with a small input voltage the electrical 
subsystem can be active but inducing a magnetic 
torque no capable of breaking inertia and friction in 
the mechanical subsystem. Therefore, in the case of 
electric motors dead zone is located between 
electrical and mechanical subsystems. 

For this reason, the dead zone is modeled as 
shown in figure 2, [19] this representation is called 
the “hard dead zone” which is considered a better 
approximation of the non-linear phenomenon that 
occurred in the PMDC motor. 
 

 
Fig. 2. “Hard dead zone” 

The symmetric “hard dead zone” is represented 
as shown in (7) 
 
 

𝑣(𝑡) = {
𝑠𝑖𝑔𝑛(𝑢(𝑡))[�̅�|𝑢(𝑡)| + �̂�] ; |𝑢(𝑡)| ≥ 𝛿𝑟

0                                             ; |𝑢(𝑡)| < 𝛿𝑟

 (7) 

 
where 𝑢(𝑡) is the input of the system, 𝑣(𝑡) is the 
output, 𝛿𝑟  represents the break point of the dead 
zone, �̂� represents the sudden offset of the system by 
breaking inertias and �̅� is the slope of the dead zone. 
The dead zone is normally assumed to be a 
phenomenon at the process input signal. However, 
this is not true in the case of electric motors. In fact, 
the electrical subsystem can be active even with a 
minimal input voltage signal that unfortunately 
generates a magnetic torque that is not capable of 
inducing movement to the rotor. Therefore, the dead 
zone is a phenomenon occurring between the 
electrical subsystem and the mechanical subsystem 
 
2.2 Friction Model 

 
The friction can be defined as the tangential 

reaction force between two surfaces in contact. 
There are several models that represent the 
phenomenon, the most used is the Coulomb plus 
viscous friction model as shown in figure 3. [20, 
22]. 
 

 
Fig. 3. Coulomb plus viscous friction model. 

 
This model is described by expression (8) 

 
 

𝐹𝑏 = {
𝑏𝑐 ∙ 𝑠𝑖𝑔𝑛(𝜔) + 𝑏𝑣𝜔 ;  𝜔 ≠ 0
𝐹𝑎𝑝      ;  𝜔 = 0 𝑎𝑛𝑑 𝐹𝑎𝑝 < 𝑏𝑐

 (8) 

 
where 𝐹𝑏  is the friction force, 𝑏𝑐 is the Coulomb 
friction force, 𝜔 is the speed, 𝑏𝑣  is the viscous 
coefficient and 𝐹𝑎𝑝  is the applied force. [21]. 
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3 Parameter Estimation 

 
To estimate or identify the parameters of the 

Maxon PMDC motor the Strejc method was applied, 
[24]. That is, by analyzing the step responses, for 
various input voltages 𝑣(𝑡), of the mechanical and 
electrical subsystems (3) and (6), at rotors speeds 
𝜔(𝑡) ≠ 0. This allows to avoid the effects of the 
dead zone and Coulomb friction. Although, 
manufacturer´s parameters data is available, table I, 
only constant motor 𝑘𝑚  was used as there is not 
information on the physical characteristics of the 
rotor. It should be noted that using manufacturer 
data render a model whose responses do not match 
actual motor responses. Therefore, it can be 
concluded that motors conditions of operations 
affect parameters estimation. That is, manufacture 
procedure for parameters measurement not 
necessarily are those required for control purposes. 
 
 Table 1.  Maxon Motor Data  

 Parameter Value 

𝑅 10.6 Ω 
𝐿 0.825 ×  10−3 H 

𝑘𝑚 50.2 × 10−3 Nm/A 
𝐽 12.1 × 10−7 kg m2 

 

 

 
3.1 Blocked Rotor Test 

 
Although the counter electromotive force was 

neglected the electrical subsystem was estimated 
with a blocked rotor to assure 𝐸𝑎 = 0 in equation 
(1). Therefore, resistance and inductance of the 
electrical subsystem can be obtained based on the 
principle that the PMDC motor behaves as a RL 

circuit as shown in figure 4. 
 

 
Fig. 4. RL Circuit 

Current 𝑖(𝑡) is obtained from the current sensor 
of the DCMCT system. The gain of the transfer 
function (3) can be determined by transient and 
steady state responses of the PMDC motor current 

𝑖(𝑡) when the rotor is blocked. The responses, for 
five different input voltages, are shown in figure 5. 
 

 
Fig. 5. Current response in the blocked rotor test. 

The steady state gain obtained for these 
responses is 𝐾𝑒 = 0.421762 with a steady state 
time 𝑡𝑠 = 0.03s. Thus, the time constant is 𝜏𝑒 =
0.0075. The resulting transfer function for the 
electrical subsystem is shown in (9). 
 
 

𝐺𝑒(𝑠) =
𝐾𝑒

𝜏𝑒𝑠 + 1
=

0.421762

0.0075𝑠 + 1
 (9) 

 
Therefore, by equation (3) resistance 𝑅 and 

inductance 𝐿 result in: 
 
 

𝑅 =
1

𝐾𝑒
= 2.3724 Ω (10) 

 
 

𝐿 = 𝜏𝑒𝑅 = 17.7933 × 10−3 Η (11) 

 

3.2 Speed measurement at a step input 

 
The mechanical parameters are estimated 

following the same procedure as that applied to the 
electrical subsystem. That is, is possible to identify 
equation (6) by the analysis of the transient and 
steady state responses of the rotor velocity 𝜔(𝑡) to 
different step input voltages.  

Rotor velocity 𝜔(𝑡) responses are shown in 
figure 6. 
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Fig. 6. Speed response at a step input. 

From figure 6, steady state gain and 
establishment time result in 𝐾𝑚𝑜𝑡 = 0.545287 and 
𝑡𝑠 = 0.32s, respectively. Thus, process time 
constant is 𝜏𝑚𝑜𝑡 = 0.08 and the resulting motor 
transfer function is given by equation (12). 
 
 

𝐺𝑠 =
0.545287

0.08𝑠 + 1
 (12) 

 
From equation (6) the viscous friction coefficient 

𝑏 and the inertia 𝐽 can be calculated, resulting in: 
 
 𝑏 =

𝑘𝑚

𝐾𝑚𝑜𝑡𝑅
= 0.0388 N m/rad/s (13) 

 
 

𝐽 = 𝜏𝑚𝑜𝑡𝑏 = 3.10442 × 10−3 kg m2 (14) 

 
It is well known that viscous friction coefficient 

𝑏 depends on speed, however, it will be assumed 
constant since the objective is to obtain and validate 
a motor model for a narrow speed range around zero 
speed. 
 
3.3 Nonlinear parameters 

 
Coulomb friction is estimated by experimental 

observation. That is, the Coulomb friction value is 
manually adjusted based on the model’s speed and 
position responses to a triangular input voltage 
signal and compared to actual motor responses. 
Similarly, the viscous friction value is adjusted so 
that the model responses are as similar as possible to 

the actual motor responses. The triangular input 
signal allows better observation of this non-linear 
phenomena when the system operates at different 
speeds around zero speed. 

The values for the Coulomb coefficient and the 
viscous coefficient obtained are 𝑏𝑐 = 0.005 Nm/
rad/s  and 𝑏𝑣 = 0.0314 Nm, respectively. 

The dead zone parameters are estimated by 
measuring the input voltage and the current 
generated in the armature at which the motor starts 
to move, so the magnetic torque breaking point of 
the dead zone can be estimated, equation (4). 

The motor starts to move at ±0.3V with an 
armature current 𝑖(𝑡) = 0.1265 A. Therefore, the 
torque break points are 𝑇𝑚𝛿𝑟

= ±6.35 ×  10−3 Nm. 
Finally, the estimated parameters of Maxon 

PMDC motor of the DCMCT system are shown in 
the table 2. 

 
 Table 2. Parameters Estimated by Experimental 

Tests 
 

 Parameter Value 

𝑅 2.3724 Ω 
𝐿 17.7933 ×  10−3 H 

𝑘𝑚 50.2 × 10−3 Nm/A 
𝐽 3.10442 × 10−3 kg m2 

𝑏𝑣 0.0314 N m/rad/s 
𝑏𝑐 0.005 N m 
𝛿𝑣 6.35 × 10−3 

 

 

 

4 Model in 

MATLAB®/SIMULINK™ 

 
The Matlab®/Simulink™ model of the PMDC 

motor is shown in figure 7, where the dead zone is 
located between the electrical and mechanical 
subsystems. 
 

 
Fig. 7. Matlab®/Simulink™ PMDC motor model. 

The symmetric dead zone is modeled by 
Matlab®/Simulink™ blocks as shown in figure 8. 
The 𝑘𝑚𝑖(𝑡)𝑖𝑛 represents the magnetic torque 
generated by the electric subsystem and the 
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𝑘𝑚𝑖(𝑡)𝑜𝑢𝑡  is the magnetic torque supplied to the 
mechanical subsystem. For values less than  𝑇𝑚𝛿𝑟

=

±6.35 ×  10−3 Nm no torque is induced to the 
mechanical subsystem. 
 

 
Fig. 8. Hard dead zone Matlab®/Simulink™ model. 

 
Friction force is modeled using the 

Matlab®/Simulink™ function block. The code for 
the friction function is shown in figure 9. 
 

 
Fig. 9. Matlab code for the friction force function. 

 

5 Validation 

 
The non-linear PMDC motor model and the real 

system are compared using the Matlab®/Simulink™ 
real time package. For the tests, a triangular input is 
supply for both, the model, and the real system, in 
the voltage range [−2,2]V. Through this test the 
speed and position response are observed. 

 
Fig. 10. Speed comparison. 

 

 
Fig. 11. Position comparison. 

Rotor speed values are obtained by a tachometer 
including in the DCMCT system, which provides a 
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scaled signal in a range of ±5V, where 1V≈74 rad/s. 
Speed response is shown in figure 10 where it is 
observed that the model response is very similar to 
the PMDC Maxon motor response, especially at low 
speeds. Similarly, the model can accurately 
represent the phenomenon of the dead zone with a 
very small error rate. For high speeds, the error 
tends to increase, this is because the viscous friction 
coefficient was assumed constant. Modeling and 
identifying viscous friction as a function of speed 
will render a motors model more suitable for wider 
speed ranges. 

Rotor position responses are shown in figure 11. 
These responses where obtained by integrating the 
tachometer signal output and comparing it with the 
response of the non-linear model. The dead zone 
can be clearly seen at the top and bottom of the 
curve. 

 Although error is not statistically validated by its 
absolute mean and standard deviation, is possible to 
notice that the error between both responses is small 
for the tested voltage range. 
 
6 Polynomial model of friction 

 
Observing the responses in section 5, for high 

speeds values, the error increase between the model 
and the response of the real motor, because the 
coefficient of viscous friction is considered constant 
when it is known that in reality this term varies with 
speed. For this reason, a new friction model is 
proposed and obtained by the response of the motor 
to different input voltages, using a polynomial 
approximation. 

 
Fig. 12. Input voltage for polynomial friction aproximation. 

The input voltage signal is shown in figure 12 
and the speed response to this input is observed in 
figure 13. 

 
Fig. 13. Motor speed response. 
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For each input voltage a viscous friction 
coefficient value is determined following the same 
procedure of Section 3.2, obtaining a set of data 
corresponding to viscous friction versus rotor speed 
that allows to model the phenomenon through a 
polynomial approximation as shown in figure 14. 

 
Fig. 14. Polynomial aproximation of friction. 

Each circle in Figure 14 represents the value of 
the viscous friction coefficient obtained at a certain 
input voltage, while the polynomial fit of all the 
obtained viscous friction values is represented by 
the solid line. Therefore, the friction model used in 
the nonlinear model of the PMDC motor is given 
by: 

 
𝐹𝑏 = 𝑃(𝜔)𝜔 ± 𝑏𝑐 (15) 

where 𝑃(𝜔) represents the polynomial obtained 
from the viscous friction values. For this 
representation of friction, both the polynomial 
obtained and the Coulomb coefficient, 𝑏𝑐, are 
adjusted manually to obtain a speed response like 
that of the real motor. 

 
Fig. 15. Comparison of the speed response between the real motor and 
the nonlinear model with the polynomial friction model. 

 

Comparison of the speed responses between the 
real motor and the non-linear model with the 
polynomial friction approximation is shown in 
figure 15. As can be seen in the figure, for relatively 
high speeds the response of the non-linear model is 
very similar to the response of the real system, 
however at low speeds the error between both 
responses is greater. Therefore, we can determine 
that this model is a good approximation for the 
implementation of controllers designed for speed 
control, since it automatically adjusts the friction 
values of the system. 
 
7 Conclusion 

 
In this work, a non-linear PMDC motor model is 

proposed. This model takes into account two of the 
most important nonlinear phenomena, dead zone 
and friction, that significantly affect the 
performance of designed controllers, especially in 
those systems operating at low speeds or for those in 
whose high precision position control is essential. 
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The dead zone is modeled using an approach 
called the “hard dead zone”, where the inertia 
breakdown is represented as a sudden displacement, 
better describing the phenomenon present in the real 
system. The friction phenomenon is represented 
using the Coulomb plus viscous friction model 
which better represent the friction a low and zero 
speed. 

To obtain the model, the motor parameters are 
estimated using the transfer functions corresponding 
to the electrical and mechanical subsystem by 
applying the Strecj method. 

The model was validated with the Quanser 
DCMCT system that has an integrated Maxon 
PMDC motor. The non-linear PMDC motor model 
was simulated and compared with the real system 
for a certain range of voltages where it was possible 
to clearly observe the non-linear phenomena present 
in the analyzed motor, observing through the 
responses of both the linear model and the motor 
Maxon DC permanent magnet, that the model 
obtained is a very good approximation of the real 
system at low speeds. Finally, to obtain a PMDC 
motor model that represents the system in a wider 
range of speeds, a new friction model was proposed, 
modeling viscous friction, which is the value of 
friction that varies with the speed of the system; 
using a polynomial approximation. The non-linear 
model using this friction model provides good 
results at relatively high speeds, contrary to what is 
obtained by considering viscous friction as a 
constant. Therefore, it is possible to conclude that 
for the development and implementation of position 
controllers, using the non-linear model that 
considers the viscous friction value as a constant is 
an excellent option; however for controllers 
designed for PMDC motor speed control, using the 
model that automatically adjusts the viscous friction 
value may provide better results. 
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