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 Abstract: -In this paper, a multiloop fractional IMC-PID-filter controller design is proposed for 2x2 
multivariable systems (two-input two-output (TITO) system). The MIMO system is decomposed by an inverted 
decoupler into independent loops (SISO systems) and they are approximated to equivalent new fractional order 
models known as non integer order plus time delay (NIOPTD). The fractional property of the suggested 
controller is imposed by choosing the Bode’s ideal closed loop transfer function as the reference model for each 
loop. The design method is based on the internal model control (IMC) paradigm. Finally, an illustrative example 
of MIMO process is provided and a comparative study is conducted out to demonstrate the advantages of the 
proposed method where the simulation results show the superior performance obtained by a multi-loop 
fractional IMC-PID-filter controllers in comparison with fractional PI/PID controllers based on simplified 
decoupling smith predictor (Fractional-SDSP and Classical-SDSP) structure as well as classical decentralized 
PID controllers using root locus method. 
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1 Introduction 

    The phenomenon of interactions between inputs 
and outputs of multivariate systems is one of the 
reasons leading to the difficulty of controlling them. 
Tuning the controller parameters of one loop can 
affect the performance of the others. To apply multi-
loop control successfully, There is a need to insert a 
device decoupler [1] between the process that must 
be controlled and the controller, So that the inputs 
and outputs are controlled independently, Most of 
industries are using the classical multiloop 
controller (decentralized PI/PID controller [2, 3, 4]) 
for its well-known advantage of easy 
implementation, robustness performance and 
flexibility. for example, Chananchai et al. [5]  
proposed the design of an inverted decoupler to 
weaken unwanted interference into TITO systems 
which allowed the Configuration of a high order  

 

sub-systems (SISO system), The each loop of SISO 
system was reduced as FOPDT model by frequency 
response fitting, As the decentralized PID controller 
parameters were designed using root locus 
technique. Jin, Q et al.  [6] developed an IMC 
(internal model control ) based controller for  TITO 
process, the complex model is decoupled into 
independent SISO system and then a Maclaurin 
series expansion technique is applied to reduced the 
SISO system. Then, the IMC based controller 
parameters are tuned for a reduced order model. 
Rajapandiyan C and Chidambaram M [7] have 
designed independent classical (PI/PID) controllers 
based on the new equivalent transfer function (ETF) 
model of the decoupled process by simplified 
decoupler matrix, and the parameters of multi-loop 
controllers are determined using the simplified 
internal model control (SIMC) method. 
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Recently, the concept of fractional order controller 
which involves fractional derivative and integrals 
are more attractive became popular in industries and 
academia, it achieved promising results in its 
application to SISO systems [8, 9, 10,11] compared 
to conventional PI/PID controllers known in the 
literature. Among the methods also, the fractional 
order (FO) was combined with the internal model 
control (FOIMC) to design the controller and to 
achieve the tuning parameters, as the simple scheme 
makes the FOIMC technique easy to be 
implemented. In [12], a new design Approach for a 
fractional FOPID controller based on internal model 
control (IMC) named a fractional IMC–PID 
controller is proposed to handle fractional order 
models with time delay. M.  Bettayeb et al. [13] 
proposed a new approach of design fractional order 
PID controllers cascaded with a fractional filter is 
based on the internal model control  (IMC) 
paradigm for fractional-order systems.      

However, the design of fractional controllers was 
not limited to SISO systems only, but was expanded 
to include multivariate systems.  Laifa and 
Boudjehem [14, 15] proposed a new design method 
for fractional PI controller of three-input-three-
output (3x3)   multivariable process using diffusive 
representation the controller parameters are 
optimally tuned by GA technique minimizing 
integral absolute error (IAE).  Laifa and Boudjehem 
[16] introduced a new Analytical method to design a 
decentralized fractional order controllers based on 
gain and phase margin specifications (GPM) for a 
TITO system (2x2)    with simplified decoupler. 
Lakshmanaprabu, S.K., et al [17] developed an 
independent design of multi-loop fractional order 
internal model control (IMC) based PID (FOIMC-
PID) controller for TITO system is presented. The 
TITO system is decomposed by ideal decoupler to 
the SISO system and then it is converted into 
FOPDT model and controller parameters are 
optimally tuned independently using New Bat 
Optimization Algorithm (NBOA). Tassadit 
CHEKARI et al. [18] proposed the a new IMC-PID 
fractional order filter multi-loop controller design 
approach for MIMO processes with time delays 
Based on Two Degrees of Freedom Control (2DOF) 
structure. In [19], the fractional order internal model 
control (IMC) with inverted decoupling is proposed 
to handle fractional order TITO (FO-TITO-IMC) 
process with time delay. In [20], the fractional 
simplified decoupling Smith predictor structure (F-
SDSP) for two-input and two-output systems 
proposed by Chuong et al [21], is adopted to remove 
dead time out of the diagonal elements of the 

decoupled subsystem, The tuning rules of the 
fractional PI/PID controller are also derived by 
analytical method based on the internal model 
control (IMC) structure for the dead time -free parts 
of the reduced fractional models. 

 
This paper discusses the design of a multi-loop 

fractional order controller for efficient control of the 
TITO system, This is done in two basic ideas. first, 
we remove the interaction between system variables 
by introducing an inverted decoupling between the 
controlled system and the controller, and from it is 
divided into decoupled sub-systems (independent 
SISO systems), also the  each loop of the SISO 
system is reduced to equivalent fractional order 
models of type NIOPTD-I (One Non-integer Orders 
plus Time Delay). Second idea, the objective of the 
design is to control any open-loop system with 
closed-loop specifications Based on Bode’s ideal 
transfer function, the internal model control (IMC) 
structure will be used for this purpose. The proposed 
multi-loop fractional IMC-PID-filter controllers 
design can be analytically derived for each 
fractional order model (NIOPTD-I). 
     Our contribution in this paper is organized as 
follows: A brief definition of the fractional order 
systems is presented in section 2. In Section 3. The 
inverted decoupler is designed for (2x2) MIMO 
system. With explaining how to convert 
independent SISO systems into equivalent 
NIOPTD-I models.  The design of the multi-loop 
fractional IMC-PID-filter controller by the proposed 
methodology is discussed in Section 4. In section 5, 
good simulation is given to demonstrate efficiency 
and effectiveness the applicability of the proposed 
design technique to other FOPID design methods. 
Finally, Section 5 draws the main conclusions 
highlighted in the proposed work. 
 
 
2 Fractional-Order System (FOS) 
2.1. Definition  

 

      A fractional-order system (FOS) in the areas of 
dynamical systems and control theory, is defined as 
a dynamic system that can be modeled and 
expressed by a fractional differential equation that 
includes derivatives of non-integer order.[22]  and 
can be defined as follows.  
 
𝐻(𝐷𝛼0𝛼1𝛼2….𝛼𝑁)(𝑦1, 𝑦2, ……𝑦𝑙) =
𝐺(𝐷𝛽0𝛽1𝛽2,….𝛽𝑀)(𝑢1, 𝑢2, …… 𝑢𝑘)       (1) 
Where:𝑦𝑖 , 𝑢𝑖  are Functions of time. 
 𝐻, 𝐺: are Combinations of operators (D) of the 
fractional derivative. 
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𝐷, is fractional derivative operator 𝐷 of orders 
𝑎1, 𝑎2…𝑎𝑛 𝑎𝑛𝑑 𝛽1, 𝛽2…𝛽𝑚. 
 
For SISO linear time-invariant (LTI) system 
equation (1) becomes: Eq. 21 
 
𝐻(𝐷𝛼0𝛼1𝛼2….𝛼𝑁)𝑦(𝑡) = 𝐺(𝐷𝛽0𝛽1𝛽2,….𝛽𝑀)𝑢(𝑡)      (2) 
 
is put :  

{
𝐻(𝐷𝛼0𝛼1𝛼2….𝛼𝑁) = ∑ 𝑎𝑘𝐷

𝛼𝑘𝑛
𝑘=0

𝐺(𝐷𝛽0𝛽1𝛽2,….𝛽𝑀) = ∑ 𝑏𝑘𝐷
𝛽𝑘𝑚

𝑘=0
                       (3) 

 
With: 𝑎𝑘 , 𝑏𝑘 ∈ ℝ 
Finally we obtain the fractional order differential 
equation: 
 
𝑎𝑛𝐷

𝛼𝑛𝑦(𝑡) + 𝑎𝑛−1𝐷
𝛼𝑛−1𝑦(𝑡) +⋯+ 𝑎0𝐷

𝛼0𝑦(𝑡) =
𝑏𝑚𝐷

𝛽𝑚𝑢(𝑡) + 𝑎𝑚−1𝐷
𝛽𝑚−1𝑢(𝑡) +⋯+

𝑏0𝐷
𝛽0𝑢(𝑡)                                                                  (4) 

 
By applying the Laplace transform of LTI system 
equation (2) with the initial conditions zero, we 
obtain the following transfer function of the 
fractional system:   
                                                                                                               

𝐺(𝑝) =
𝑌(𝑠)

𝑈(𝑠)
=
∑ 𝑏𝑘𝑠

𝛽𝑘𝑛
𝑘=0

∑ 𝑎𝑘𝑠𝑎𝑘
𝑚
𝑘=0

                             (5) 

 
For 𝑎𝑘 𝑎𝑛𝑑 𝛽𝑘 orders this is a non-standard transfer 
function. 

2.2. Bode's ideal transfer function 

Bode  [23]  proposed  an  ideal  shape of  the  open-
loop  transfer  function  of  the type 
 

𝐿(𝑠) =
1

𝜏𝑐𝛼
                                  𝛼 ∈ ℝ          (6)   

 
Where: 1

𝜏𝑐−𝛼
⁄ =

𝑤𝑐   is the gain crossover frequency. 
The characteristics of open loop Bode’s ideal 
transfer function curve are 
The amplitude curve of the transfer function has a 
straight line with Constant slope of–𝑎20𝑑𝐵/𝑑𝑒𝑐. 
The phase curve is a constant horizontal line at 
– 𝑎(𝜋/2) 𝑟𝑎𝑑. 
We consider the closed loop transfer function 𝐿 (𝑠 ) 
corresponding to the unity feedback system 
represented in Fig.1 is based on Bode’s ideal 
transfer function  𝐿(𝑠) inserted in the forward path 
is: 

𝑓(𝑠) =
𝐿 (𝑠 )

1 + 𝐿 (𝑠 )
=  

1

1 + 𝜏𝑐𝑠
𝛼
                             (7) 

 
In this study, L(s) is the desired closed-loop and 
used as a reference model for tuning and design the 
controller 𝐶(𝑠 ). 
Where the closed-loop transfer function of Fig.  1 is 
 

𝐺𝑐𝑙(𝑠) =
𝐶 (𝑠 )𝐺 (𝑠 )

1 + 𝐶 (𝑠 )𝐺 (𝑠 )
                                        (8) 

For more details of important properties to closed-
loop based on Bode’s ideal transfer function (see in 
[13, 24, 25, 26]). 

 
Fig. 1. Closed loop Bode’s Ideal transfer function 

 
 

3 Inverted Decoupling design for 

TITO (two inputs, two outputs) 

Systems: 

      The TITO (two-input two-output) model of this 
system is defined by the 𝐺(𝑠) 
 

𝐺(𝑠) = [
𝐺11(𝑠) 𝐺12(𝑠)

𝐺21(𝑠) 𝐺22(𝑠)
]                                   (9)        

                      
For the success of the application of the multi-
loop control, a technique is required to assess 
the degree of interaction between the loops. The 
both Relative Gain Array (RGA) method and 
Niderlinksi Index (NI) offer important insights 
into the issue of control configuration selection. 
RGA method is used to measure interactions 
between input and output, while Niderlinksi 
Index (NI) is used as a sufficient condition to 
examine unstable closed-loop pairings [27]. 
𝑅𝐺𝐴(𝐺(0)) = 𝐺(0) ⊗ (𝐺(0)−1)𝑇                     (10) 

 

𝑁𝐼 =
det[𝐺(0)]

∏ 𝐺(0)𝑖𝑗
2
𝑖=1

                                                 (11) 

3.1. Independent open loop Transfer 

Function (𝑇11(𝑠), 𝑇22(𝑠)). 

     This TITO system (2x2)   can be decompose into 
two independent loops (SISO system) using the 
inverted decoupler matrix [5, 28]. 
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 The transfer function matrix of inverted decoupler 
is, 
 

D(s) = [
D11(s) D12(s)

D21(s) D22(s)
]

=

[
 
 
 
 1 −

G12(s)

G11(s)

−
G21(s)

G22(s)
1

]
 
 
 
 

 (12) 

 
So, the decomposed apparent systems T(s) are, 
 

T(s) = G(s). D(s) = [
T11(s) 0

0 T22(s)
]

= [
  T11(s)

∗ 0

0 T22(s)
∗]                  (13) 

 
The is T11(s) the Independent open loop transfer 
function between inputu1 and y1, with second loop 
is closed.  also,  T22(s)  is the Independent open 
loop transfer function between input u2 and y2,  
with first loop 1 is closed. 
 
The higher order independent system 
diag (T11(s), T22(s))  is reduced into fractional 
order models (T11(s)∗, T22(s)∗) of type NIOPTD 
(non integer order plus time delay) Model  

3.2. Model Order Reduction 

     Various techniques were suggested to reduce the 
diagonal elements of the independent system 
(𝑇11(𝑠), 𝑇22(𝑠))    to integer order transfer functions 
[21, 29, 30].  In this paper a fractional order transfer 
functions of type ''One Non-Integer Orders Plus 
Time Delay (NIOPTD-I) '' model [12, 31] is 
employed as the equivalent transfer function of 
Independent open loop Transfer Functions 
(𝑇11(𝑠), 𝑇22(𝑠)). 
The general form of the NIOPTD-I model is as 
follows: 

𝑇(𝑠)∗𝑖𝑖 = 
𝐾𝑖𝑖

𝑇𝑖𝑖𝑠
𝛽𝑖𝑖 + 1

𝑒−𝐿𝑖𝑖𝑠   ℎ𝑒𝑟𝑒 ; 0 < 𝛽𝑖𝑖  < 2 (14) 

where: 
 i = 1,2 ; Kii → process gain ; Lii → delay time; 
T ii → are time constaant;β

ii
→ the fractional 

system order. 
The number of tuning parameters of each fractional 
order model (𝑇11(𝑠)∗, 𝑇22(𝑠)∗) is written in vector 
form as follows: 
𝑥1 = [𝐾1  𝑇1  𝐿1  𝛽1] 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡   𝑚𝑜𝑑𝑒𝑙 𝑇11(𝑠)

∗                                                                                                                                                 
𝑥2 = [𝐾2  𝑇2  𝐿2  𝛽2] 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑   𝑚𝑜𝑑𝑒𝑙 𝑇22(𝑠)

∗.               
                                                                             (15)    
                                                                                                                    

The conditions of these optimized parameters are 
given by.  

{
 

 
𝐾𝑚𝑖𝑛 < 𝐾1,2 < 𝐾𝑚𝑎𝑥
       0 < 𝑇1,2 < 𝑇𝑚𝑎𝑥
        0 < 𝐿1,2 < 𝐿𝑚𝑎𝑥
  0 < 𝛽1,2 < 2

                                             (16) 

 
    The model reduction method based on using 
particle swarm optimization (PSO) algorithm 
proposed by Chuong et al. [21, 31] is implemented 
in MATLAB’s Optimization Toolbox to obtain out 
the values of reduced order model parameters in 
equation (14). 
      This method of reducing  higher order 
Independent systems in fractional order templates 
(NIOPDT) by minimizing the 𝐻2 norm of the 
original higher order Independent models (𝑦1,2) and 
reduced fractional order models (�̂�1,2) using an 
unconstrained optimization. i.e. 

𝐽2−𝑛𝑜𝑟𝑚 =
1

𝑛
∑‖𝑦1,2 − �̂�1,2‖

2
𝑛

𝑖=1

                 (17)  

Where: 
𝑦1 = 𝑇11(𝑠) ; 𝑦2 = 𝑇22(𝑠); �̂�1 = 𝑇11(𝑠)

∗; 
�̂�2 = 𝑇22(𝑠)

∗ 
 
The proposed objective function for fractional 
models reduction is given by: 

𝐽𝑚𝑖𝑛(𝐾1 , 𝑇1, 𝐿1 , 𝛽1 ) =
1

𝑛
∑(𝑦1 − �̂�1)

2

𝑛

𝑖=1

  

𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡   𝑚𝑜𝑑𝑒𝑙. 

 𝐽𝑚𝑖𝑛(𝐾2 , 𝑇2, 𝐿2 , 𝛽2 ) =
1

𝑛
∑(𝑦2 − �̂�2)

2

𝑛

𝑖=1

 

                                  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑  𝑚𝑜𝑑𝑒𝑙.               (18) 
as noted in the figure below 

 
Fig.2. Structure of independent loops modeling 

into equivalent fractional order models 

(NIOPDT). 

4 Fractional IMC-PI-filter controller 

design 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2020.15.40

Sami Laifa, Badreddine Boudjehem, 
Djalil Boudjehem

E-ISSN: 2224-2856 386 Volume 15, 2020



     This strategy is based on the principle that the 
fractional property of the designed controller is 
imposed by the fractional reference model [13, 25]. 
It is an extension of  classical PID tuning methods to 
the fractional PID tuning methods based on the 
equivalence between the classical feedback 
structures and the internal model control (IMC). 
After designing the inverted decoupler, as shown in 
Fig. 3, The TITO systems become multi-loop 
systems. For each loop, a corresponding controller 
must be designed to meet the requirements of its 
closed loop fractional specifications. 

 

Fig. 3. Block diagram of the proposed multi-loop 

control structure for a (2x2) MIMO system with 

inverted decoupler. 

In this work, the general structure of the fractional 
PID controller proposed for each loop is given by 
 

 𝐶(𝑠)𝑖𝑖 = 𝑚(𝑠)𝑖𝑖⏟  
𝐹𝑂𝐹

𝑘𝑝𝑖𝑖 (1 +
1

𝑇𝑖𝑖
𝛽𝑖𝑖
)

⏟          
 𝑃𝐼𝛽𝑖𝑖  𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

                     (19) 

 

As shown in equation 19, 𝐶(𝑠)𝑖𝑖 is in the form of a 
non-integer order PI controller structure cascaded 
with a fractional order filter (𝐹𝑂𝐹) 𝑚 (𝑠).  
 
Where:𝑘𝑝𝑖𝑖, 𝑇𝑖𝑖and 𝛽𝑖𝑖  are proportional gain, 
integral time constant and integration order. 
 
The Fractional IMC-PID filter controller design 
requires three steps [13, 25]:  

 
Step 1: 𝑇(𝑠)𝑖𝑖∗ is divided as: 
 
 𝑇(𝑠)𝑖𝑖

∗ = 𝑇−(𝑠)𝑖𝑖
∗ 𝑇+(𝑠)𝑖𝑖

∗                                       (20) 
 

Where 𝑇+(𝑠)𝑖𝑖∗ Contains time delays and right half 
plane (RHP) zeros with 𝑇+(0)𝑖𝑖∗ = 1 
 
Step 2: The IMC controller 𝐶𝑖𝑚𝑐(𝑠)𝑖𝑖is designed 

by: 

𝐶𝑖𝑚𝑐(𝑠)𝑖𝑖 =
1

 𝑇−(𝑠)𝑖𝑖
∗ 𝑓(𝑠)𝑖𝑖                                    (21) 

Where:                                                               

 𝑓(𝑠) =
1

1 + 𝝉𝒄𝒊𝒊
𝜶𝒊𝒊+𝟏

  ;    0 < 𝜶𝒊𝒊 < 1             (22) 

 
𝑓(𝑠) is the closed-loop Bode’s ideal transfer 
function used  as  a reference model to obtain a 
fractional order controller, given by [13 , 25].  The 
two elements: the non integer 𝜶𝒊𝒊  and the time 
constant 𝝉𝒄𝒊𝒊are chosen to impose the crossover 
frequency 𝜔𝑐𝑖𝑖  and the phase margin  𝝓𝒎𝒊𝒊 of the 
each closed- loop 
 

𝜶𝒊𝒊 =
𝝅 −𝝓𝒎𝒊𝒊
𝝅 𝟐⁄

− 𝟏  𝒂𝒏𝒅  𝝉𝒄𝒊𝒊 =
𝟏

𝜔𝑐𝑖𝑖𝜶𝒊𝒊+𝟏
   (23) 

Step 3: from the equivalence between the 
conventional feedback schema shown in Fig. 5 and 
the IMC schema represented in Fig. 4 we obtain: 

𝐶(𝑠)𝑖𝑖 =
𝐶𝑖𝑚𝑐(𝑠)𝑖𝑖

1 − 𝐶𝑖𝑚𝑐(𝑠)𝑖𝑖𝑇(𝑠)𝑖𝑖
∗                               (24) 

As previously shown in equation 19, the controller 
𝐶(𝑠)𝑖𝑖 structure can be put in two transfer functions: 
non-integer order PI controller structure cascaded 
with a fractional order filter  

𝐶(𝑠)𝑖𝑖 = 𝑚(𝑠)𝑖𝑖⏟  
𝐹𝑂𝐹

𝑘𝑝𝑖𝑖 (1 +
1

𝑇𝑖𝑖
𝛽𝑖𝑖
)

⏟          
 𝑃𝐼𝛽𝑖𝑖  𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

                     (25) 
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Fig.  4.  Internal model control (IMC) structure. 

 

Fig.  5.  Conventional feedback structure. 

4.1. Design procedure details 

For example in this work, we consider a non integer 
order plus time delay (NIOPTD) model expressed in 
equation 14. 

𝑇(𝑠)∗𝑖𝑖 = 
𝐾𝑖𝑖

𝑇𝑖𝑖𝑠
𝛽𝑖𝑖 + 1

𝑒−𝐿𝑖𝑖𝑠                           (26) 

To deal with the delay term, it is usual to use a first 
order Taylor expansion of the  𝒆−𝐿𝑖𝑖  term is 
 
  𝒆−𝐿𝑖𝑖𝑠 = 𝟏−𝐿𝑖𝑖𝑠                                                (27) 

 
Equation 14 becomes as follows 

𝑇(𝑠)∗𝑖𝑖 = 
𝐾𝑖𝑖(𝟏−𝐿𝑖𝑖𝑠)

𝑇𝑖𝑖𝑠𝛽𝑖𝑖 + 1
                                          (28) 

 
The IMC controller according to equation (21) is 

𝐶𝑖𝑚𝑐(𝑠)𝑖𝑖 =
1 + 𝑇𝑖𝑖𝑠

𝛽𝑖𝑖

𝐾𝑖𝑖(1 + 𝝉𝒄𝒊𝒊𝒔𝜶𝒊𝒊+𝟏)
                        (29) 

 
Hence the corresponding feedback controller is 
obtained by: 

𝐶(𝑠)𝑖𝑖 =
1+ 𝑇𝑖𝑖𝑠

𝛽𝑖𝑖

𝐾𝑖𝑖(𝜏𝑐𝑖𝑖𝑠𝛼𝑖𝑖+1 + 𝐿𝑖𝑖𝑠)

=
1 + 𝑇𝑖𝑖𝑠

𝛽𝑖𝑖

𝐾𝑖𝑖𝐿𝑖𝑖(1 + (𝜏𝑐𝑖𝑖 𝐿𝑖𝑖⁄ )𝑠𝛼𝑖𝑖)s
                                (30 

Which can be rewritten in the form of equation (31), 
 

𝐶(𝑠)𝑖𝑖 =
𝑠𝛽𝑖𝑖−1

1 + (𝜏𝑐𝑖𝑖 𝐿𝑖𝑖⁄ )𝑠𝛼𝑖𝑖⏟            
 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 fi𝑙𝑡𝑒𝑟𝑖𝑖

   
1

𝐾𝑖𝑖𝐿𝑖𝑖
(
1 + 𝑇𝑖𝑖𝑠

𝛽𝑖𝑖

𝑠𝛽𝑖𝑖
)

⏟            
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝐼𝛽𝑖𝑖 

   (31) 

 

 

 

5 Simulation Results: 
    The transfer function matrix of Wood Berry (WB) 
2x2 binary distillation process [32] is considered for 
simulation study and expressed by   

𝐺1(𝑠) = [

12.8

16.7𝑠 + 1
𝑒−𝑠

−18.9

21𝑠 + 1
𝑒−3𝑠

6.6

10.9𝑠 + 1
𝑒−7𝑠

−19.4

14.4𝑠 + 1
𝑒−3𝑠

]   

 
The matrix of RGA elements and NI value are: 
 
𝑅𝐺𝐴(𝐺(0)) = [

2 . 0094 − 1. 0094
− 1. 0094 2 . 0094

],NI=0.4977  
 
We observe from the analysis of the RGA matrix 
and the value of NI that the best pairing is (𝑢1 −
𝑦1) and (𝑢 2 − 𝑦 2). 
The inverted decoupler  𝐷(𝑠) is design using 
equation 12. 

𝑫𝟏(𝒔) = [
𝟏

𝟏.𝟒𝟕𝟕(𝟏𝟔.𝟕𝒔 + 𝟏)

𝟐𝟏𝒔 + 𝟏
𝒆−𝟐𝒔

𝟎.𝟑𝟒(𝟏𝟒.𝟒𝒔+ 𝟏)

𝟏𝟎.𝟗𝒔 + 𝟏
𝒆−𝟒𝒔 𝟏

]  

 
The decoupled processes (𝑇11(𝑠), 𝑇22(𝑠))are 
obtained using equation 13. 
 

𝑻𝟏𝟏(𝒔) =  
𝟏

𝟏 −
𝟎.𝟓𝟎𝟏𝟕(𝟏𝟒.𝟒𝒔+𝟏)(𝟏𝟔.𝟕𝒔+𝟏)

(𝟏𝟎.𝟗𝒔+𝟏)(𝟐𝟏𝒔+𝟏)

(
𝟏𝟐. 𝟖

(𝟏𝟔. 𝟕𝒔 + 𝟏)
𝒆−𝟏𝒔

−
𝟔. 𝟒𝟑(𝟏𝟒. 𝟒𝒔 + 𝟏)

(𝟐𝟏𝒔 + 𝟏)(𝟏𝟎. 𝟗𝒔 + 𝟏)
𝒆−𝟕𝒔) 

 

𝑻𝟐𝟐(𝒔) =
𝟏

𝟏 −
𝟎.𝟓𝟎𝟏𝟕(𝟏𝟒.𝟒𝒔+𝟏)(𝟏𝟔.𝟕𝒔+𝟏)

(𝟏𝟎.𝟗𝒔+𝟏)(𝟐𝟏𝒔+𝟏)

(−
𝟏𝟗.𝟒

(𝟏𝟒.𝟒𝒔 + 𝟏)
𝒆−𝟑𝒔

+
𝟗. 𝟕𝟒𝟓𝟑(𝟏𝟔.𝟕𝒔+ 𝟏)

(𝟐𝟏𝒔+ 𝟏)(𝟏𝟎.𝟗𝒔+ 𝟏)
𝒆−𝟗𝒔) 

 
Then, using the methodology proposed in Section 3, 
the results of the fractional order models are 
obtained by the following equations: 
 

𝐺(𝑠). 𝐷(𝑠) = [
𝑇11(𝑠) 0

0 𝑇22(𝑠)
]

= [
  𝑇11(𝑠)

∗ 0

0 𝑇22(𝑠)
∗] 

Where 

𝑇11 
∗(𝑠) =  

13.145

15.9588𝑠0.98004 + 1
𝑒−1.2107𝑠  

and 

𝑇22 
∗(𝑠) =  

 −19.7716

14.1168𝑠0.98897 + 1
𝑒−3.1034𝑠  

To evaluate how closely the reduced NIOPDT 
model approximates the each decoupled subsystem, 
step responses are drawn in Fig. 6.   
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From Fig. 6 we notice that the NIOPTD-II models 
are very close to the original subsystems. This 
indicates that the proposed method for 

approximating these systems gave a high efficiency 
and demonstrated its effectiveness. 

 

Fig. 6. Step response of decoupled subsystems (T11(s), T22(s))  and their equivalent 

approximations (T11(s)
∗, T22(s)

∗).

For this simulation example, the specifications for 
the desired closed loop model (see Eq.  (19)) are 
selected in terms of gain crossover frequencies, 
𝝎𝒄𝟏𝟏=𝝎𝒄𝟐𝟐 =0.4 rad/s and phase 
margins, 𝝓𝒎𝟏𝟏= 𝝓𝒎𝟏𝟏 =81° of loop 1 and loop 2 
by Eq.  (19). Where we found The values of time 
constants are: 𝝉𝒄𝟏𝟏=𝝉𝒄𝟐𝟐= 2.7399 The values of the 
fractional order 𝜶𝟏𝟏=𝜶𝟐𝟐 are 0.1 These values are 
chosen to meet the desired specifications of the 
closed loop model in the frequency domain. The 
fractional IMC-PI-filter controller obtained with this 
method proposed is presented in Table 1. 
 

In this paper, the proposed method is compared to 
the latest advanced work and new results obtained 
by the researchers in the field of multivariable 
systems control such as Techniques proposed by 
Chuong et al. the simplified decoupling Smith 
predictor structure by approximated fractional order 
models (F-SDSP) [20], the SDSP by approximated 
integer order models [21] and multi-loop PID 
controller based on the root locus Technique with 
inverted decoupling [5]. 
The controllers that are designed by these 
Techniques in [20, 21, 5] for the same simulation 
example are listed in Table 1. 

 

Table 1: The Resulting Multi-loop Controllers with Different Tuning Methods. 

Tuning Method The Resulting Controllers 

Proposed 

Fractional IMC-PI-filter 

controller design 

𝑪(𝒔)𝟏𝟏 =
𝒔−𝟎.𝟎𝟏𝟗𝟗𝟔

𝟏 + 𝟐.𝟐𝟔𝟑𝒔𝟎.𝟏𝟎
 𝟏. 𝟎𝟎𝟐𝟕(𝟏 +

𝟏

𝟏𝟓. 𝟗𝟓𝟖𝟖𝒔𝟎.𝟗𝟖𝟎𝟎𝟒
) 

𝑪(𝒔)𝟐𝟐 =
𝒔−𝟎.𝟎𝟏𝟏𝟎𝟑

𝟏 + 𝟎.𝟖𝟖𝟐𝟖𝟕𝒔𝟎.𝟏𝟎
 (−𝟎. 𝟐𝟑) (𝟏 +

𝟏

𝟏𝟒. 𝟏𝟏𝟔𝟖𝒔𝟎.𝟗𝟖𝟖𝟗𝟕
)

 

 

Fractional-SDSP 

Chuong et al. 2019 [20]. 
𝑪(𝒔)𝟏𝟏 = 𝟎.𝟐𝟖𝟖𝟐

𝟏

𝒔𝟎.𝟏𝟐𝟖𝟔
 (𝟏 +

𝟏

𝟕. 𝟏𝟎𝟕𝟗𝒔𝟎.𝟖𝟕𝟏𝟒
) 

𝑪(𝒔)𝟐𝟐 = −𝟎.𝟏𝟐𝟏𝟐
𝟏

𝒔𝟎.𝟏𝟓𝟑𝟖
 (𝟏 +

𝟏

𝟓. 𝟐𝟔𝟒𝟓𝒔𝟎.𝟖𝟒𝟔𝟐
+ 𝟎.𝟔𝟑𝟖𝟓𝒔𝟎.𝟗𝟒𝟏𝟖)

 

𝟏

𝟏. 𝟏𝒔 + 𝟏
 

Classical-SDSP 

Chuong et al. 2019 [21]. 
𝑪(𝒔)𝟐𝟐 = 𝟐. 𝟎𝟐𝟎𝟓 (𝟏 +

𝟏

𝟏𝟗. 𝟓𝟐𝟕𝟓𝒔
+ 𝟐. 𝟏𝟔𝟏𝟕𝒔)

 

𝟏

𝟗. 𝟏𝟗𝟐𝒔 + 𝟏
 

𝑪(𝒔)𝟐𝟐 = −𝟎. 𝟑𝟑𝟎 (𝟏+
𝟏

𝟏𝟒. 𝟒𝟖𝟏𝟏𝒔
+ 𝟎. 𝟏𝟒𝟐𝟖𝒔)

 

𝟏

𝟖. 𝟐𝟕𝟒𝒔 + 𝟏
 

Classical-PID 

Chananchai et al. 2018 [5]. 𝑪(𝒔)𝟏𝟏 =
(𝟎. 𝟒𝟔𝟎𝟗𝒔𝟐 + 𝟎.𝟓𝟑𝟖𝟕𝒔 + 𝟎. 𝟎𝟕𝟕𝟒)

𝒔
 

𝑪(𝒔)𝟐𝟐 =
(−𝟎.𝟏𝟐𝟏𝟑𝒔𝟐 − 𝟎. 𝟏𝟓𝟖𝟑𝒔 − 𝟎. 𝟎𝟑𝟖𝟒)

𝒔
 

with  forward controllers :  𝑮𝒇(𝒔)𝟏𝟏 =
𝟏)

𝟓.𝟗𝟓𝟗𝟒𝒔+𝟏
 ;  𝑮𝒇(𝒔)𝟐𝟐 =

𝟏)

𝟑.𝟏𝟎𝟕𝟓𝒔+𝟏
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The result of closed-loop system step response of 
the both loops (loop1 and loop2) are shown in Figs 
7 and 8, respectively, with a unit step changes in the 
setpoint are sequentially, for loop-1 at t=0 sec and 
loop-2 at t = 100 sec.  

 

Fig. 7. Responses of WB column:  𝒚𝟏 closed-loop 

response to unit step in r1-at t=0 and r2-at t=100. 

 

Fig. 8. Responses of WB column:  𝒚𝟐 closed-loop 

response to unit step in r1-at t=0 and r2-at t=100. 

    We enclose our work by adding a control signal 
for the two loops as shown in Figs 9 and 10, 
respectively. 

 

Fig. 9. The control signal response in loop 1. 

 

Fig. 10. The control signal response in loop 2. 

The performance index such as integral absolute 
error (IAE) and time domain specifications as 
settling time (sec) and peak overshoot (%) of the 
four methods are summarized in Table2. 
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Table 2: Results of the performance analysis and comparison. 

Tuning Method
 

Settling time (sec) Overshoot % IAE 

𝑳𝒐𝒐𝒑𝟏 
(𝒚𝟏 − 𝒓𝟏) 

𝑳𝒐𝒐𝒑𝟐
 

𝒚𝟐 − 𝒓𝟐) 

𝑳𝒐𝒐𝒑𝟏
 

(𝒚𝟏 − 𝒓𝟏) 

𝑳𝒐𝒐𝒑𝟐
 

(𝒚𝟐 − 𝒓𝟐) 
𝑳𝒐𝒐𝒑𝟏 + 𝑳𝒐𝒐𝒑𝟐

 

Proposed Controller 9.98 16.77 7.6 10.01 9.053 

Fractional-SDSP 

(Chuong et al. 2019) 

14.86 19.99 3.11 5.07 9.221 

Classical-SDSP 

(Chuong et al. 2019) 

26.14 25.32 13.09 15.89 10.963 

Classical-PID  

( Chananchai et al. 2018) 

14.92 40.82 0.52 41.03 12.08 

    To demonstrate the efficiency of the proposed 
design method, simulation responses are given (see 
in Figs 9 and 10) and Table 3, and we note from 
them that the multi-loop fractional IMC-PID-filter 
controller  proposed achieves a good performance in 
term of percent overshoot (%) and settling (sec) 
time compared with the performance of multi-loop 
controller design (F-SDSP and SDSP) introduced by 
Chuong et al. [20, 21] and decentralized controller 
design presented by Chananchai et al. [5]. 
In addition to evaluating the closed-loop 
performance index, the integral absolute error (IAE) 
criterion was considered, and it is observed that 
performance with the proposed controller is giving 
good and superior results when compared to other 
multi-loop controllers. 
Also from Figs. 9 and 10, it is clear that the 
proposed fractional controller generates and gives a 
very smooth control procedure among those 
methods and this is a confirmation of the results 
obtained. 
As a contribution from us in this paper and from the 
results achieved by our proposed method by 
comparing it with the latest works reached by 
researchers, we confirmed the effectiveness and 
success of the proposed method despite the 
difficulty of implementation in MIMO systems. We 
can also say that the use of the multi-loop fractional 
IMC-PID-filter controller with an inverted 
decoupler for 2x2 MIMO systems using the 
proposed technique provides good performance and 
robustness. This is due to the use of the closed loop 
Bode’s ideal transfer function as a reference model. 
 
Prospects for my future Research: 
In my future work, I will combine this methodology 
with Computational Intelligence (Fuzzy Logic, 
Neural Networks, Genetic Algorithms). I will also 

extend this methodology to include discrete Systems 
and 2-D Systems. 
 
Conclusion: 

       In this paper, the 2x2 MIMO systems was 
transformed into two independent SISO system by 
introducing an inverted decoupler, and reduces each 
SISO system to the equivalent NIOPTD model. .The 
multi-loop fractional IMC-PID-filter controllers is 
designed based on the IMC paradigm for NIOPTD 
models in an analytical method. Thus the proposed 
controller parameters are determined to satisfy gain 
crossover frequencies and phase margins 
specifications of the Bode’s ideal closed loop 
transfer function as the reference model for each 
loop. Simulation results show clearly that the time 
domain specifications and the performance index    
(settling time (sec), peak overshoot (%) settling 
time, and IAE) given by of the controlled system 
responses with the proposed controller gives a good 
performance and acceptable in comparison with the 
multi-loop fractional PI/PID controllers based on F-
SDSP and C-SDSP structure as well as conventional 
PID controllers using root locus method. 
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