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Abstract- Short-term and (Mid\Long)-term load prediction are needed for the efficient management of 
distribution system. An accurate load forecasting could help distribution operators to achieve a great control and 
flexibility on energy. In addition, a reliable prediction would have significant impact on load power flow 
problems, operation management, planning, automation, and search market. This paper proposes a new method 
based on copula for Short-term, and (Mid/Long)-term load forecasting. Proposed method was used less historical 
data to predict the load consumption then the other methods, so it is useful in distribution system due to scarce 
installed meters. Copula is a recently developed statistical theory for multivariate probability analysis that has 
been proposed by Sklar in 1958. Copulas are used in popularity for financial and reliability application. Numerical 
tests results using database of Iran system’s operation (ISO) shows that this method provides a much better 
prediction performance in comparison with other methods employing the same data.  
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Nomenclature 
 
m Number of variables 
C multivariate distribution functions 

H the joint probability distribution of 
m variables 

τ the Kendall correlation 
ρ The spearman correlation 
U standard uniform random variables 
Rho correlation matrix 

φ-1 is the inverse cumulative 
distribution function 

φm is the m-dimensional standard 
multivariate Student’s t distribution 

v degrees of freedom 

HQIC 
Hannan-Quinn Information 
Criterion 

AIC Akaike Information Criterion 

ICDF inverse cumulative distribution 
function 

CDF cumulative distribution function 
PDF Probability distribution function 
ρp the Pearson correlation 

Li
j  

represent load consumption in the ith 

hour of the jth day 
z Number of selected days 
mf defined vectors 
βj

i Rank correlation 
STLF Short-term load forecasting 
MTLF Mid-term load forecasting 

MAPE Mean absolute percentage error 
Dtd the hourly demand of the day 
Dtm the hourly demand of the next day 
θtd the hourly temperature of the day 

di the hourly load consumption of the 
day 

TMi the maximum daily temperature of 
the month 

DMi the maximum daily demand of the 
month 

 

1   Introduction 
Short/long term load forecasting is important for the 
power grid efficient operation. This data is needed to 
determine which power generation source should be 
utilized for the next hour, day or month.  
Demand forecasting is an essential instrument for 
effective operation and planning of power systems. 
Depending on the time horizon, load forecasting can 
be usually categorized as short-term, mid-term, and 
long-term load forecasting. Short-term load 
forecasting (STLF) is defined as the prediction of 
load over an interval usually ranges from an hour to 
one week. The STLF is basically necessary for power 
system operation as well as many distribution system 
operations like load power flow, energy transactions, 
maintenance scheduling, and reliability analysis. 
Accurate load prediction in distribution system will 
lead to a set of vital information that helps 
transmission owners, generation operators and 
retailers to maximize their profits, achieving lower 
operating costs and enhancing reliability of the 
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electricity supply [5]. In particular, appearance of 
free market of the electric power necessitates demand 
prediction more than ever. Generally, mid/long-term 
demand prediction is corresponding to the 
forecasting horizon from a few weeks to several years 
[6]. (Mid/Long)-term Load forecasting (MTLF) in 
distribution systems is necessary to forecast the load 
growth of all substations and feeders in a limited 
region for the next several months or years, MTLF is 
used for distribution system planning includes the 
sitting and capacity of substations. Solving many 
important problems such as transmission 
augmentation or routing of feeders, which are 
relating to the locations and amounts of future load 
growth, therefore load prediction, is the basic of 
optimal distribution system operation and planning. 
Meanwhile, forecasting error has significant cost 
implications for players in competitive power 
markets. Accurate load forecasting would also have a 
significant impact on the production costs, utility 
operation, and overload prevent on and efficient 
energy storage. Additionally, an improvement in the 
range of a few percentages in prediction accuracy 
results in better system security, higher reliability and 
savings worth up to millions of dollars as well [7].  
Therefore, a wide variety of forecasting models have 
been suggested, which can be divided into three 
categories; statistical methods, evolutionary 
techniques, and end use models. The end use method 
is the most expensive and complicated which needs a 
lot of man-power to achieve the data by types of load 

component and customer. Statistical methods are 
widely adopted, including time series and linear 
regression models. However, these models need 
more attention when the weather factors are involved 
in the load pattern [8-10]. Also, Box–Jenkins models 
[11],  exponential smoothing models [12, 13], 
stochastic process, Kalman filters [11] and ARMA 
models [14] are among statistical methods.  
Generally, most of the statistical methods are based 
on linear analysis [15], while electricity demand is 
non-linear and sensitive to wide variables such as 
calendar, temperature, humidity, wind speed, and etc 
[16]. In addition statistical methods process 
numerical information, predicting current value of a 
variable using a mathematical combination of the last 
information of that variable with those of the last or 
current information of other variables, while 
measurements have been rarely performed in 
distribution network. Heuristically methods have 
recently been incorporated to the nonlinearity of 
electricity demand series such as artificial neural 
networks (ANN), fuzzy logics [17], expert systems, 
and hybrid models [5-18]. Also, ANN or a 
combination of ANN and fuzzy logic, expert systems 
or hybrid models have been proposed to predict the 
load that have complications in modeling and 
implementation [6, 15, 16, 19, 20]. However, 
statistical models require load modeling; they often 
manage their predictions using linear analysis. 
Intelligent systems (e.g. the ANN) need no load 
modeling; they can learn the load profiles from the 

 

 
Fig.1. Sample of different bivariate copula functions: (a) t copula (Rho = 0.8, v = 5); (b) Gaussian copula 

(Rho = 0.8); (c) Gumbel copula (Alpha = 2); (d) Frank copula (Alpha = -4); (e) Clayton copula (Alpha = 1) 
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history of the load, so it should also be noted that 
most of the artificial intelligence based models not 
only are complex both in design and implementation 
[16], but also need a lot of historical data base to learn 
the load profiles. The major disadvantage of the ANN 
methods to forecasting demand in distribution system 
is their ability to find nonlinear relationships between 
the load and the parameters that influence the load 
using huge amount of historical dataset [15], while 
measurements have been rarely performed due to the 
vastness of distribution system. In addition there are 
certain limitations in using heuristically methods for 
example ANN including difficulty in determining the 
best network topology and training parameters (the 
number and size of the hidden layers), the training 
rate, the type of neuron transfer functions for the 
various layers, momentum coefficient, and training 
stopping criteria to avoid over-fitting while ensuring 
adequate data generation [14]. Copula is a recently 
developed statistical theory for multivariate 
probability analysis that has been proposed by Sklar 
in 1958 [21]. Copulas are functions that link 
multivariate distribution to their univariate functions, 
and they are widely used for financial and reliability 
application for example, in [22] it is proposed a 
method using copula to predict demand for natural 
gas of retail consumers. In this paper, a new method 
was proposed using t and Gaussian (Normal) copula 
to predict demand in short term period, and another 
method was suggested to forecast peak demand in 
(mid/long) term period. The proposed method, unlike 
another statistical method provides accurate analysis 
for non-linear data that has been widely used among 
multivariate data. In addition, according to the results 
of the simulation the proposed method requires much 
less historical data then the other methods to predict. 
2 Principles of Copulas and 
dependence 

 
2.1 Definition of copulas 
Copulas are functions that join or couple multivariate 
distribution functions to their one-dimensional 
marginal distribution functions. Alternatively, 
copulas are multivariate distribution functions (C) of 
m variables whose one-dimensional marginal 
distributions are uniform within the interval (0, 1)m 
with the following properties [21]: 

a) C(1, . . . , 1, uj, 1, . . . ,1) = uj for all 1 ≤ j ≤ 
m; 
b) C(u1, u2, . . . , um) is increasing in each 
component uj,  jϵ{1, 2, . . . , m} 
c) The range of C is the unit interval [0, 1];  
d) For uj ≤ vj, 1 ≤ j ≤ m, C satisfies the rectangle 
in equality [23]; 
∑ … ∑ (−1)j1+⋯+jm2

jm=1 C(u1,j1

2
j1=1 , … , um,jm

) ≥

0 (1) 

Where, m is the number of dependent outcomes that 
should be modeled and all marginal distributions of 
the random vector (u1, u2 ..., um). 

It can be showed from the definition that copulas are 
capable of describing nonlinear dependence among 
multivariate data in isolation from their marginal 
probability distributions [21]. Copulas can also serve 
as a powerful tool for both modeling and simulating 
nonlinearly-interrelated multivariate data, and 
uniform continuity and existence of all partial 
derivatives [24]. Some samples of t, Gaussian, 
Gumbel, Frank, and Clayton copulas  are illustrated 
in Fig. 1 in bivariate form [25]. Consider the joint 
probability distribution of m-random variables Xi (i 
= 1, ..., m), H(x1, ..., xm); 

H(x1, x2, ⋯ , xm) = Pr(X1 ≤ x1, X2 ≤ x2, ⋯ , Xm ≤
xm) (2) 

Table1. Characteristics of alternative copula and their measures of dependence 

Copula Dependence structure characteristics 
Archimedean 

generation 
function 

Relation between the copula 
parameter and the Kendall’s τ 

coefficient 

Gaussian 
symmetric about center point, weak tail 

dependencies, left and right tail 
dependencies go to zero at extremes 

- 𝑅ℎ𝑜 = sin (
πτ

2
) 

τ ∈ [−1,1] 

t 
symmetric about center point, weak tail 

dependences, left and right tail 
dependencies go to zero at extremes 

- 𝑅ℎ𝑜 = sin (
πτ

2
) 

τ ∈ [−1,1] 

Clayton 

symmetric about center point, strong left tail 
dependence and weak right tail dependence, right tail 

dependence goes 
to zero at right extreme 

1

θ
(t−θ − 1) θ =

2τ

1 − τ
 

τ ∈ (0,1) 

Gumbel 
symmetric about center point, strong right dependence, 
weak left tail dependence, left tail dependence goes to 

zero at left extreme 
(− ln t)θ θ =

1

1 − τ
 

τ ∈ [0,1) 

Frank 
symmetric about center point, very weak tail 

dependencies, left and right tail dependencies go to 
zero at extremes 

− ln
exp(−θt) − 1

exp(−θ) − 1
 τ = 1 −

4

θ
+

4

θ2
∫

t

exp(t) − 1

θ

0

dt 

τ ∈ [−1,1] 
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Where continuous marginal probability distributions 
are denoted by Fi (xi) = Pr (Xi ≤ xi) = ui. According 
to [21], Sklar’s theorem dictates that the relationship 
between H(x1, ..., xm) and Fi (xi) (i = 1, ..., m) can 
be established by using the copula function Cm (u1, 
..., um) as follows: 

H(x1, x2, ⋯ , xm) =
Cm[F1(x1), F2(x2), … , Fm(xm)] =

Cm(u1, u2, ⋯ , um) (3) 

In mathematical terms, a copula function Cm (u1, ..., 
um) is the m-dimensional probability distribution on 
a unit hypercube [0, 1]m with uniform marginal 
probability distributions on [0, 1], and is defined as 
[24]:  

Cm(u1, u2, ⋯ , um) = Pr (U1 ≤ u1, U2 ≤
u2, ⋯ , Um ≤ um) (4) 

Where um represents a sample of a standard uniform 
random variables Ui (i = 1, ..., m). According to 
Sklar’s theorem [21], each continuous multivariate 
distribution F can be expressed in the form of (5); i.e., 
using a copula representation can couple multivariate 
distribution functions to their corresponding 
marginal distribution functions. He also showed that 
if the marginal distributions are continuous, then 
there is a unique copula representation. Otherwise, 
the copula Cm is uniquely determined on Ran F1, 
Ran F2, ..., Ran Fm, where Ran denotes "range". To 
apply a copula in practice, m uniform (on the unit 
interval) random variables, U1, U2, ..., Um should be 
considered like a simulation study. Here, m is the 
number of outcomes that you wish to understand. 
Unlike many simulation applications, we assume that 
u1, u2... um are dependent. This relationship is 
described through their joint distribution function, H 
(x1, x2... xm), which can be achieved by follows 
[26]:  

Cm[F1(x1), F2(x2), … , Fm(xm)] = F(x1, x2, … , xm) 
 (5) 

Where the function Cm is a copula, U is a uniform 
random variable and u is the corresponding to the 
actual data corresponding realization. To complete 
the construction, arbitrary marginal distribution 
functions F1(x1), F2(x2), ..., Fm (xm) were selected. 
Then, the function defines a multivariate distribution 
function, evaluated at x1, x2, ..., xm  with marginal 
distributions F1, F2, ..., Fm . 

The linear correlation coefficient, Pearson 
correlation, based on the covariance of two variables 
is not preserved by copulas. That is, two pairs of 
correlated variables with the same copula can have 
different correlations. However, the Kendall 

correlation, usually denoted by τ, and spearman 
correlation, denoted by ρ are a constant of the copula 
(6-7). That is, any correlated variables with the same 
copula will have the τ or ρ of that copula. 

τ =

4 ∬ C(u1, u2, … , um)
 

[0,1]m

∂2C

∂u1 ∂u2…∂um
du1du2 … dum −

1 (6) 

𝜌 = 12 ∬ C(u1, u2, … , um)
 

[0,1]m du1du2 … dum −

1 (7) 
 
2.2 Measuring Correlations  
To measure the strength of dependence between 
random variables, a measure of dependence is 
required. In [1], dependence refers to any statistical 
relationship between two random variable or two sets 
of data; correlation refers to any of a broad class of 
statistical relationships involving dependence. There 
are several definitions for the correlation coefficients 
in order to measure the degree of dependence. One 
well-known definition for measuring dependence is 
the Pearson correlation coefficient, which measures 
the degree of linear relationship between the random 
variables; and is fixed to linear transformations [27]. 
However, it has several disadvantages; in general, a 
non-linear scale transformation is applied to the 
multivariate distribution. Thus, the calculated 
correlations before and after the transformation (see 
(8)) results are in different values. Moreover, the 
Pearson correlation is not defined for some heavy-
tale distributions, where momentums do not exist, 
and values of correlation (ρp) depend on the marginal 
distributions of X and Y. Therefore, a rank 
correlation coefficient, such as Kendall’s τ or 
Spearman’s ρ, is more appropriate to fulfill the 
desirable characteristics of a measure of dependence. 

ρ
p

(X, Y) = cov(X, Y)/√(δ^2 (X). δ^2 (Y) ) (8) 
2.2.1  Kendall Correlation Coefficient 

The Kendall correlation, τ, represents the difference 
between probabilities of concordant and 
disconcordant pairs [28]. Let (ai, bi) and (aj, bj) be a 
set of joint observations from two random variables 
A and B respectively. Then, (ai, bi) and (aj, bj) are 
called concordant if the ranks for both elements 
agree: that is, if ((ai < aj) ↔ (bi < bj)) or ((ai > aj) ↔ 
(bi > bj)). On the other hand, (ai, bi) and (aj, bj) are 
called disconcordant if ((ai < aj) ↔ (bi > bj)) or ((ai 
> aj) ↔ (bi < bj)). In other words, (ai, bi) and (aj, bj) 
are called either concordant or discordant, if (ai − bj) 
× (ai − bj) is either positive or negative, respectively. 
Assume A and B are continuous random variables. 
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Let (ai, bi), (i = 1, ..., n) represent n random 
observations of (A, B ). Among n (n−1)/2 distinct 
pairs, let e and f is the number of concordant and 
disconcordant, respectively. Then, the Kendall 
coefficient, τ, is defined for this sample as below: 

τ = (𝑒 − 𝑓)/(𝑒 + 𝑓) = 2(𝑒 − 𝑓)/𝑛(𝑛 − 1)  (9) 

The Kendall correlation, τ, or Spearman correlation, 
ρ, is one of the most accurate methods in estimating 
the copula parameter, which can be expressed as (6-
7). Hence, the parameter Rho of the Normal 
(Gaussian) copula can be estimated as Rho which is 
equal to sin(π.τ/2), and the parameter θ of the Gumbel 
copula as θ=1/(1-τ). Other methods and more details 
for estimation of the copula parameter are 
summarized in Table 1. 

 
 

2.3   Elliptical copulas 
The Gaussian and Student’s t copulas are known as 
elliptical copulas. The Gaussian (Normal) copula is 
the most familiar among all copulas, and is 
distributed over the unit cube [0, 1] m. The m-
dimensional Normal copula is defined as: 

Cm(u1, u2, ⋯ , um; 𝑅ℎ𝑜) =
φm(φ−1(u1), φ−1(u2), ⋯ , φ−1(um); 𝑅ℎ𝑜) (10) 

Where φ-1(.) is the inverse cumulative distribution 
function (CDF) of a standard normal distribution 
function φ (.), and φm (.; Rho) is the m-dimensional 

standard multivariate normal distribution function 
with mean vector zero and covariance matrix equal to 
the correlation matrix, Rho. Closely related to the 
Gaussian (Normal) copula is the t-copula, 

Cm(u1, u2, ⋯ , um; 𝑅ℎ𝑜, 𝑣) =
φm(φ−1(u1; 𝑛𝑢), φ−1(u2; 𝑛𝑢), ⋯ , φ−1(um; 𝑛𝑢); 𝑅ℎ𝑜, 𝑣)
(11) 

Where φm is the m-dimensional standard 
multivariate Student’s t distribution with correlation 
matrix Rho and degrees of freedom parameter v > 2, 
and φ-1 is the inverse cumulative distribution 
function (ICDF) of a univariate Student’s t 
distribution with mean zero, and degrees of freedom 
nu. Both normal and Student’s t copulas are 
symmetrical, and the Student’s t copula converges to 
the Normal copula when v becomes infinity, the t 
copula assigns more probability to tail events than the 
Normal copula. Moreover, Student’s t copula can 
capture lower and upper tail dependence of data [24]. 
To simulate dependent multivariate data using a 
copula must specify each of the following: 

 The copula family and any shape 
parameters 

 The rank correlations among variables 
and 

 Marginal distribution for each variable 
The copula selection between the Student’s t copula 
and the Gaussian copula (GC) can be done by 
comparing the calculated values of the Hannan-
Quinn Information Criterion (HQIC) or Akaike 
Information Criterion (AIC) [24-29], which is 
defined as: 

AIC = (
2Na

Na−Ka−1
) Ka − 2. ln(Lmax) (12) 

HQIC = 2 ln(ln(Na)) × Ka − 2 . ln(Lmax) (13) 

Where Na is the number of observations (e.g. data 
values), Ka is the number of parameters to be 
estimated (e.g. the normal distribution has 2 
parameters: mu and sigma), and Lmax is the 
maximized value of the log-likelihood for the 
estimated model. A copula associated with the 
smallest value of the selected information criterion, 
is considered to be the best-fit copula [24].  

3  Load forecasting  

Studying the dependence structure of random 
variables is one of the most interesting topics in 
recent years. Methods that have been used to study 
the dependence of random variables were not 
efficient, but copula theorem is a useful method to 
model the dependencies between random variables. 

 
Fig. 2: general form of hourly load consumption for 

each day 
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Copula function is a new statistical method which is 
help to understand the relationship between several 
random variables in each event, so the dependencies 
between random variables which have been affected 
demand such as temperature, sun, and humidity [30]; 
can be obtained using copula. Therefore, copula 
method can be used to predict the amount of demand 
in short-term, and (mid/long)-term period.  

 
Fig. 4: Scatter plot between hourly load 

consumption of the day and the next day (Dtd, 
Dtm) 

 
Fig. 5: Scatter plot between hourly temperature 
of the day and the next-day hourly demand (θtd, 

Dtm) 

 
Fig. 6: General form of hourly demand for two 

consecutive days 

One of the important problems in load forecasting is 
to minimize prediction error by selecting the 
appropriate variables. In the STLF, less than a day 
(from an hour to several hours ahead) the prediction 
error of univariate models is less than multivariate 
models due to high inertia of temperature [24]. 
Univariate models are used to predict the load 
consumption in the next 4 to 6 hours due to 
unavailability or high cost of temperature forecasting 
in the next several hours. In the following, a new 
method was proposed using (t\Gaussian) copula to 
predict demand for an hour ahead as well as a day. In 

addition, the peak load of the next month was 
predicted base on the suggested model using GC. In 
the proposed algorithms both univariate and 
multivariate models have been investigated, and the 
results are discussed. 

 
Fig. 7: the proposed algorithm to forecast the next-day 

demand 
 

3.1   Short-term load prediction for the next 
hour demand 

3.1.1  Proposed the next-hour demand forecasting 
models 

In order to determine the parameters of copula and to 
predict the hourly load consumption, each day was 
divided into 24 equal parts, as 24 hours (Fig. 2). 
Where Li

j  represent load consumption in the ith hour 
of the jth day. In order to predict accurately demand, 
the same days were separated of each other in a week. 
As hourly load changing, load profile, of the same 
day was almost identical. For example, the days have 
been classified in two parts: working days and non-
working days. Also, usually the day of the week in 
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order to improve load forecasting accuracy can be 
divided into four categorized: holidays, a day before 
the holiday, a day after the holiday, and the rest day 
of the week. For example the day of the week in Iran 
categorized into four parts: Fridays, Thursdays, 
Saturdays, and other days of the week. For STLF in 
the ith hour of the jth day, above to 4 days similar to 
the jth day was chosen; while the distance between 
them and the jth day is less than 45 days. Considering 
the hourly loads of selected days as a vector, mf, 
which was defined as follows: 

mf = [Lf
j
, Lf

j−1
, Lf

j−2
, ⋯ , Lf

j−z
] ,   f = 1,2, … , 24 (14) 

Where z is the number of selected days. 24 vectors 
defined as (‘mf’), therefore 24 variables were 
considered; the defined random variables were 
correlated with each other. In other words, the 
amounts of load consumption at different times have 
been correlated with each other. Therefore, changes 
in electric power consumption at the specific time 
shows changing demand in other times. As before 
mentioned, according to the Sklar’s theorem the 
parameters of the copula, coefficient matrix, can be 
estimated by means of an approximation to Kendall’s 
or spearman’s rank correlation which represents rank 
correlation among variables. In the following the 
proposed method was presented using copula to 
forecast the next hour consumption. 

Proposed algorithm for STLF in this paper is as 
follows:  

1- Fit appropriate marginal distribution to variables 
mf (f = 1, 2, ..., 24); 

2- According to previous step use appropriate CDF 
to transform actual variables to Uw∈[0, 1], w = 1, 
2, ... 24;  

3- Rank correlation: Kendall’s Rank correlation (τ) 
or Spearman’s rank correlation (ρ) was 
calculated for the variables (6, 7); 

4- The parameters of the (t/Gaussian) copula were 
calculated by Kendall’s Rank correlation (τ) or 
Spearman’s rank correlation (ρ) among 24 
variables. It should be noted that the correlation 
matrix, Rho, dictate the parameters of the 
Gaussian or Student’s t copula, when satisfy 
positive semi-definiteness constraint. Rank 
correlation matrix, which was obtained in this 
step, is a matrix with dimensions 24×24 because 
of the 24 defined variables. Fig. 3 shows the 
general form of the rank correlation matrix with 
dimensions 24×24. For example β1

2 illustrates the 
rank correlation between the variables m1 and 
m2; 

5- Produce sufficient data on a unit hypercube 
[0, 1]24 with uniform marginal probability 
distributions, Usimulation, according to the 
characteristics of the Gaussian (Rho) or 
Student’s t (Rho, v) copula which is equal to 
sin(𝜋. 𝜏/2); 

6- an appropriate ICDF function was used base on 
step 1 to transform Usimulation to simulated 
random variables, which were the same 
characteristics as well as actual variables;  

7- According to the correlation matrix, Rho, which 
was obtained from the previous steps, each 
random variable was more dependence with one 
of the other variables. If βj

i is the greatest rank 
correlation in the jth row when (i<j), therefore the 
ith hour demand was used to forecast the jth hour 
load consumption; 

8- In order to predict demand in the jth hour of the 
day, the amount of the load consumption in the 
ith time of the same day was considered. 
Corresponding to the load consumed in the ith 
hour, the jth data from data sets, which was 
generated in step six, was selected. Selected Data 
was considered as the load forecasting in the jth 
hour. 

3.2   STLF for the next-day demand 
As mentioned, changing temperature affect the 
amount of demand, but in the short-term load 
forecasting (4 to 6 hour ahead) it can be ignored. In 
contrast, temperature variations were considered to 
predict the next-day hourly demand. Therefore, in 
order to predict next-day electricity demand, rank 
correlation between load consumption and 
temperature for each hour of the day and the next day 
was calculated. In this paper the hourly demand and 
temperature in 2018 was considered. It is noteworthy 
that it is possible to use any other type of data and the 
change of year and month has no effect on the 
performance of the proposed method. If there is 
statistical dependence between the above mentioned 
variables, the measure of rank correlation is applied. 
The rank correlation measures a monotonic 
relationship between variables. Rank correlation 
calculated for the variables: Dtd, θtd and Dtm in 2018 
were given by: 

Rr = [
1.00 0.34 0.34
0.34 1.00 0.76
0.34 0.76 1.00

] (15) 

Where Dtd, and Dtm is the hourly demand of the day, 
and the next day, respectively; and θtd is the hourly 
temperature of the day. A GC is a popular option for 
modeling the dependence structure between variables 
[31]. Parameters of the GC functions Rho are 
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estimated by means of an approximation to Kendall’s 
rank correlation (see table 1). This coefficient matrix 
has similar values to the rank correlations calculated 
in (15). The correlation coefficient of the GC is 
following as: 

 𝑅ℎ𝑜 = [
1.00 0.51 0.51
0.51 1.00 0.93
0.51 0.93 1.00

] (16) 

According to the rank correlation from (15) all 
coefficients in the Rr matrix are appropriate. It can be 
observed from (16) that the hourly load consumption 
of the day is strongly correlated with the next day 
hourly demand (ρ=0.93). Fig. 4 illustrates the 
relationship between the hourly demand of the day 
and the next day, which indicates strong monotonic 
dependence between hourly load consumption in two 
days. The coefficient correlation between hourly 
temperature of the days in 2018 and the hourly load 
consumption of the same days and the next days are 
0.51, which is relatively high. Fig. 5 shows the 
relationship between the hourly temperature of the 
day and the next-day demand. In order to forecast the 
next-day hourly demand in addition to the amount of 
electricity load consumption in each hour of the day, 
the changes in temperature of the day were also 
considered due to high relatively between 
temperature of the day and the next-day load 
consumption.  In the following, the simulation results 
of the proposed models are compared.  

3.2.1  Proposed next-day demand prediction 
algorithms 

Hourly load consumption for two consecutive days 
closely to the next day was considered, according to 
Fig.6. Where (d1, d2, ..., d24) and (d25, d26, ..., d48) 
dictate the hourly demand of the day and the next day, 
respectively. Two consecutive days have been 
classified in 5 parts (see Fig. 6.b); in order to predict 
the next day hourly demand several similar 
consecutive days as the day, and the next day were 
selected closely to them. More, the matrix copula 
coefficient, Rho, of the hourly load consumption of 
the day and the next day can be obtained due to the 
rank correlation of the demand for each hour of the 
day and the next day. In this paper, an algorithm was 
suggested to forecast the next day hourly demand 
(Fig. 7). To predict the next day load consumption, 
according to the proposed algorithm follow the steps 
below: 

 
Fig. 8: General form of hourly load consumption and 

temperature for the day and the next day hourly demand 

 
Fig. 9: General model, which was proposed to predict the 

next month peak demand 

θ1 θ2 θ24 d1 d48d47... ...

τ1 τ2 τ30 dm1 dm60dm59... ...

Table 2: characteristic of 24 variables Gaussian copulas  
  m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16 m17 m18 m19 m20 m21 m22 m23 m24 

m1 1 0.85 0.83 0.79 0.79 0.79 0.75 0.74 0.71 0.75 0.70 0.82 0.83 0.77 0.58 0.65 0.68 0.55 0.63 0.59 0.59 0.61 0.51 0.61 
m2 0.85 1 0.92 0.86 0.91 0.91 0.86 0.73 0.77 0.86 0.77 0.80 0.83 0.78 0.63 0.66 0.61 0.60 0.68 0.62 0.66 0.65 0.46 0.55 
m3 0.83 0.92 1 0.96 0.97 0.98 0.94 0.88 0.91 0.93 0.87 0.90 0.92 0.87 0.73 0.76 0.73 0.78 0.82 0.77 0.79 0.76 0.61 0.64 
m4 0.79 0.86 0.96 1 0.96 0.97 0.96 0.84 0.91 0.93 0.89 0.92 0.92 0.89 0.80 0.83 0.80 0.83 0.83 0.8 0.82 0.79 0.65 0.63 
m5 0.79 0.91 0.97 0.96 1 0.99 0.97 0.85 0.91 0.95 0.91 0.92 0.93 0.87 0.76 0.80 0.76 0.81 0.85 0.78 0.79 0.78 0.64 0.67 
m6 0.79 0.91 0.98 0.97 0.99 1 0.97 0.87 0.91 0.96 0.92 0.92 0.94 0.89 0.76 0.80 0.77 0.83 0.87 0.82 0.82 0.82 0.67 0.67 
m7 0.75 0.86 0.94 0.96 0.97 0.97 1 0.85 0.90 0.94 0.93 0.91 0.93 0.90 0.79 0.84 0.82 0.87 0.90 0.85 0.81 0.82 0.67 0.63 
m8 0.74 0.73 0.88 0.84 0.85 0.87 0.85 1 0.82 0.83 0.83 0.81 0.82 0.77 0.56 0.67 0.68 0.77 0.80 0.77 0.7 0.69 0.64 0.59 
m9 0.71 0.77 0.91 0.91 0.91 0.91 0.90 0.82 1 0.86 0.83 0.87 0.88 0.85 0.74 0.82 0.78 0.82 0.86 0.77 0.76 0.81 0.71 0.71 
m10 0.75 0.86 0.93 0.93 0.95 0.96 0.94 0.83 0.86 1 0.91 0.88 0.90 0.82 0.72 0.79 0.74 0.85 0.86 0.82 0.80 0.74 0.58 0.55 
m11 0.70 0.77 0.87 0.89 0.91 0.92 0.93 0.83 0.83 0.91 1 0.94 0.90 0.89 0.78 0.8 0.82 0.84 0.88 0.83 0.79 0.83 0.72 0.65 
m12 0.82 0.80 0.9 0.92 0.92 0.92 0.91 0.81 0.87 0.88 0.94 1 0.94 0.92 0.82 0.84 0.88 0.80 0.85 0.81 0.82 0.84 0.72 0.73 
m13 0.83 0.83 0.92 0.92 0.93 0.94 0.93 0.82 0.88 0.9 0.9 0.94 1 0.93 0.77 0.84 0.83 0.84 0.88 0.84 0.83 0.86 0.76 0.74 
m14 0.77 0.78 0.87 0.89 0.87 0.89 0.9 0.77 0.85 0.82 0.89 0.92 0.93 1 0.88 0.87 0.89 0.82 0.84 0.79 0.77 0.90 0.80 0.77 
m15 0.58 0.63 0.73 0.80 0.76 0.76 0.79 0.56 0.74 0.72 0.78 0.82 0.77 0.88 1 0.85 0.89 0.70 0.68 0.65 0.64 0.76 0.68 0.60 
m16 0.65 0.66 0.76 0.83 0.8 0.8 0.84 0.67 0.82 0.79 0.8 0.84 0.84 0.87 0.85 1 0.91 0.85 0.82 0.81 0.80 0.83 0.73 0.65 
m17 0.68 0.61 0.73 0.80 0.76 0.77 0.82 0.68 0.78 0.74 0.82 0.88 0.83 0.89 0.89 0.91 1 0.80 0.80 0.78 0.70 0.81 0.71 0.67 
m18 0.55 0.60 0.78 0.83 0.81 0.83 0.87 0.77 0.82 0.85 0.84 0.8 0.84 0.82 0.70 0.85 0.80 1 0.96 0.95 0.89 0.88 0.75 0.64 
m19 0.63 0.68 0.82 0.83 0.85 0.87 0.9 0.80 0.86 0.86 0.88 0.85 0.88 0.84 0.68 0.82 0.80 0.96 1 0.97 0.89 0.91 0.77 0.69 
m20 0.59 0.62 0.77 0.8 0.78 0.82 0.85 0.77 0.77 0.82 0.83 0.81 0.84 0.79 0.65 0.81 0.78 0.95 0.97 1 0.92 0.86 0.71 0.59 
m21 0.59 0.66 0.79 0.82 0.79 0.82 0.81 0.70 0.76 0.80 0.79 0.82 0.83 0.77 0.64 0.80 0.70 0.89 0.89 0.92 1 0.82 0.65 0.57 
m22 0.61 0.65 0.76 0.79 0.78 0.82 0.82 0.69 0.81 0.74 0.83 0.84 0.86 0.9 0.76 0.83 0.81 0.88 0.91 0.86 0.82 1 0.90 0.85 
m23 0.51 0.46 0.61 0.65 0.64 0.67 0.67 0.64 0.71 0.58 0.72 0.72 0.76 0.8 0.68 0.73 0.71 0.75 0.77 0.71 0.65 0.90 1 0.84 
m24 0.61 0.55 0.64 0.63 0.67 0.67 0.63 0.59 0.71 0.55 0.65 0.73 0.74 0.77 0.60 0.65 0.67 0.64 0.69 0.59 0.57 0.85 0.84 1 
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Step 1: at the first according to type of two 
consecutive days, the day and the next day, hourly 
load consumption of several same consecutive days 
were selected from historical demand data, closely to 
the next day. 

Step 2: the rank correlation between variables and 
marginal distribution of each variable were obtained 
in this step. 

Step 3: the parameter of the GC function, the 
correlation matrix, were calculated through the rank 
correlations among variables (table 1). 

Step 4: n0 data sets were generated based on the 
characteristic of GC; and the amount of n, and A0 
were set to 0, and 1000, respectively.  

Step 5: n0 data sets, which were generated by GC, 
can be illustrate as below: 

D1
n, D2

n, ⋯ , D24
n , D25

n , ⋯ , D47
n , D48

n ,   n = 1, … , n0 (17) 

Therefore, each data set (17) consists of the hourly 
load consumption for two consecutive days. In each 
string, the first 24 data dictate the hourly load 
consumption of the day and the rest of data shows the 
next-day hourly demand. Based on the generated 
data, the equation (18) was defined as follows: 

A = ∑ (Di
n − di)

2,   n = 1, … , n0
24
i=1  (18) 

Whereas di indicates the hourly load consumption of 
the day; which are wanted to predict the next 24 hours 
demand. At this stage, a data string among n0 
generated data sets was selected while minimizing 
the objective function (18). 

𝐷1
𝑏 , 𝐷2

𝑏, ⋯ , 𝐷24
𝑏 , 𝐷25

𝑏 , ⋯ , 𝐷47
𝑏 , 𝐷48

𝑏 . (19) 
 

Table 3: General form of produced data sets using copula  

m1 m2 m3 ⋯ m23 m24 

Load1
1 Load2

1 Load3
1 ⋯ Load23

1  Load24
1  

Load1
2 Load2

2 Load3
2 ⋯ Load23

2  Load24
2  

⋮ ⋮ ⋮ ⋯ ⋮ ⋮ 

Load1
k Load2

k Load3
k ⋯ Load23

k  Load24
k  

Step 6, 7, and 8: if the value of A is smaller than A0 
or the value of n is equal to n0, we go to the next step; 
otherwise we go back in the previous steps as shown 
in Fig. 7. In the eighth step, according to (19) a string 
of the data sets was selected whereas the first 24 data 
(𝐷1

𝑏, 𝐷2
𝑏 , ⋯ , 𝐷24

𝑏 ) was minimum distance with hourly 
demand of the day. Therefore, 𝐷25

𝑏 , ⋯ , 𝐷47
𝑏 , 𝐷48

𝑏  
dictate the prediction of the next-day hourly load 
consumption. Mean absolute percentage error 

(MAPE) was calculated based on Eq. 20 for the first 
24 data of the selected data set and hourly load 
consumption of the day. If MAPE is smaller than ε0, 
the selected data set is appropriate in order to predict 
the next-day electricity consumption; otherwise 
according to proposed algorithm (Fig. 7), we go back 
to step 3. 

MAPE =
100%

24
∑ |

dt−Dt

dt
|24

t=1  (20) 

In addition, to improve next-day demand forecasting 
accuracy temperature variations was considered. A 
general form of hourly load consumption on two 
consecutive days and changing temperature of the 
day was modeled as Fig. 8, Where (d1, d2, ..., d24) 
and (θ1, θ2, ..., θ24) dictate the hourly load 
consumption and temperature of the day, 
respectively; and (d25, d26, ..., d48) illustrate the 
hourly load consumption of the next day. In this case, 
the proposed algorithm can be used to predict the next 
day hourly load consumption. However, the number 
of variables is increased to 72. 

 
Fig. 10: Load profile of 20 similar days 

 

3.3  (Mid/Long)-term load forecasting model 

3.3.1 Forecasting the next month peak demand 

At the first daily peak load consumption of the next 
month was predicted, and then peak load 
consumption of the next month was obtained. In the 
proposed method using GC changing temperature 
was also considered to increase the forecast accuracy. 
In Fig. 9 the peak load forecasting model was 
proposed for the next month where (τ1, τ2, ..., τ30), 
(dm1, dm2, ..., dm30) represent the maximum 
temperature and the maximum amount of demand on 
each day of the month, respectively; and (dm31, 
dm32, ..., dm60) illustrate the maximum daily 
consumption of the next month. So, as before, to 
predict the daily load consumption of the next month; 
at first, Parameters of the GC functions, Rho, are 
estimated by means of an approximation to Kendall’s 
rank correlation based on historical data. Then, as the 
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algorithm proposed in the previous section n0 data 
sets were generated based on Rho. According to the 
maximum daily temperature, and maximum daily 
consumption of the month a data series was selected 
among data sets to minimize the objective function 
(21). 

A = ∑ ((DMi
n − dmi)

230
i=1 + (TMi

n − τi)
2), n =

1, … , n0 (21) 

Where TMi, and DMi show the daily maximum 
temperature and the daily maximum demand 
consumption of the month, respectively. Finally, 
according to Eq.21 a data sets was chosen whereas 
the first 60 data was minimum distance with 
maximum daily temperature and demand of the 
month, so the rest data of the selected data sets show 
the prediction of the next month daily peak demand. 

Table 4: Min., Max., and Ave. MAPE next hour demand 
prediction for April 2018  

  Mean-MAPE Max-MAPE Min-MAPE 
1E3 Gen. data using 

Gaussian copula 
 1.37 4.70 0.02 

1E5 Gen. data using 
Gaussian copula 

 0.98 2.46 0.03 
1E3 Gen. data using 
Student’s t copula 

 1.40 3.26 0.07 
1E5 Gen. data using 
Student’s t copula 

 0.91 2.72 0.16 

Table 5: the real valued of the AIC, and HQIC  
HQIC AIC  

618 1070 Gaussian copula 
617 1071 Student’s t copula 

Table 6: The MAPE of hourly demand prediction using 
Gaussian copula   

Number of Gen. data sets  
Number of selected days 
15 10 5 

1E2 1.68 1.28 1.15 
1E3 1.31 1.19 1.09 

 

4   Simulation 

4.1   Short-term load prediction 
To verify the proposed method of the STLF, 30 days 
in April 2018 was investigated due to high changes 
in temperature seasonality, and for example, 22th day 
in this case as a working day was explained for hourly 
load forecasting. To calculate the nonlinear 
relationship between the load consumption at 
different times in a day and to model the power 
consumption, which was used copula functions, 
demand profiles of the 20 days same as 22th of April 
2018, were selected. Fig. 10 demonstrates the load 
profiles of the 20 selected days; as it can be seen that 
the load profiles of the 20 selected days are usually 

similar, and only electric power consumption level is 
deferent on various days. In the following, the next 
hour demand is forecasted using Gaussian, and 
Student’s t copula, and the results are compared. 

 

4.1.1  Load prediction for the next hour using GC 

Based on the proposed method, the 20 actual data 
were considered for each hour of the selected days 
(14). According to the generated vectors, mf, the 
Kendall’s rank correlation (τ) among 24 variables 
were obtained (7), and the Parameters of the Gaussian 
and Student’s t copula functions are estimated by 
means of an approximation to Kendall’s rank 
correlation. The coefficient matrix, Rho, of the GC 
for 24 variables was illustrated in table. 2. As 
previously mentioned, the jth hour demand is more 
dependence with the load consumption in the ith 
hour, while (i<j). Information about the ith hour 
demand was used to predict the load consumption in 
the jth hour. For example, the load consumption in 
the 8th hour, m8, is more dependence with the load 
consumption in the 3rd hour (m3), so the 3rd hour 
demand was used to predict the 8th hour demand. 
According to the proposed algorithm at the first step 
for STLF, using appropriate CDF (usually normal 
CDF) to transform actual variables to Uw∈[0, 1], w = 

 
Fig. 11: PDF of hourly demand for 20 days and 1000 data sets 

that were generated using Gaussian copula 

 
Fig. 12: PDF of hourly demand for 20 days and a million data 

sets that were generated using Gaussian copula   
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1, 2, ... 24, and than 1000 data sets were generated 
which each data sets includes 24 data; based on Rho, 
(table. 2). 

 In the following, appropriate ICDF which was 
obtained from the first stage is applied to transform 
1000 data sets with a uniform distribution to the 
simulated variables which are the same characteristic 
(PDF) as well as the actual variables. The red curve 
in Fig. 11 illustrates the probability density function 
(PDF) of the hourly demand for the 20 selected days, 
and the blue curve shows the PDF of 1000 data sets, 
which were generated using GC. In addition, Fig. 12 
demonstrates the PDF of the hourly 20 selected days 
demand, and 1E5 data sets, which were produced 
using Gaussian (Normal) copula. Based on the results 
(Fig. 11-12), the PDF of the produced data using GC 
and the actual historical data of the hourly load 
consumption from 20 selected days are identical.  

 
Fig. 13: Actual load and next-hour demand prediction 

using GC in the 22th of April 2018 

  
Fig. 14: Actual load and next-hour demand prediction using 

Student’s t copula in the 22th of April 2018 

Table 3 shows the general form of the generated data 
sets which were produced, where k is the number of 
data sets. Considering the ith hour demand to predict 
the load consumption in the jth hour while βj

i is the 
greatest rank correlation in the jth row when (i<j) 
(Fig.3). Among generated data sets in the mi column 

(table 3), Loadi
k was chosen because the ith hour 

demand is closer to it. Therefore, the expected 
demand in the jth hour is equal to Loadj

k. To verify 
the proposed method 30 days were investigated, 
April 2018, to predict the next hour demand. In this 
case, according to the proposed method maximum, 
minimum, and average of MAPE is shown in table 4. 
As can be seen from this table, by using the Gaussian 
copula method, the difference between 1E5 
maximum and minimum value is minor than this 
value for 1E3. Similarly, by using the student’s t 
copula, the difference between Max-MAPE and Min-
MAPE is lower in the 1E5 generation data. To predict 
the 8th hour in the 22th day in this case according to 
the coefficient matrix (table 2) the load consumption 
in the 8th hour is more dependence with the 3rd hour 
demand (𝛽8

3 = 0.88). so in the third column of the 
generated data sets real valued k1 was chosen due to 
the smallest difference between the 𝐿𝑜𝑎𝑑3

𝑘 and the 
3rd hour demand, where k1ϵk, k = {1,…, 1000} 
(k1=491). The expected demand in the 8th hour is 
equal to 𝐿𝑜𝑎𝑑8

𝑘1. The red curve in Fig. 13 illustrates 
the actual load consumption profile; the blue and 
green curves show the forecasted next-hour demand 
with 1E5, and 1E3 generated data sets, respectively. 
As is clear from the simulation results prediction 
accuracy was increased due to increase the number of 
generated data sets (k). If the number of selected days 
is decreased closer to considered day, the MAPE is 
reduced because of more intervals due to some of 
geography and social changes (table 6). This is 
because of data generated method. When the data fed 
to the GC or GMM functions is closer to the 
considered day, the data generator functions can 
produce data sets with a minor errors. Choosing 4 or 
5 days within 15 to 25 days ago, next-hour demand 
was accurately forecasted based on the results. 
Therefore, the number and usage time of meters in 
distribution system is reduced using proposed 
methods.  

4.1.2  Load prediction for the next hour using 
Student’s t copula 

In this section, electric power consumption was 
predicted and modeled using Student’s t copula. In 
section III, the AIC, and HQIC criteria for selecting 
the best type of copula functions were expressed. It 
can be seen in table 5 that the value of AIC, and 
HQIC criteria based on the actual value of the 24 
variables for Gaussian and Student’s t copula are 
almost equal. Thus, it is expected that the results of 
using t copula is close to the results of using GC. Note 
that the GC is a special case of the t copula, where 
GC is the Student’s t copula with degree of freedom 
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to tend to infinity. STLF algorithm using GC and 
Student’s t copula are similar. However, to determine 
the parameters of the Student’s t copula degree of 
freedom, v, is calculated as well the coefficient 
matrix, Rho. For STLF (next hour) in 22 April 2018 
using Student’s t copula, coefficient matrix and 
degree of freedom were calculated by Kendall’s 
Rank correlation (τ), which v is equal to 3.5E7. The 
value of v shows that the Student’s t copula tends 
toward the GC. The blue and green curves with 1E5, 
and 1E3 generated data in Fig. 14 show the next hour 
forecasted load in 22th of April 2018, respectively. In 
addition, maximum, minimum, and average MAPE 
of next hour demand prediction for April 2018 are 
shown in table. 4. The results of the STLF using 
Student’s t and GC are almost identical. Using 
Student’s t copula to predict the next hour 
consumption by increasing the number of generated 
data sets, k, prediction accuracy increases as well as 
using GC.  

4.1.3  Load forecasting for the next day 

To evaluate the proposed method of the hourly next 
day demand prediction, hourly demand of November 
2018 with holidays and weekends were explored and 
the results were shown in Fig. 15, where blue line 
illustrates the actual hourly demand and green line 
shows the hourly next day demand prediction. In this 
case, the maximum, minimum, and average MAPE 
respectively are 0.08, 2.56, and 1.56 percentages, 
which are acceptable. For example based on the 
available historical data to date 29th of November 
2018, the hourly demand in the 11/30/2018 was 
forecasted. According to the proposed algorithm 
(Fig. 7); at first several similar consecutive days were 
selected based on the type of 11/30/2018.  

 
Fig. 16: 100 data sets were generated using GC 

 
Fig. 17: 1000 data sets were generated using GC 

It can be seen in table.7 to forecast hourly load 
consumption from 3 to 30 similar consecutive days 
have been selected. For each of the various states 
from 1E2 to 3E5 data strings were generated using 
GC that each data set includes 48 data. For example 
Fig. 16, 17 show 1E2, and 1E3 data sets using GC, 
while 5 consecutive similar days had been chosen. In 
order to predict hourly demand in this case, after the 
following step by step the proposed algorithm (Fig. 
7) the value of MAPE was calculated, according to 
the hourly load demand in 11/30/2018. Based on the 
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Fig. 15: Actual load (blue), next-day load prediction of the proposed method using GC with weekends and holidays of April 

2018 
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results (Table 7), if the number of selected similar 
two days were increased, the MAPE was high 
because of more intervals due to some of geography 
and social changes. 
 

Table 7: The MAPE of the predicted load consumption 
on Monday 1372/3/31 for various several days 

The 
number of 

Gen. data 
sets 

Number of selected days 

3 4 5 6 7 8 9 10 15 20 25 30 

1E2 1.74 1.59 1.51 2.05 1.56 2.13 2.22 5.3 3.74 5.21 3.24 2.71 

1E3 1.69 1.55 1.5 1.81 1.98 2.53 4.99 6.08 4.98 5.5 5.19 3.95 

2E3 1.93 1.54 1.44 1.85 1.9 2.02 5.23 2.95 5.41 4.36 6.97 6.93 

5E3 1.9 1.55 1.55 1.55 1.97 2.2 7.84 2.67 5.5 6.05 4.73 5.84 

1E4 1.68 1.56 1.49 2.23 2.08 2.75 5.22 3.61 7.76 2.87 3.25 4.31 

2E4 1.67 1.58 1.53 1.91 2.2 2.41 4.61 3.61 4.64 5.16 4.62 4.81 

3E4 1.67 1.56 1.64 2.6 2.01 2.11 5.04 3.68 6.32 7.65 6.81 6.66 

1E5 1.68 1.56 1.65 2.1 1.96 1.82 3.82 5.11 6.39 4.04 8.32 6.53 

2E5 1.67 1.59 1.64 2.58 1.89 2.16 5.01 5.66 6.09 3.92 9.06 7.66 

3E5 1.68 1.58 1.58 2.61 2.24 2.33 2.64 6.24 4.58 2.01 7.25 3.81 
 

In addition, according to the results 1.2% is the 
appropriate amount for ε0. Furthermore adding 
hourly temperature of the day to the load forecasting 
model the MAPE value increases between 0.05 to 0.2 
percent. Therefore, to increase the prediction 
accuracy using two consecutive days model (Fig. 6) 
and selecting 4 to 5 recently similar days were 
proposed to forecast the next-day demand because of 
considering changing temperature due to the high 
inertia of temperature and load. In the table 8, it is 
compared the Ave. MAPE (%) values for the last four 
years. It can be seen that the MAPE(%) of  the 
proposed is in Next-hour, next day and next month 
has the best Ave. MAPE (%) values than the ANN 
technique, MLP algorithm and hybrid intelligent 
approach. Therefore, the proposed method gives a 
better forecast error. 

Table 8: Ave. MAPE (%) values of the proposed method 
and ANN technique presented in [1-4] for the last four 

years of the available data   
Next-
month 

Next-
day 

Next-
hour  

0.85 1.58 0.99 Proposed method 
1.85 2.11 1.14 ANN technique 
2.27 1.62 1.43 MLP algorithm 

1.89 2.13 1.23 Hybrid Intelligent 
Approach 

 

 
Fig. 18: the closest data set of generated data (dot line) to 
the actual data (solid line) was produced using Gaussian 

copula 
 

4.2   Peak load forecasting of the next month 
To evaluate the proposed method to predict the next 
month peak demand using GC the daily peak demand 
was forecasted in October 2018. The case study is 5-
series data from April 2018 to September 2018 in 
accordance with the general form (Fig. 9) was 
selected to determine the characteristic of the GC. 
The GC is known as Elliptical copula. The m-
dimensional GC is presented as followings:  

𝐶𝑚(𝑢1, 𝑢2, … , 𝑢𝑚; 𝑅ℎ𝑜)
= 𝜑𝑚(𝜑−1(𝑢1), 𝜑−1(𝑢2), … , 𝜑−1(𝑢𝑚); 𝑹𝒉𝒐) 

(22) 

Where  𝜑−1(. )  is the inverse function of the standard 
normal distribution 𝜑(. ). Additionally, 𝜑𝑚(. ;  𝐑𝐡𝐨) 
is the m-dimensional standard distribution function 
with mean vector and covariance matrix similar to 
the, Rho.  

To simulate multiple dependent variables using the 
copula method each of the following should be clear: 

 The copula method type and its parameters. 
 The variables and correlations rank. 
 Distribution parameters for each variable. 

According to the characteristic of the GC 1000 series 
90 pieces of data were generated and finally, the best 
data set was selected based on Eq. 21. Fig. 18 shows 
the closest data set to the actual data, which was 
obtained by, suggested algorithm. Pink solid and dot 
line in Fig. 18 represents the maximum daily 
temperature in September 2018 and the first 30 data 
in selected data set, respectively; Blue solid line 
shows the maximum daily demand consumption 
during September and October, while the blue dots 
represent the generated data using GC. As stated 
previously, the 30 end generated data in each data set 
represents the maximum daily load consumption for 
the next month, October 2018, which were 
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forecasted. In this case study, MAPE of peak demand 
in October 2018 is equal to 1.69 percentages, while 
the average MAPE of the maximum daily 
consumption is 0.8 percentages.  

5  Conclusion 
The availability of data is a necessary aspect of the 
load prediction by the statistical and evolutionary 
methods, which was rarely recorded in distribution 
system due to the vastness of it. In this paper, a new 
method has been suggested based on copula in short-
term, and (mid\long)-term period to forecast the load 
consumption in distribution system. Samples are 
taken from data collected from residential units. This 
real data is fed to a GC or GMM function to generate 
new data. It is presented that appropriated results 
were achieved by the proposed method due to 
insufficient historical data; therefore the number and 
usage time of meters is reduced using presented 
method. Simulations illustrated that the proposed 
method has a low average MAPE compared with the 
other load forecasting techniques. Finally, the 
proposed algorithm using copula was strongly 
recommended that should be considered by utility 
companies to forecast demand for the efficient 
management in distribution systems.  
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