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Abstract: We consider applications of the best L1 piecewise monotonic approximation method for the peak es-

timation of three sets of up to 2500 measurements of Raman, Infrared and Nuclear Magnetic Resonance (NMR)
spectra. Peak estimation is an inherent problem of spectroscopy. The location of peaks and their intensities are the
signature of a sample of an organic or an inorganic compound. The diversity and the complexity of our mea-
surements makes it a difficult test of the effectiveness of the method. We find that the method identifies efficiently
peaks and we compare to the results obtained by the analogous least squares calculations. These results have many
similarities and occasionally considerable differences due to both properties of the norms employed in the
optimization calculations and nature of the spectra. Our results may be helpful to subject analysts as part of the
information on which decisions will be made for estimating peaks in sequences of spectra and to the development
ofnewalgorithmsthatareparticularlysuitableforpeakestimationcalculations.
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1 Introduction
Recently, Demetriou and Perdikas [11] have pre-
sented examples of peak estimation to measurements
of Raman, Infrared and NMR spectra by the piece-
wise monotonic data approximation method where the
smoothing criterion is the L2 norm (least squares). In
this work we investigate the performance of the piece-
wise monotonic approximation method with respect
to the L1 norm on the same data sets and we demon-
strate that these norms lead occasionally to different
results in peak estimation. The given calculations may
help the analyst to comprehend strengths and differ-
ences of both these methods in their spectral analyses.

Peak estimation is a problem of continuous in-
terest in spectroscopy and chromatography and many
similar problems appear, for instance in biology,
analytical chemistry, data science, energy, finance,
physics and time series calculations. Peak estimation
problems appear inherently in spectroscopy. In gen-
eral, each peak in a spectrum corresponds to an ele-
ment which is unique in terms of strength and loca-
tion for the sample type (see, for example, [17], [20]
and [26]).

The problem of the piecewise monotonic data ap-
proximation method with respect to the least squares
norm was studied in depth by Demetriou and Pow-
ell [12] and is defined as follows. Let {φi : i =
1, 2, . . . , n} be a sequence of values of a function f(x)
measured at the abscissae {xi : i = 1, 2, . . . , n},
where the abscissae increase strictly monotonically,
but the measurements include errors, and the data
are to be used to estimate the turning points of the
function. We assume that if the function has turn-
ing points, then the number of measurements is sub-
stantially greater than the number of turning points.
Therefore we modify the measurements if their first
differences {φi+1 − φi : i = 1, . . . , n − 1} include
more than k− 1 sign changes, where k is a prescribed
integer. This condition allows k monotonic sections
to the smoothed values {yi : i = 1, 2, . . . , n}. We
regard the original data and the smoothed values as
n-vectors, φφφ and yyy say.

In this paper, we give particular attention to the
use of the L1 norm. Specifically, the numbers {yi :
i = 1, 2, . . . , n} are calculated by minimizing the sum
of the moduli of residuals
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Φ(yyy) =

n∑
i=1

|yi − φi| (1)

subject to the piecewise monotonicity constraints

ytj−1 ≤ ytj−1+1 ≤ · · · ≤ ytj , j is odd
ytj−1 ≥ ytj−1+1 ≥ · · · ≥ ytj , j is even

}
, (2)

where the integers {tj : j = 1, 2, . . . , k − 1} satisfy
the conditions

1 = t0 ≤ t1 ≤ · · · ≤ tk = n. (3)

We call yyy a best L1 piecewise monotonic approxima-
tion to φφφ, and we call peak the value ytj , for even j in
[1, k − 1].

It is important to note that the integers {tj : j =
1, 2, . . . , k − 1} are not known in advance, but their
values are to be found automatically by the optimiza-
tion calculation, which is a combinatorial problem.

An efficient method for this calculation and a For-
tran software package that implements the method
have been developed by Demetriou [6], [7] respec-
tively. The software is named L1PMA. In general,
a best approximation in the sense of the L1 norm has
the remarkable property, which makes it particularly
suitable to data smoothing when there are few gross
errors in the data, that the magnitudes of the errors
make no difference to the best fit (see, for example,
Powell [24]).

Two advantages of the piecewise monotonicity
approximation technique over other smoothing tech-
niques problem are as follows. First, there is no
need to choose a set of approximating functions as
for example in splines or wavelets (see, for exam-
ple, de Boor [3], and Holschneider [18]). Second,
the smoothing process is a projection because, if it is
applied to the smoothed values, then no changes are
made to.

This paper is concerned with applications of
the best L1 piecewise monotonic data approxima-
tion method to peak estimation of univariate spec-
tra. Specifically, it extends the numerical examples
of Demetriou and Perdikas [11] that minimize the ob-
jective function

∑n
i=1(yi − φi)2 subject to the same

constraints to the L1 case.
The paper is organized as follows. A brief de-

scription of the best L1 piecewise monotonic data ap-
proximation is given in Section 2. Then three exam-
ples that illustrate the estimations of peaks in Raman,
Infrared and NMR samples are presented in Section 3.
The numerical results are analyzed, the effectiveness

of the method for peak estimation is demonstrated
and, a direct comparison is made between these results
and those obtained by the analogous least squares
method. Some concluding remarks and discussion on
the possibility of future directions of this research are
presented in Section 4.

The calculations were performed on a HP 8770w
portable workstation with an Intel Core i7-3610QM,
2.3 GHz processor, which was used with the standard
Fortran compiler of the Intel Visual Fortran Composer
XE2013 in single precision arithmetic operating on
Windows 7 with 64 bits word length.

2 Best L1 Piecewise Monotonic Data
Approximation

This section describes briefly the best L1 piecewise
monotonic approximation problem. As was already
noted, the main difficulty in a piecewise monotonic
calculation is that the integers {tj : j = 1, 2, . . . , k−
1} are also variables of the optimization problem.
There are O(nk−1) combinations of these integers
in order to find a combination that gives an optimal
approximation. Therefore, it would not be practica-
ble to test each combination separately. In addition,
any general optimization algorithm will stop at a local
minimum that need not be a global one.

However, much less work is needed, because of
a decomposition property of the L1 optimal solution
(see, Demetriou [10]), which depends on the follow-
ing two properties of the solution. If yyy is optimal, then
optimality admits the interpolation conditions

ytj = φtj , j = 1, 2, . . . , k − 1, (4)

and the optimal components {yi : i = tj−1, tj−1 +
1, . . . , tj}, 1 ≤ j ≤ k of the jth monotonic section of
yyy have the values that minimize the sum of moduli

tj∑
i=tj−1

|yi − φi| (5)

subject only to the constraints

yi ≤ yi+1, i = tj−1, . . . , tj − 1, if j is odd (6)

or subject to the constraints

yi ≥ yi+1, i = tj−1, . . . , tj − 1, if j is even. (7)

Therefore, provided that {ti : i = 1, 2, . . . , k − 1}
are known, the components of yyy can be generated by
solving a separate monotonic problem on each section
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[tj−1, tj ]. Further, we let α(tj−1, tj) be the least value
of (5) subject to the constraints (6), β(tj−1, tj) be the
least value of (5) subject to the constraints (7), and
γ(k, n) be the value of the objective function Φ(yyy) at
an optimal vector. Hence, in view of these properties,
we express γ(k, n) in the form

γ(k, n) =
α(t0, t1) + β(t1, t2) + α(t2, t3) + · · ·+ δ(tk−1, tk),

(8)
where, δ(tj−1, tj) denotes α(tj−1, tj) if j is odd and
β(tj−1, tj) if j is even.

In order to calculate γ(k, n), which is the least
value of (1), we begin the calculation from γ(1, t) =
α(1, t), for t = 1, 2, . . . , n, and proceed by applying
the formula

γ(m, t) = min
1≤s≤t

[γ(m− 1, s) + δ(s, t)] , (9)

for t = 1, 2, . . . , n, for every value of m ∈ [2, k]. We
store also τ(m, t), namely the value of s that mini-
mizes expression (9), for each value of m and t, and
we always choose the smallest value of s.

At the end of the process, m = k occurs and the
sequence of optimal values {tj : j = 1, 2, . . . , k−1}
is obtained by the backward formula

tm−1 = τ(m, tm), for m = k, k − 1, . . . , 2. (10)

Accordingly, the components of an optimal fit are
monotonic increasing on [1, t1] and on [tj , tj+1] for
even j in [1, k − 1] and monotonic decreasing on
[tj , tj+1] for odd j in [1, k − 1]. This process requires
O(kn2) computer operations provided that all α(s, t)
and β(s, t) are available.

Certain extensions that improve the efficiency of
this calculation are included in the software L1PMA.
For instance, the numerical work is reduced at least by
a factor of 4 if variable s in formula (9) is restricted at
the indices of the local extrema of the data. Also, the
software takes advantage of the fact that α(s, t) and
β(s, t) are independent of m, and makes full use of
these numbers for all values of m, before increment-
ing t in (9). This is a major advancement of the calcu-
lation because we need not keep any extra storage and
because α(s, t) and β(s, t) are calculated only once
on process.

The piecewise monotonic calculation depends on
the efficiency of the algorithm that minimizes the
objective function (5) subject to the constraints (6),
which is a linear programming problem (see, Barro-
dale and Roberts [2]) that need not have a unique solu-
tion. Our method for calculating a best L1 monotonic

approximation is faster than applying general linear
programming techniques because it takes into account
the form of the constraints (6). Specifically, the calcu-
lation of a best monotonically increasing approxima-
tion to φφφ seeks intervals where its components have
different constant values. In the L1 case these val-
ues are equal to the median of the corresponding data
points, while in the L2 case they are equal to their
mean value. The intervals are formed by using the re-
markable property that any constraints which are sat-
isfied as equalities by a best L1 approximation subject
to a subset of the monotonicity constraints are also sat-
isfied as equalities by a best L1 approximation subject
to all monotonicity constraints (6), which in essence
is the method of van Eeden [15].

Further, the recommendation of Cullinan and
Powell [5] that the specific value of the median should
be chosen carefully in order that the final yyy satisfy
the constraints (6) has been taken into account in the
development of the best L1 monotonic approxima-
tion algorithm that is included in [7]. This algorithm
performs the calculation of a best L1 monotonic in-
creasing fit on [tj−1, tj ] together with all the numbers
α(tj−1, s) =

∑s
i=tj−1

|yi − φi|, s = tj−1, . . . , tj in
O((tj − tj−1)

2) computer operations.
By taking account of these considerations, it is

proved in [6] that a best L1 approximation with at
most k monotonic sections to the data is calculated
in O(n3 + kn2) computer operations. This complex-
ity reduces to O(n2) when k = 1 or k = 2. The
software package has been tested on a variety of data
sets showing in practice quadratic performance with
respect to n.

The method that gives a piecewise monotonic ap-
proximation may also be applied to the problem where
inequalities (2) are replaced by the reversed ones, in
which case the first section of the fit is decreasing. The
latter problem may be treated computationally as the
former one after an overall change of sign of yyy. This
is the case of the approximations that are presented in
Section 3.2.

3 Peak Estimation of Some Spectra

In this section some examples demonstrate the per-
formance of the L1 method of Section 2 for peak es-
timation to real physical data. The data are the Ra-
man, Infrared and NMR spectra of a mineral, an or-
ganic compound and, a human biological sample re-
spectively, over a wide energy range, that were used
by Demetriou and Perdikas [11] in their least squares
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calculation. Our results are given in a way that the
reader is instructively directed to distinguish the dif-
ferences between these two calculations.

The results are presented in three subsections, one
for each data set. The first and the third example
are studied in the thesis of Perdikas [23] for the least
squares case. The complexity of the underlying phys-
ical laws and the structural differences of the spec-
tra make this a good test of the effectiveness of the
best L1 piecewise monotonic approximation method
in peak estimation.

The data are far too many to be presented as raw
numbers in these pages. However, one may easily
capture the main features of each data set by looking
at the corresponding figures. All the spectra contain
important information contaminated with noise. Our
choice of the data sets is due to the different levels of
noise they present and the many isolated peaks that
contain, which increase tremendously the number of
all possible combinations of α’s and β’s in expression
(8) if n and k are large. Indeed, as it is stated in the
beginning of Section 2, if one tried to find the optimal
integers {tj : j = 1, 2, . . . , k − 1}, then the number
of trials would be of magnitude nk−1.

For every example, the software L1PMA is used
to calculate the best L1 piecewise monotonic approx-
imation to the data sets and, the turning points of the
best approximation. The data were fed to L1PMA
without any preprocessing. To help readability, all the
examples of this section are presented in the same for-
mat.

3.1 Raman Spectrum of Zircon
This subsection illustrates some features of the
method of Section 2 by presenting an application to
data from a Raman spectrum (for Raman spectroscopy
see, for example, [22]). We downloaded the datafile
named “zircon.txt”, from the Raman spectra of min-
erals database, which is freely available on the web-
site [14] of the University of Parma. The datafile con-
tains n = 1024 pairs of data in a two-column for-
mat: The first column keeps the Raman shift (cm−1)
and the second column keeps the intensity (arbitrary
units), providing the values {xi : i = 1, 2, . . . , n}
and {φi : i = 1, 2, . . . , n}, respectively for our cal-
culations. The abscissae {xi : i = 1, 2, . . . , n} are
not needed to the recursive formula (9), but, of course,
they are employed to show the positions of the peaks.
We see in Fig. 1 that the data exhibit some distinct
peaks, some peaks of lower intensity and small fluc-
tuations.

We fed the data to L1PMA and the turning point
positions obtained by the piecewise monotonic fits to
the data for various values of k are given in Table 1.
In the right hand side part of this table we give the
positions of the turning points of each optimal fit for
k ∈ {2, 4, 6, 8, 10, 12, 14, 16} in correspondence with
the column labeled “tj” that is derived when k = 16.
Thus, the times symbol in the cells of column “16” in-
dicate the positions of the turning points when k = 16.
Analogously, when k = 6 the turning points of the fit
occur at the positions 188 (peak), 232 (trough), 265
(peak), 707 (trough) and 795 (peak) as indicated by
the times signs in the column labeled “6”. The sum of
moduli of residuals and the maximum absolute resid-
ual of the fits associated with these columns is added
to be able to evaluate the peaks of the resultant fit
at a glance. For example, when k = 6 these quan-
tities are equal to γ(k = 6, n) = 1.19 × 105 and
D = 4.01× 103.

We see in Table 1 that the sum of moduli of resid-
uals decreased from 2.60×105 down to 1.69×104 as
k increased from k = 2 to k = 16. Analogously, we
see a gradual reduction in the values of the maximum
absolute residual as k increased, which indicates that
the best fit comes closer to the data.

As we also noted in [11], this is an important fea-
ture of the method that is not shared with smooth-
ing techniques that involve splines or wavelets, for
instance. Indeed, the latter methods suffer from the
propagation effect when modeling a peak. In piece-
wise monotonic approximation, the presence of a peak
does not cause at all any propagation effect. There-
fore, there is no introduction of perturbations away
from the peak. In other words, the piecewise mono-
tonic approximation method avoids Gibb’s ringing
and is able to represent the data at a peak without be-
coming less accurate away from the peak. In this way,
the piecewise monotonicity criterion not only is dif-
ferent from a low-pass filter, which is subject to the
Gibbs effect (see, for example, Lanczos [19], Gasquet
and Witomski [16]), but also very efficient in denois-
ing signals and images (see, Lu [21] and Weaver [27]).

By comparing the columns of Table 1 with respect
to the values of k, we notice that the extra turning
points of the optimal approximation with k+2 mono-
tonic sections occur between adjacent turning points
of the optimal L1 approximation with k monotonic
sections. Although it is usual in practice that the turn-
ing points of an optimal fit with k monotonic sections
are preserved by the optimal fit with k + 2 monotonic
sections, one should be aware that this depends on the
specific calculation and need not happen generally.
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Piecewise Monotonic L1 Fit (k = 12) to Zircon Raman Spectrum 

Figure 1: Detected peaks (circles) by a best L1 fit with k = 12 monotonic sections to 1024 data points (plus signs)
of the Zircon Raman spectrum. The solid line illustrates the best fit. The Raman shifts and the intensities are given
in the x-axis and the y-axis, respectively.

Table 1: Left four columns: Turning points in the Zircon spectrum by a best L1 fit with k = 16 monotonic sections.
Right eight columns: The turning point positions of the optimal fit for k ∈ {2, 4, . . . , 16} are indicated by the times
sign

j tj xtj φtj k = 2 4 6 8 10 12 14 16

0 1 153 2980 × × × × × × × ×
1 46 202 5110 × ×
2 51 208 3610 × ×
3 66 224 5950 × × × × ×
4 144 309 2640 × × × × ×
5 188 356 11200 × × × × × × ×
6 232 403 2860 × × × × × × ×
7 265 438 13600 × × × × × × × ×
8 402 580 2400 × × ×
9 459 639 2740 × × ×

10 582 763 2260 ×
11 640 821 2620 ×
12 707 887 2260 × × × × × ×
13 795 973 7140 × × × × × ×
14 814 991 2610 × × × ×
15 829 1010 6990 × × × ×
16 1024 1190 2210 × × × × × × × ×

γ(k, n) = 2.605 1.825 1.195 5.974 3.184 2.564 2.094 1.694
D = 8.073 4.773 4.013 4.013 1.303 1.303 2.472 2.272

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2020.15.48 Ioannis C. Demetriou, Ioannis N. Perdikas

E-ISSN: 2224-2856 481 Volume 15, 2020



 

1000 

3000 

5000 

7000 

9000 

11000 

13000 

15000 

100 200 300 400 500 600 700 800 900 1000 1100 1200 

Piecewise Monotonic Fit (k = 12) to Zircon Raman Spectrum 

Figure 2: As in Fig. 1, but the detected peaks are found by the least squares fit with k = 12 of [11].

Table 2: As in Table 1, but by the least squares approximations of [11]
j tj xtj φtj k = 2 4 6 8 10 12 14 16

0 1 153 2980 × × × × × × × ×
1 46 202 5110 × × ×
2 51 208 3610 × × ×
3 66 224 5950 × × × × ×
4 144 309 2640 × × × × ×
5 188 356 11200 × × × × × × ×
6 232 403 2860 × × × × × × ×
7 265 438 13600 × × × × × × × ×
8 402 580 2400 × ×
9 459 639 2740 × ×
10 582 763 2260 ×
11 643 824 2620 ×
12 716 896 2250 × × × × × ×
13 795 973 7140 × × × × × ×
14 814 991 2610 × × × ×
15 829 1010 6990 × × × ×
16 1024 1190 2210 × × × × × × × ×

Demetriou and Perdikas [11] considered least
squares piecewise monotonic approximations to these
Raman data (see Demetriou and Powell [12], and
Demetriou [8] for methods and software). For con-
venience we present in Table 2 results analogous to
Table 1. A comparison of these tables shows that there
are some differences between the turning point posi-
tions for certain values of k. The differences occur at
the rows labeled j = 1, 2, 8, 9 when k = 12; j = 11
when k = 16; and, j = 12 when k = 6, . . . , 16.

In particular, the graphs of Figs. 1 and 2 illustrate the
case when k = 12. Here, we see that the leftist two
turning points of Fig. 2 do not appear in Fig. 1, and
the eighth and ninth turning point of Fig. 1 do not ap-
pear in Fig. 2. However, the leftist two turning points
of Fig. 2 enter the best L1 fit when k = 14, as we
see in Table 1. Further, the entries in the j = 11, 12
rows of Table 1 show a slight position shift of the cor-
responding turning points for each k ∈ {6, 8, . . . , 16}
of Table 2.
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3.2 Infrared Spectrum of Sulfonium Deuter-
ated

In this subsection, we estimate peaks of the infrared
spectrum of Sulfonium Deuterated (for Infrared spec-
troscopy see, for example, Larkin [20]). We down-
loaded the datafile named “SulfoniumDeuterated.jdx”
from the PSLC Spectral Database of the website
[13] of the Department of Chemistry, University of
Wisconsin-Stevens Point. The datafile contains 2490
pairs of data in a two-column format, as described in
Subsection 3.1. We capture the main features of these
data by looking at Fig. 3. Indeed, we can see, for in-
stance, very small deviations and some very distin-
guishable minima with sharp decreases.

We fed the data to L1PMA for k = 2, 4, . . . , 20,
while we required that the first monotonic section be
decreasing. Table 3 presents results by analogy to Ta-
ble 1, except that the tj’s, for even j, indicate lower
turning points. We see in Table 3 that the sum of mod-
uli of residuals decreased from 3.54 × 1010 down to
2.52 × 109 as k increased from k = 2 to k = 20,
while the maximum absolute residual reduced from
3.80 × 108 down to 8.88 × 107. The results of the
method for the infrared data are quite similar to those
for the Raman data of Subsection 3.1. Hence, all
the conclusions of Subsection 3.1 are valid for the in-
frared spectrum that we examine in this subsection.

In short, best L1 piecewise monotonic approxi-
mation has revealed the most important turning points
(minima and maxima), while it interpolated the data at
these points. By increasing k, this approximation had
the freedom to make the sum of the moduli of resid-
uals smaller, while it maintained the most important
turning points. It is remarkable that the method iden-
tified the sharp minima of the infrared spectrum, with
no propagation effect when modelling them.

We consider the least squares piecewise mono-
tonic approximation problem of [11] and for conve-
nience we present in Table 4 results analogous to Ta-
ble 3. A comparison of these tables shows that there
are some differences between the turning point posi-
tions for certain values of k. Specifically, in Table 4
we see differences at the rows labeled j = 8, 9, 18, 19
when k = 8; j = 6, 7, 15, 16 when k = 14; and,
j = 1, 2, 3 when k = 20. In particular, the graphs of
Figs. 3 and 4 illustrate the case when k = 14. Fur-
ther, the entries in the j = 1, 2, 3 rows of Table 4 for
k = 20 indicate that the least squares approximation is
rather unsatisfactory in the interval [400, 425]. Here,
two turning points, at x3 = 403 and x18 = 425, were
inserted to combat a trend due possibly to data er-

rors in the beginning of the range. As a consequence,
this approximation did not detect the turning points at
x262 = 777 and x269 = 788 of Table 3.

3.3 NMR Spectrum of Diiodothyronine
In this subsection, we estimate peaks of the hu-
man metabolome spectrum of diiodothyronine (for
NMR spectroscopy see, for example, Gunther [17]).
We downloaded the datafile named “diiodothyronine”
from the website [4] of the Canadian Institute of
Health Research. The diiodothyronine datafile con-
tains 2167 pairs of data in a two-column format, as
described in Subsection 3.1. We capture the main fea-
tures of this data set by looking at Fig. 5. Indeed, we
can see, for instance, tiny deviations and some very
distinguishable peaks with quite sharp increases.

Table 5 presents some results by analogy to Ta-
ble 1 for k = 2, 4, . . . , 16. Here the sum of mod-
uli of residuals decreased from 7.22 × 107 down to
5.95 × 106 as k increased from k = 2 to k = 16,
while the maximum absolute residual reduced from
5.72 × 106 down to 9.88 × 104. The results of the
method for the NMR data are similar to those for the
Raman data of Subsection 3.1. Hence, all the conclu-
sions of Subsection 3.1 are valid for the NMR spec-
trum that we examine in this subsection. However,
it is worth repeating that despite the sharp increases
of the peaks, the piecewise monotonic approximation
method identified the peaks without any introduction
of perturbations away from a peak.

We consider the least squares piecewise mono-
tonic approximation problem of [11] and for conve-
nience we present in Table 6 results analogous to Ta-
ble 5. A comparison of these tables shows that there
are slight differences between the turning point posi-
tions when k = 4, 6, 8, 10 at the intersection with the
rows labeled j = 10, 12, 14. Further, Fig. 5 displays
the resultant L1 fit and the peaks when k = 16, which,
in the scale of this page, is quite representative of the
least squares analogue as well.

4 Conclusions
Peak estimation is an inherent problem in spec-
troscopy. In this paper, the best L1 approximation
method was used to estimate peaks of three sets of
measurements of Raman, Infrared and NMR spectra.
These data sets were chosen because they have essen-
tial differences and because they make it a difficult test
of the effectiveness of the method.
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Figure 3: Detected minima (circles) by a best L1 fit with k = 14 monotonic sections to 2490 data points (plus
signs) of the Deuterated Sulfonium spectrum. The solid line illustrates the best fit. The intensities and positions of
the turning points are presented in Table 3.

Table 3: Left four columns: Turning points in the Deuterated Sulfonium spectrum by a best L1 fit with k = 20
monotonic sections. Right ten columns: The turning point positions of the optimal fit for k ∈ {2, 4, . . . , 20} are
indicated by the times sign
j tj xtj φtj k = 2 4 6 8 10 12 14 16 18 20

0 1 400 927948672 × × × × × × × × × ×
1 253 764 789497984 × ×
2 262 777 864535616 ×
3 269 788 797413056 ×
4 285 811 863413760 × ×
5 318 858 482926432 × × × × × × × ×
6 328 873 876924160 × × ×
7 347 900 732965248 × × ×
8 368 931 910141824 × × × × × ×
9 428 1018 720472704 × × × × × ×
10 448 1047 920228736 × × × × × × × ×
11 556 1203 590654144 × × × × × × × × × ×
12 568 1220 789375680 × × × × ×
13 579 1236 624402560 × × × × ×
14 617 1291 942418048 × × × × × × × × ×
15 1181 2107 786169536 × × × ×
16 1216 2157 891167616 × × × ×
17 1264 2227 598432640 × × × × × × × × ×
18 1290 2264 937426688 × × × × × × ×
19 1752 2932 818326272 × × × × × × ×
20 2490 3999 917815168 × × × × × × × × × ×

γ(k, n) = 3.5410 2.2110 1.3610 9.689 6.089 4.999 4.119 3.289 2.869 2.529
D = 3.808 3.808 1.548 1.548 9.857 9.377 9.377 8.887 8.887 8.887
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Figure 4: As in Fig. 3, but the detected minima are found by the least squares fit with k = 14 of [11]. The
intensities and positions of the peaks are presented in Table 4.

Table 4: As in Table 3, but by the least squares approximations of [11]
j tj xtj φtj k = 2 4 6 8 10 12 14 16 18 20

0 1 400 927948672 × × × × × × × × × ×
1 3 403 837471680 ×
2 18 425 954521536 ×
3 253 764 789497984 × ×
4 285 811 863413760 × ×
5 318 858 482926432 × × × × × × × ×
6 328 873 876924160 × × × ×
7 347 900 732965248 × × × ×
8 368 931 910141824 × × × × × × ×
9 428 1018 720472704 × × × × × × ×
10 448 1047 920228736 × × × × × × × ×
11 556 1203 590654144 × × × × × × × × × ×
12 568 1220 789375680 × × × × ×
13 579 1236 624402560 × × × × ×
14 617 1291 942418048 × × × × × × × × ×
15 1181 2107 786169536 × × ×
16 1216 2157 891167616 × × ×
17 1264 2227 598432640 × × × × × × × × ×
18 1290 2264 937426688 × × × × × ×
19 1752 2932 818326272 × × × × × ×
20 2490 3999 917815168 × × × × × × × × × ×
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We found that the best L1 approximation method
effectively captured the trends of the data and detected
appropriate peaks as required by the values of k. We
noticed that the extra turning points of the best L1 ap-
proximation with k + 2 monotonic sections occurred
between adjacent turning points of the best approxi-
mation with k monotonic sections. However, this re-
mark is of little help to the computation process, be-
cause it depends on the specific calculation and need
not happen generally. It would have been quite in-
teresting to investigate whether the separation prop-
erties for the turning points of least squares piece-
wise monotonic approximations that are presented by
Demetriou [9] hold for the L1 approximations as well.

We compared the results obtained by the best L1

calculations to the analogous from least squares cal-
culations. These results have shown many similarities
as well as certain differences due to both properties
of the used norms and nature of the spectra. Specif-
ically, on the one hand, L1PMA calculates a best L1

fit with at most k monotonic sections of the data in
O(n3 +kn2) computer operations. However, the soft-
ware package has been tested on a variety of data sets
showing in practice quadratic performance with re-
spect to n. The analogous least squares fit requires
only O(n2 + kn log n) computer operations, but in
practice the results are far superior. On the other hand,
we saw that there are some differences of the turn-
ing point positions for certain values of the number
of monotonic sections, when considering the Raman
and the Infrared spectra and, slight differences when
considering the NMR spectrum.

As the numerical work for the L1 case is about
an order of magnitude higher than the work required
by the least squares case, the effort of the L1 task for
estimating the turning points of the infrared spectrum
of Section 3.2 was rewarded by the detection of an
extra minimum when k = 20, which was not detected
by the least squares calculation.

We restricted our work to the peak estimation
problem of a spectrum and did not investigate partic-
ular fitting properties of a best approximation in the
sense of the L1 norm. We recall from Section 2 that
theL1 method employs a technique for calculating the
median of subranges of data, while the least squares
method calculates averages.

The examples of this paper have been discussed
only with reference to the performance of the best
L1 piecewise monotonic approximation method, and

not with a view to their interpretation in applications,
which depends on the particular context. As a side
note, the problem of peak location occurs in identify-
ing stem cells, chemical substances and materials, and
nebulae and galaxies from their spectra. The piece-
wise monotonic method is quite efficient for this pur-
pose. So far the performance of the best L1 piecewise
monotonic approximation method for peak estimation
of spectra was not known, while the examples were
limited to peak estimation of only three types of spec-
tra.

Our main contribution to the important problem
of peak estimation of spectra is that we have provided
a preliminary examination whose results draw atten-
tion to some interesting questions on the piecewise
monotonic approximation that deserve further study
and extensions to types of spectroscopy by applica-
tion areas. Moreover, the given calculations suggest
employing other norms as well in the piecewise mono-
tonic approximation method that, depending on the
particular spectra, will probably give appropriate peak
estimations. Indeed, the analyst would be helped by
comparing results of piecewise monotonic approxi-
mation when various norms are used.

Further, one could apply the piecewise monotonic
approximation method presented here to a variety of
situations where the analyst knows some properties of
the data being collected and studied, as for example in
the biological signals of Augustyniak [1], or the peri-
odic and quasi-periodic signals of Scholkmann, Boss
and Wolf [25].
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Figure 5: Detected peaks (circles) by a best L1 fit with k = 16 to 2167 data points (plus signs) of the Diiodothyro-
nine NMR spectrum. The solid line illustrates the best fit. The intensities and positions of the peaks are presented
in Table 5
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