

An adaptive differential evolution algorithm with restart for solving

continuous optimization problems
JEERAYUT WETWEERAPONG PIKUL PUPHASUK

Department of Mathematics, Faculty of Science
Khon Kaen University, Khon Kaen, 40002

THAILAND
 wjeera@kku.ac.th ppikul@kku.ac.th

Abstract: A new adaptive differential evolution algorithm with restart (ADE-R) is proposed as a general-purpose
method for solving continuous optimization problems. Its design aims at simplicity of use, efficiency and
robustness. ADE-R simulates a population evolution of real vectors using vector mixing operations with an
adaptive parameter control based on the switching of two selected intervals of values for each scaling factor and
crossover rate of the basic differential evolution algorithm. It also incorporates a restart technique to supply new
contents to the population to prevent premature convergence and stagnation. The method is tested on several
benchmark functions covering various types of functions and compared with some well-known and state-of-art
methods. The experimental results show that ADE-R is effective and outperforms the compared methods.

Keywords: Continuous optimization, optimization method, adaptive differential evolution algorithm, adaptive
parameter control, restart technique

Received: January 21, 2020. Revised: June 2, 2020. Accepted: June 14, 2020. Published: June 25, 2020.

1 Introduction
 Solving continuous optimization problems is an
important task in engineering, economics and applied
sciences. Difficult optimization problems often occur
in computational systems involving several decision
variables. For example, clustering data vectors in
data science requires optimized conditions of many
representative clusters [1,2], and training artificial
neural networks needs optimized weights to classify
the input data in supervised learning [3,4]. Such
continuous optimization problems usually consist of
high dimensional objective functions which are
nonlinear and may contain large numbers of local
optima. Thus, the efficient optimization methods
become indispensable tools to handle the problems.
These solution methods can be divided into two
groups: local methods and global methods [5]. The
local methods use the derivatives (or some analytical
approximations of directions) and require the initial
approximate solutions, which makes them sensitive
to the initial guesses and limits their solving ability
for general applications. To address this issue, many
researchers have proposed the global methods or the
stochastic direct search methods as the alternative
approach. The available global methods include
population-based methods, swarm-based methods,
and most of nature-inspired methods [6].

 In this study, we focus on the differential
evolution algorithm (DE) which is a popular
population-based method [7]. DE has been shown to
be an efficient method but its performance depends
on the control parameters and the problems to be
solved [8, 9]. The aim of this work is to improve the
performance of the basic DE by incorporating a
suitable, adaptive parameter control and a restart
technique. The obtained adaptive differential
evolution algorithm is called ADE- R. It combines
two main features of the adaptive switching of two
selected intervals of values for each scaling factor
and crossover rate of the basic DE, and a simple
restart to prevent premature convergence and
stagnation. The enhanced performance of the
proposed ADE- R is empirically shown through
extensive comparisons with several well- known
methods on various benchmark functions.

2. Literature review
 2.1 The basic differential evolution
algorithm
 Differential evolution algorithm is proposed by
Storn and Price in the years 1995-1997 [7,10] . Due
to its simple structure and efficiency, it has attracted
many practitioners and researchers during the past
two decades. A large number of modifications,
improvements and variants have been proposed and

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 254 Volume 15, 2020

mailto:wjeera@kku.ac.th

tested [8,11-13]. Like genetic and evolutionary
algorithms that have been known many years before
[14], DE consists of three basic population
operations: mutation, crossover and selection. Its
main distinguishing features are the differential
mutation and the combined binomial crossover to
each target vector to obtain a trial vector for
comparing in the greedy selection. First, a population
of NP real vectors are initialized by uniform random
distribution in the search ranges. For each generation
and each target vector xi, three different random
population vectors 1 2 3, ,r r rx x x , which are also
different from the target vector, are used to generate
a mutant vector v by adding the scaled difference of
two vectors to another one: 1 2 3()r r rv x F x x= + −

where F is the scaling factor. Then, some components
of the target vector are exchanged with those of the
mutant vector according to the crossover rate C to
produce the trial vector. The target vector will be
replaced by the trial vector if it produces a better
solution. This description shows the three important
control parameters of the basic DE: the population
size NP, the scaling factor F and the crossover rate
C. These control parameters have been found to
affect the DE's performance greatly and in order to
successfully solve a specific problem, a user needs to
supply the suitable values [15-19]. Moreover,
different parameter settings may be required for
different stages of optimization. To overcome the
problems, various mechanisms for setting or
adjusting the control parameters and the adaptive
versions of the differential evolution algorithm have
been designed and proposed [20, 21].

2.2 The adaptive differential evolution
algorithms
 The review of some well-known adaptive
differential evolution variants are given. Some of
them are considered state-of-art methods and will be
used to compare their performances with that of our
proposed ADE-R. The concepts of parameter control
have been already widely studied for the evolu-
tionary algorithm [22] . They can be classified into
three groups: deterministic parameter control,
adaptive parameter control and self-adaptive
parameter control. Deterministic parameter control
alters the strategy parameters by some deterministic
rule without using any feedback from the search
while the adaptive parameter control monitors and
utilizes the feedback from the search. Self- adaptive
parameter control is a higher level of an adaptive
control which encodes some information into some
components of the individual vectors and utilizes the
evolution process to alter and promote the strategy

parameters. In 2005, Liu and Lampinen proposed a
fuzzy adaptive differential algorithm (FADE) by
using fuzzy logic controllers as the parameter control
for DE [23]. FADE uses the authors' designed fuzzy
sets and fuzzy rules to dynamically control the
parameters F and C. Compared with a static DE with
F=0.9 and C=0.9, FADE shows a better convergence
speed, particularly for high-dimensional test
functions. In 2006, Brest et al. presented a DE version
with self- adaptive control parameter settings, which
is called jDE [24] . The control parameters F and C

are adjusted by means of evolution and are applied at
the individual level. The values Fl=0.1 and Fu=0.9
are set and a new value F takes values

()l uF rand F= in the range of [0.1,1] in a random
manner with the probability t1=0.1. Similarly, C takes
new values in [0,1] in a random manner with the
probability t2=0.1. The new values of F and C are
obtained before the mutation and crossover are
performed and the better parameter values are
propagated by the selection operations. They tested
jDE on 25 benchmark functions and showed that it
outperformed overall the basic DE with static values
F = 0.5 and C = 0.9. It was also shown to outperform
FADE and other two variants of evolutionary
programming algorithm.
 Qin and Suganthan in 2005 [25], and Qin et al. in
2009 [26] proposed an adaptive DE called SaDE. It
is a self- adaptive DE that gradually self- adapts both
the trial vector generation strategies and their
associate control parameters. Four well- known
mutant vector generation strategies are used and the
probabilities to choose each strategy are initialized
to equal probability. The F and C values for each
individual population vector are initialized by normal
distributions N(0.5,0.3) and N(0.5,0.1), respectively.
A learning period (LP) is set to update the center of
the probability distribution of each strategy according
to the records from the successful selection
operations. Through the learning and evolution
process, SaDE aims to produce and promote the good
control parameters. On several test functions, they
have shown that SaDE outperformed overall the
basic DE algorithms with various static values of F

and C. It was also shown to outperform FADE and
slightly outperform overall jDE.
 At about the same time, Zhang and Sanderson
introduced an adaptive differential evolution with an
optional external archive called JADE in 2009 [27] .
JADE implements a new mutation strategy that
utilizes some top best individuals and the optional
archive operation that utilizes historical data to
provide information of progress direction. These two
operations aim to diversify the population and
improve the convergence performance. The trial

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 255 Volume 15, 2020

vectors that fail in the selection process are added to
the archive set of inferior solutions and used in the
mutation to diversify and balance the use of best
individuals, which also helps prevent getting trapped
to a local minimum. For each generation and for each
individual, the values F and C are randomly
initialized by using the Cauchy distribution and
normal distribution, respectively. Then at the end of
each generation, the centers of distributions are
updated according to the extracted information
obtained from the set of successful values. JADE has
two new parameters: p for the proportion of top best
individuals used in the mutation (the greediness of
the mutation strategy) and c for controlling the rate
of parameter adaptation. Note that for JADE, the
authors used larger sizes of populations for test
functions at higher dimensions (NP=30 for 10D ,
NP =100 for D = 30 and NP = 400 for D = 100). Their
simulation results show that JADE performs better
than the classic DE with F= 0.5 and C= 0.9, the
adaptive DE algorithms jDE and SaDE, the canonical
particle swarm optimization, and other evolutionary
algorithms from the literature in terms of
convergence performance for a set of 20 benchmark
problems. In addition, JADE with an external archive
shows promising results for relatively high-
dimensional problems.
 In 2016, Leon and Xiong presented the greedy
adapting differential evolution algorithm called
GADE which adds the greedy adjustment of the
control parameters F and C during the running of DE
[28] . The greedy search is performed for better
parameter assignments in successive learning periods
in the whole evolutionary process. For each learning
period, the current parameter assignment and its
neighboring assignments are tested, used and
propagated to the next learning period. The initial
center values of F and C are set to 0. 5. Then, the
greedy search creates two neighborhoods F-d1, F+d1
and C-d2, C+d2 where d1= d2 = 0.01. The best of them
is identified using the metric of progress rate and the
learning period LP = 20 (generations) is used to
update the new center values. They tested GADE
(with NP=60) on 25 benchmark functions in
comparison with five other DE variants including the
basic DE with F=0.9 and C=0.9, SaDE and JADE. It
gives overall best performance in terms of the
summation of relative errors.
 Recently in 2019, Opara and Arabas [29] have
presented a useful survey on theoretical results
obtained so far for DE. The survey gives a
comprehensive view on the understanding of the
underlying mechanisms of DE and suggests some
promising research directions. For the topic
concerning the convergence proofs of DE, they

pointed out several important works. Hu et al. proved
that the classical DE cannot guarantee global
convergence on a class of multimodal functions [30].
When the whole population is within a sufficiently
large attraction basin of a single local optimum, the
population cannot leave this basin because of elitist
selection. However, the convergence can be obtained
by softening the selection in DE and adding a
mutation strategy that samples from the whole
feasible set [31] . There is also another way to
introduce the global optimization property to DE by
re- initializing the population, or its part, for every
some fixed iterations [32]. This fact is utilized in the
design of our proposed ADE-R method in which a
restart technique is incorporated to enhance the
convergence, and at the same time to prevent the
premature convergence or the stagnation of the basic
DE.
 From the review of the selected adaptive DE
variants, we can observe the structural concepts and
the implementation techniques in designing an
adaptive DE. Our proposed ADE-R aims at
simplicity of use (both in the structure and
implementation), efficiency and robustness. Its
mutation and crossover strategies manage the
allowed values from the two selected intervals for the
control parameters F and C, respectively. The
probabilities for choosing these parameters are
controlled by a simple adaptive mechanism of
counter updating, adjusting and resetting.

 3 The design of the proposed ADE-R
method
 As a stochastic population-based method, the basic
DE improves the population of the individuals by the
mutation, crossover and selection operations with the
three main control parameters NP, F and C that are
kept fixed during the optimization process [7] . For
our proposed ADE-R, a relatively small population
size NP is used and also kept fixed. Using a small
population size is aimed for smaller number of
function evaluations and a faster convergence speed.
However, evolving a population of small size will
lead to premature convergence or stagnation easily
due to limited population diversity [15-19] . To
encounter these convergence problems, ADE- R
incorporates a simple restart technique to periodically
replace some of the worst individuals with the new
generated ones to supply new contents to the
population. The restart technique works together with
the adaptive mechanism of the algorithm.
 For each of the control parameters F and C, ADE-
R implements a probability-based switching control
to learn and bias toward the use of the suitable values

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 256 Volume 15, 2020

from the two selected intervals. The two intervals of
values for F are [0.5, 0.7] and [0.7, 0.9] , which are
aimed to provide short and long step sizes F in the
mutation. And the two intervals of values for C are
[0.0, 0.1] and [0.9, 1.0], which are aimed to provide
better crossover vectors for the cases of multimodal
functions and nonseparable functions, respectively.
 Without loss of generality, we consider the
minimization of a real-valued objective function

:[,]Df L U R→ , where L and U are the bounds for
each component of a vector in the domain of f. The
ADE-R algorithm can be described as follows.

Step 1 Set NP=20; NR =300 and PR =20 where NP

is the population size or the number of individual
vectors of dimension D, NR is for the restart
operation which restarts PR percent of the vectors
(excluding the best vector solution) at every NR
generations.

Step 2 Initialization: Initialize the population matrix

[]iP x= where ,[]i i jx x= for i =1,2,…,NP and j =
1,2,…,D and each component of the vector ix is
uniformly randomized in [L,U]. Evaluate all vectors

ix and record the current best vector xbest and its
best value fbest.

Step 3 Setting control parameters: Set the initial
probabilities pf1=pf2=0.5 and the corresponding
counters nf1= nf2 =0 for mutation. And pc1 = pc2 =
0.5 and the corresponding counters nc1 =nc2 =0 for
crossover.

Step 4 For each generation, generate two uniform
random numbers a1 and a2 between 0 and 1.
• If a1 < pf1, random F1, F2 in the range of [0.5, 0.7].
Otherwise, random F1, F2 in the range of [0.7, 0.9].
• If a2<pc1, random C in the range of [0.0, 0.1] .
Otherwise, random C in the range of [0.9, 1.0].

Step 5 Mutation: For each target vector ix , choose
five random integer indices r1,r2,r3,r4,r5 (r1 is also
different from i, the rest can be equal) from 1 to NP.
Generate a mutant vector v by the equation

1 1 2 3 2 4 5() ()r r r r rv x F x x F x x= + − + −

This equation samples the directions and step sizes F1
and F2, and also indirectly corrects the contents of
vector components by confirming the similar
contents and reducing the differences. The values of
F1 and F2 are generated, used and adapted for each
generation.

Step 6 Crossover: Construct the trial vector u (for
the target vector ix) by replacing some components
of ix with the corresponding components of mutant
vector v as follows:

; () or ,
;

j

j

ij

v rand C j IC
u

x otherwise

 =
=

where C is the crossover rate in the range of [0, 1]
and IC is a randomly fixed index from 1 to D (for
this current crossover), which guarantees a change of
at least one component. The function rand() gives a
uniform random number between 0 and 1 and
generates a new random number for each j = 1,…,D.
For each generation, the value of C is also adaptively
controlled in the same manner as those of F1 and F2.

Step 7 Selection: Apply the greedy selection. The
trial vector u will replace the associated target vector

ix if u is fitter (f(u) < f(ix)). It also updates the xbest

and fbest if f(u) < fbest. The dynamic updating of
the target vector is used for a fast evolution process.

Step 8 Updating control parameters: Update pf1, pf2,
pc1 and pc2 as follows. If a better solution found in
the selection is generated with a1 < pf1 then increase
nf1 : = nf1+ 1; otherwise, increase nf2 : = nf2 + 1.
Similarly, if it is generated with a2 < pc1 then increase
nc1 := nc1 + 1; otherwise, increase nc2 := nc2 + 1. If

1 2) 100(nf nf + then adjust nf1 := nf1 + 5 and nf2 :=
nf2 + 5 (to prevent both of them from 0). Update pf1
= nf1/(nf1+nf2) and pf2 = nf2/(nf1+nf2) . Similarly, if

1 2) 100(nc nc + then adjust nc1 := nc1 + 5 and nc2
:= nc2+ 5 (to prevent both of them from 0). Update
pc1 = nc1/(nc1+ nc2) and pc2 = nc2/(nc1 + nc2). Reset
the associate counters to 0 when the probabilities are
updated.

Step 9 Restart: Apply the restart for every NR

generations i. e. , when modulo(g,NR) =0 where g is
the current generation. Randomly choose PR percent
of population vectors (excluding the xbest) to be
replaced with the new generated ones.

Step 10 Repeat steps (4) - (9) until reaching the
stopping condition (the maximum number of
function evaluations nfmax or the value to reach VTR

for fbest) . Then, report the obtained best solution as
an approximate solution of the problem.

 The flowchart of the proposed ADE-R algorithm
is illustrated in Fig. 1.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 257 Volume 15, 2020

Set adaptive control parameters pf1=pf2=pc1=pc2=0.5 and nf1=nf2=nc1=nc2=0

i=1

Set a target vector ix

(Mutation)
Generate the mutant vector v

(Crossover)
Generate the trial vector u from xi and v

fbest<VTR or
nfe>nfmax

No

Yes

i=NP

Yes

Yes

Report xbest and fbest

Stop

No

No

g:=g+1 modulo(g,NR)=0

Random a1 and a2 between 0 and 1

Start

Set NP, nfmax, NR, PR, and VTR

Generate initial population. Evaluate all vectors xi ; i=1,2,…,NP.
Find and set xbest and fbest.=1,

Set the generation number g=1 and number of function evaluations nfe=0

Random F1 and F2 in [0.5,0.7] or [0.7,0.9] according to a1 and pf1

Random C in [0,0.1] or [0.9,1] according to a2 and pc1

(Selection)
Compute f(u), nfe:=nfe+1. Update xi by u if f(u)<f(xi).
Update xbest and fbest by u and f(u) if f(u)<fbest.

Update adaptive control parameters

Apply the restart operation according to PR

i:=i+1

Fig. 1. Flowchart of the proposed ADE-R method.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 258 Volume 15, 2020

Table 1. Test functions [25,30,31].

Function Formulation Type Global
optimum

Search
range

Sphere 2
1

1
()

D

i

i

f x x
=

=
US 0 [-100,100]D

Schwefel 1.2 2
2

1 1
() ()

D i

j

i j

f x x
= =

=
US 0 [-100,100]D

Rosenbrock 1
2 2 2

3 1
1

() 100() (1)
D

i i i

i

f x x x x
−

+

=

= − + −
UN 1 [-100,100]D

Schwefel 2.22
4

1 1

()
DD

i i

i i

f x x x
= =

= +
UN 0 [-100,100]D

Rastrigin 2
5

1
() 10 (10cos(2))

D

i i

i

f x D x x
=

= + −
MS 0 [-5.2,5.2]D

Schwefel
6

1

() 418.98288727243369

sin()
D

i i

i

f x D

x x
=

=

−

MS 420.96 [-500,500]D

Ackley
2

7
1

1

1() 20exp(0.2)

1exp(cos(2))

20 exp(1)

D

i

i

D

i

i

f x x
D

x
D

=

=

= − −

−

+ +

MN 0 [-32,32]D

Griewank
2

8
1 1

1() cos() 1
4000

DD
i

i

i i

x
f x x

i= =

= − +
MN 0 [-600,600]D

Shifted sphere 2
9

1
() ;

D

i

i

f x z z x o
=

= = −
US o [-100,100]D

Shifted Schwefel 1.2 2
10

1 1
() () ;

D i

j

i j

f x z z x o
= =

= = −
US o [-100,100]D

Shifted Rastrigin
2

11
1

() 10 (10cos(2));
D

i i

i

f x D z z

z x o

=

= + −

= −

MS o [-5,5]D

Shifted Ackley
2

12
1

1

1() 20exp(0.2)

1exp(cos(2)) 20

exp(1);

D

i

i

D

i

i

f x z
D

z
D

z x o

=

=

= − −

− +

+ = −

MN o [-32,32]D

Shifted Griewank
2

13
1 1

1() cos() 1 ;
4000

DD
i

i

i i

z
f x z

i

z x o

= =

= − +

= −

MN o [0,600]D

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 259 Volume 15, 2020

 From the above description, the proposed ADE-R
extends the basic DE by modifying and incorporating
the following important mechanisms: the adaptation
of the control parameters F and C based on the
switching of two selected intervals of values for each
of them, the mutation using five random population
vectors which adds two scaled difference pairs to
another vector, and the restart technique to
periodically supply small amount of new contents to
the evolving population.

4 Preliminary experiments and results
 This section presents the experiments to find
suitable parameters for the proposed ADE-R
algorithm and show its computational complexity
compared with that of the basic DE algorithm. The
test functions used for the preliminary experiments
and the comparison experiments in the next section
are listed in Table 1. They cover all 4 important types
of functions: unimodal and separable (US), unimodal
and nonseparable (UN) , multimodal and separable
(MS), and multimodal and nonseparable (MN). Their
formulations, types, global minima, and search

ranges are given. Note that the functions f9 to f13 are
the shifted versions of the preceding functions.
 The experiments are carried out on an Intel® core
i5 processor 2.0 GHz and 4 GB RAM. The ADE-R
algorithm is coded in Scilab version 6.0.2, an open
source software available at http://www.scilab.org/.

4.1 Finding suitable parameters for ADE-R
 The first experiment tests the performances of
ADE-R using various settings of NP, D, and NR on
two representative functions: highly nonseparable
Rosenbrock function and highly multimodal
Griewank function. Aiming for a small population,
the population sizes are varied as NP = 10, 20, 30.
The dimensions and the fixed periods (generations)
for applying a restart are varied as D = 5, 10, 20, and
NR = 200, 300, 400. The 1010VTR −= and nfmax =
20000D are used, and each configuration is
performed 30 independent runs. The number of
successful runs (NS), the mean of number of function
evaluations (Mean nfe) and the percentage of
standard derivation of the function evaluations
(%SD) are reported in Table 2.

Table 2. Performances of ADE-R with different settings of NP, D, and NR at 1010VTR −= averaged over
30 independent runs for Rosenbrock and Griewank functions.

NP D NR Rosenbrock Griewank
NS Mean nfe (%SD) NS Mean nfe (%SD)

10 5 200 28 33436.93(44.24) 12 9738.67(40.89)
300 28 25174.86(56.41) 11 8905.73(25.52)
400 28 24778.96(74.99) 10 7009.90(30.62)

10 200 28 130456.75(24.66) 10 16860.00(26.51)
300 29 121838.21(26.93) 14 14827.21(25.97)
400 25 122064.32(22.45) 7 15096.43(18.29)

20 200 22 310317.68(22.11) 21 14870.19(32.58)
300 24 277871.96(24.79) 22 14178.10(21.95)
400 23 274012.74(23.43) 25 13296.08(17.65)

20 5 200 30 16027.77(19.99) 28 30873.43(32.10)
300 30 15820.83(17.55) 30 28703.83(18.91)
400 30 16460.20(24.70) 30 27880.47(18.82)

10 200 30 39617.13(11.02) 27 58748.82(29.83)
300 30 40717.57(11.84) 30 47170.70(19.09)
400 30 41832.17(15.81) 28 43502.14(19.28)

20 200 30 131814.13(13.80) 27 57326.26(43.75)
300 30 132702.83(12.79) 30 41908.13(33.05)
400 30 131188.33(14.45) 30 37865.90(26.27)

30 5 200 30 28248.43(18.26) 30 52923.63(18.11)
300 30 28742.17(16.26) 30 49291.07(21.73)
400 30 27335.23(18.60) 30 46322.10(25.19)

10 200 30 79231.57(10.26) 28 120920.86(19.13)
300 30 77262.27(12.97) 30 78176.60(22.10)
400 30 81026.80(20.23) 30 70493.87(18.01)

20 200 30 241753.90(8.11) 30 126546.50(40.98)
300 30 232716.00(10.12) 30 68580.10(25.95)
400 30 231391.33(11.52) 30 60496.87(27.63)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 260 Volume 15, 2020

http://www.scilab.org/

 From this table, the convergence results are
considered first. The population size NP=10 is too
small since it gives the successful runs NS less than
30 for all combinations of D and NR. Both NP=20
and 30 give good convergence results but using
NP=30 requires more computations (nfe). For
NP=20, we can observe that only NR=300 gives
NS=30 for all cases of D. Thus, this setting (NP=20
and NR=300) is employed in the proposed ADE-R as
described in section 3.

4.2 Computational complexity of
 ADE-R
 This experiment compares the runtimes of the
ADE-R and basic DE algorithms for optimizing the
Sphere function at D=50. The ADE-R algorithm uses
the setting NP=20 and NR=300 from the first
experiment while the basic DE uses the setting
NP=50, F=0.5 and C=0.9 as recommended in [7].
The nfmax=60000 is set and at every 4000 function
evaluations the current best function values and the
runtimes for each algorithm are recorded. The
comparisons of their convergence and runtime
graphs are shown in Fig. 2. We can observe that
ADE-R gives slightly faster convergence speed and
also slightly less runtime. Thus, the proposed
algorithm does not incur more computational
complexity.

5 Comparison experiments and results
 To assess the performance of the proposed ADE-
R method, we compare it with several well-known

population-based methods including both the basic
methods and the more advanced methods with the
adaptive parameter controls. ADE-R and other
methods are tested on the 13 selected test functions
[25, 27, 28, 33, 34] and the performance comparisons
are divided into four experiments.
 The results of all comparison experiments are
shown in Tables 3-7. In each table, the best values are
indicated in bold. If the best function values or
numbers of function evaluations of the compared

methods are not reported in the references, the
notation “n/a” is used. If a method cannot succeed for
some runs out of the total runs, the notation “-” is
used. For the case that a method fails for all runs, the
notation “--” is used.
 In section 5.1, we implement the compared
methods by using the recommended settings from the
literature and use our stopping criterion 1010VTR −=
while the different stopping criteria are set according
to the original papers for sections 5.2, 5.3, and 5.4.
Except for the experiment in section 5.1, the results
of all other methods are taken from the original
papers.

5.1 Performance comparison of ADE-R with
basic DE, PSO, and ABC algorithms
 We compare the performances of ADE-R, basic
differential evolution algorithm (DE), particle swarm
optimization (PSO) and artificial bee colony
algorithm (ABC) . The experiment is conducted by
setting NP=50 for all classic algorithms whereas NP

=20 is used for ADE-R. The dimensions are varied

(a) (b)

Fig. 2. (a) Convergence graphs and (b) Runtimes (second) of ADE-R and basic DE for the

 50-dimensional Sphere function.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 261 Volume 15, 2020

as D=5, 10, 30, 50 and the maximum number of
function evaluations nfmax =50000D is set for all test
functions except the Rosenbrock function for which
nfmax=150000D is used. The value to reach

1010VTR −= is set and 50 independent runs are
performed for each algorithm. The control
parameters of basic DE are F=0.5 and C=0.9 as
recommended in [7] . For PSO, the inertia weight w

is started with 0.9 and decreased linearly to 0.4, and
C1=C2=2 is used as recommended in [35] . The
parameter for ABC is limit NP D= as in [36]. For
comparison, the number of successful runs (NS), the
mean of number of function evaluations (Mean nfe),
and the percentage of standard deviation of the
function evaluations (% SD) are reported.
 The results of comparing the performances of DE,
PSO, ABC and ADE-R for minimizing the test
function f1-f8 are shown in Table 3 and Table 4 and
the convergence graphs of all methods for D=30 are
illustrated in Fig. 3. For the ability and stability of
solving each problem, the number of successful runs

NS out of the total 50 runs is considered first. It is
evident that ADE-R outperforms all other methods.
ADE-R solves all test functions at all dimensions
D=5, 10, 30, 50 successfully for all 50 runs and gives
the smallest numbers of function evaluations. The
convergence graphs for D=30 in Fig. 3 clearly show
its fast convergence speeds.
 The basic DE can solve most of these test
functions except for one highly nonseparable
Rosenbrock function and two multimodal Rastrigin
and Schwefel functions at high dimensions D= 30,
50. Excluding these test functions, DE gives the
convergence graphs that are very close to those of
ADE-R.
 PSO cannot solve most of the multimodal
functions: Schwefel 1. 2, Rastrigin, Schwefel, and
Griewank, at high dimensions D=10, 30, 50. It can
solve all the other test functions including the
multimodal Ackley function. However, the
convergence graph comparison shows that it has
relatively slow convergence speeds.

Table 3. Performance comparison of DE, PSO, ABC and ADE-R at 1010VTR −= averaged over 50 independent
runs for f1-f4.

Functions D Statistics DE PSO ABC ADE-R Significance
 5 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 6128.28(3.28) 46902.14(3.34) 11902.52(4.08) 4630.68(4.44)
 10 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 13090.36(3.27) 100998.12(2.11) 26500.72(2.84) 10259.34(3.40)
Sphere 30 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 38969.54(2.51) 358375.98(1.47) 88664.60(2.22) 34442.76(3.14)
 50 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 69677.70(5.71) 648755.48(1.21) 153280.84(2.06) 60437.66(2.38)
 5 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 7477.16(3.35) 53117.42(2.93) 292925.40(2.92) 6717.48(12.55)
 10 NS 50 50 0 50 +,+,++
Schwefel
1.2

 Mean nfe(%SD) 21477.88(5.12) 130061.72(2.39) -- 19934.66(10.45)
30 NS 50 50 0 50 +,+,++

 Mean nfe(%SD) 227246.24(6.55) 609435.24(1.90) -- 193841.64(6.48)
 50 NS 50 50 0 50 +,+,++
 Mean nfe(%SD) 673550.84(4.81) 1289121.40(1.49) -- 569999.36(5.08)
 5 NS 36 44 0 50 +,+,++
 Mean nfe(%SD) 19146.72(79.19) 217331.33(6.16) -- 16641.94(27.34)
 10 NS 48 30 0 50 +,+,++
Rosen- Mean nfe(%SD) 179004.50(54.91) 419833.73(5.80) -- 41992.46(16.08)
brock 30 NS 36 33 0 50 +,+,++
 Mean nfe(%SD) 3270826.30(17.15) 1253743.60(7.23) -- 244203.76(16.99)
 50 NS 0 25 0 50 ++,+,++
 Mean nfe(%SD) -- 1952210.60(7.52) -- 531859.28(7.97)
 5 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 10161.42(3.23) 59720.16(2.03) 19896.14(3.21) 7245.86(3.77)
Schwefel
2.22

10 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 21974.00(2.28) 116789.46(1.62) 42847.30(1.76) 15661.94(3.06)

30 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 62175.04(2.06) 385935.66(1.47) 139942.50(1.27) 51409.22(1.77)
 50 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 98524.98(4.44) 688973.98(1.24) 240754.64(1.01) 89421.32(2.25)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 262 Volume 15, 2020

 ABC can solve the Sphere, Schwefel 2.22, and all
of the multimodal functions. For these test functions,
it has better convergence speeds than PSO. However,
it cannot solve the Rosenbrock function for all
dimensions and cannot solve the Schwefel 1.2
function at D=10, 30, 50.
 For the performance comparison of DE and
ADE-R, the results clearly show the benefits of the
parameter adaptation of ADE-R. The basic DE using
the fixed parameters F= 0.5 and C= 0.9, as widely
recommended and accepted, can provide generally
good performances for easy- to- moderate problems
with low dimensions (10D), but not for the highly
nonseparable and multimodal functions, especially at
high dimensions.
 The Welch t- test at a 0.05 level of significance
shown in the last column is also used to compare the
performances of ADE-R with those of DE, PSO, and
ABC in this order. The values “+ ”, “0”, and “-”
denote that ADE-R performs significantly better
than, similarly to, and worse than a compared
method. The value “++” denotes that the solutions of

ADE-R can reach 1010VTR −= while those of the
compared methods cannot.

5. 2 Performance comparison of ADE- R with
jDE, JADE and IABC algorithms
 In this experiment, the performances of ADE-R
are compared with those of jDE, JADE [27] and
IABC [34] on the test functions f1 -f8 at dimension
D=30. The nfmax values are set between 45 10 to

62 10 depending on the original settings for the
considered functions. For each algorithm, 50
independent runs are performed, and the mean of best
function values (Mean fb) and the standard deviation
(SD) are reported in Table 5. The results of JADE are
from its original authors while the results of jDE are
from the experimental runs of the JADE's authors.
The results of both methods are reported in [27]. The
results of IABC are compared with those of jDE and
JADE in [34]. For difficult test functions, this
experiment uses two settings of the maximum
number of function evaluations (nfmax) as in [27],

Table 4. Performance comparison of DE, PSO, ABC and ADE-R at 1010VTR −= averaged over 50 independent
runs for f5-f8.

Functions D Statistics DE PSO ABC ADE-R Significance
 5 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 21221.80(13.61) 54629.10(7.12) 17803.10(6.05) 6170.54(7.36)
 10 NS 18 16 50 50 +,+,+
 Mean nfe(%SD) 80390.78(24.20) 128731.12(10.78) 39803.90(4.09) 13432.66(4.34)
Rastrigin 30 NS 0 0 50 50 ++,+,+
 Mean nfe(%SD) -- -- 140665.04(6.26) 54003.82(5.02)
 50 NS 0 0 50 50 ++,++,+
 Mean nfe(%SD) -- -- 259768.62(5.66) 119735.84(5.21)
 5 NS 50 42 50 50 +,+,+
 Mean nfe(%SD) 11020.82(11.79) 204021.26(5.68) 17854.04(5.82) 5657.38(6.07)
 10 NS 49 0 50 50 +,+,+
 Mean nfe(%SD) 42320.12(16.83) -- 39273.44(4.36) 12211.36(4.90)
Schwefel 30 NS 0 0 50 50 ++,++,+
 Mean nfe(%SD) -- -- 132172.08(3.85) 43238.80(2.45)
 50 NS 0 0 50 50 ++,++,+
 Mean nfe(%SD) -- -- 234691.00(4.20) 80506.92(3.83)
 5 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 10602.18(2.73) 61491.54(2.45) 22892.26(2.42) 7985.04(4.10)
 10 NS 50 50 50 50 +,+,+
 Mean nfe(%SD) 22202.78(2.25) 122731.42(1.48) 48612.60(2.06) 17211.06(3.23)
Ackley 30 NS 49 50 50 50 +,+,+
 Mean nfe(%SD) 63378.69(3.05) 416518.56(1.49) 154410.00(1.02) 55635.70(2.32)
 50 NS 37 50 50 50 +,+,+
 Mean nfe(%SD) 112384.08(4.43) 751469.76(1.24) 262882.40(1.32) 95548.08(1.77)
 5 NS 43 6 49 50 +,+,+
 Mean nfe(%SD) 38394.93(14.61) 87352.50(42.61) 41340.61(27.10) 25422.72(19.98)
 10 NS 13 0 43 50 +,++,+
 Mean nfe(%SD) 38748.77(25.21) -- 59967.16(29.67) 44236.26(21.61)
Griewank 30 NS 36 0 50 50 +,++,+
 Mean nfe(%SD) 40416.31(3.55) -- 108302.52(6.49) 42939.32(15.61)
 50 NS 37 0 50 50 +,++,+
 Mean nfe(%SD) 69884.35(5.83) -- 172363.84(4.77) 64940.34(6.51)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 263 Volume 15, 2020

 Fig. 3. Convergence graphs of DE, PSO, ABC and ADE-R for 30-dimensional functions.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 264 Volume 15, 2020

and compares the final function values. We consider
the obtained function value less than 2010− as 0. Also
note that the author of IABC selected only either one
of the settings for those test functions.The last
column of the table shows the performances of ADE-
R compared with those of jDE, JADE, and IABC in
this order using the Welch t-test at a 0.05 level of
significance. The notation “*” denotes that the values
of compared methods are not reported.
 For the Sphere, Schwefel 1.2 and Schwefel 2.22
functions, all methods can successfully solve the
problems with the means equal to 0 except for jDE
on Schwefel 1.2. The ADE-R clearly outperforms on
Rosenbrock function for both nfmax settings while all
other methods perform quite poorly on this function.
For Rastrigin and Schwefel functions ADE- R
performs better than other methods when considering
both nfmax settings.
 For the other two multimodal Ackley and
Griewank functions, all methods give comparable
results. jDE performs quite poorly for the low nfmax

settings while IABC performs slightly better for these
settings on both functions. JADE performs slightly
better on Ackley function for the high nfmax setting.

5.3 Performance comparison of ADE-R with
SaDE algorithm
 This experiment compares the performances of
ADE-R and SaDE [26] on 8 test functions including
5 shifted ones at dimensions D=10, 30. Each method
performs 30 independent runs at 510 .VTR −= The NS
and Mean nfe of both algorithms are presented in
Table 6. The results of SaDE are not provided in [26]
for particular test functions at some dimensions.
ADE-R successfully solves all functions at both
dimensions and clearly outperforms on Rosenbrock,
Schwefel, Shifted Rastrigin and Shifted Griewank
functions. Moreover, ADE-R performs much better
than SaDE for Schwefel function at both dimensions
and for Shifted Rastrigin at D=10 with each nfe value
of ADE-R being roughly half of that of SaDE. For
other functions, both SaDE and ADE-R give
comparable results. SaDE performs slightly better on
Schwefel 2.22, Shifted Sphere, Shifted Schwefel 1.2
and Shifted Ackley functions at high dimension
D=30. However, it succeeds only 24 out of 30 runs
for Shifted Griewank at D=30. From this, we may
conclude that for overall cases, ADE-R performs
better than SaDE.

Table 5. Performance comparison of jDE, JADE, IABC and ADE-R for 30-dimensional functions
averaged over 50 independent runs.

Functions nfmax Statistics jDE[27] JADE[27] IABC[34] ADE-R Significance
Sphere 150,000 Mean fb 0 0 0 0 +,0,0
 (SD) (0) (0) (0) (0)
Schwefel 1.2 500,000 Mean fb 5.20E-14 0 0 0 +,0,0

 (SD) (1.10E-13) (0) (0) (0)
Rosenbrock 300,000 Mean fb 1.30E+01 8.00E-02 n/a 8.26E-13 +,+,*
 (SD) (1.40E+01) (5.60E-01) (n/a) (5.81E-12)
 2,000,000 Mean fb 8.00E-02 8.00E-02 4.75E-03 0 +,+,+
 (SD) (5.60E-01) (5.60E-01) (4.22E-02) (0)
Schwefel
2.22

200,000 Mean fb 0 0 0 0 0,0,0
 (SD) (0) (0) (0) (0)

Rastrigin 100,000 Mean fb 1.50E-04 1.00E-04 0 0 +,+,0
 (SD) (2.00E-04) (6.00E-05) (0) (0)
 500,000 Mean fb 0 0 n/a 0 +,+,*
 (SD) (0) (0) (n/a) (0)
Schwefel 100,000 Mean fb 7.90E-11 3.30E-05 0 0 +,+,0
 (SD) (1.30E-10) (2.30E-05) (0) (0)
 900,000 Mean fb 0 0 n/a 0 0,0,*
 (SD) (0) (0) (n/a) (0)
Ackley 50,000 Mean fb 3.50E-04 8.20E-10 3.87E-14 1.98E-09 +,-,-
 (SD) (1.00E-04) (6.90E-10) (8.52E-15) (1.07E-09)
 200,000 Mean fb 4.70E-15 4.40E-15 n/a 7.55E-15 -,-,*
 (SD) (9.60E-16) (0) (n/a) (0)
Griewank 50,000 Mean fb 1.90E-05 9.90E-08 0 1.24E-11 +,+,-
 (SD) (5.80E-05) (6.00E-07) (0) (5.89E-11)
 300,000 Mean fb 0 0 n/a 0 0,0,*
 (SD) (0) (0) (n/a) (0)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 265 Volume 15, 2020

Table 6. Performance comparison of SaDE and
ADE-R for 10 and 30-dimensional functions at

510VTR −= averaged over 30 independent runs.

Function D Statistics SaDE
[26]

ADE-R

Rosenbrock 10 NS 30 30
 Mean nfe 42446 34053
30 NS n/a 30
 Mean nfe n/a 221587

Schwefel 2.22 10 NS n/a 30
 Mean nfe n/a 8698
30 NS 30 30
 Mean nfe 25137 29739

Schwefel 10 NS 30 30
 Mean nfe 16663 8429
30 NS 30 30
 Mean nfe 77920 30944

Shifted
sphere

10 NS 30 30
 Mean nfe 8375 6537
30 NS 30 30
 Mean nfe 20184 22426

Shifted
Schwefel 1.2

10 NS 30 30
 Mean nfe 14867 13409
30 NS 30 30
 Mean nfe 118743 125536

Shifted
Rastrigin

10 NS 30 30
 Mean nfe 23799 9574
30 NS 30 30
 Mean nfe 58723 42367

Shifted
Ackley

10 NS 30 30
 Mean nfe 12123 9761
30 NS 30 30
 Mean nfe 26953 32201

Shifted
Griewank

10 NS 30 30
 Mean nfe 35393 25427
30 NS 24 30
 Mean nfe - 32643

5. 4 Performance comparison of ADE-R with
GADE algorithm
 The performances of ADE-R and GADE [28] are
compared on test functions with D= 30. For each
method, 30 independent runs are performed at

810 .VTR −= The Mean fb and SD for both algorithms
are presented in Table 7. The Welch t- test at a 0.05
level of significance is conducted and the results are
shown in the last column. The table shows that ADE-
R can successfully solve all 10 test functions whereas
GADE can successfully solve only 7 functions. The
function values obtained by GADE for Schwefel 1.2,
Rosenbrock, and Shifted Schwefel 1.2 functions are
quite poor. This indicates that ADE-R is more
effective than GADE.

Table 7. Performance comparison of GADE and
ADE-R for 30-dimensional functions at 810VTR −=

averaged over 30 independent runs.

Function Statistics GADE
[28]

ADE-R Signi-
ficance

Sphere Mean fb 0 0 0
(SD) (0) (0)

Schwefel
1.2

Mean fb 3.09E-01 0 +
(SD) (7.00E+00) (0)

Rosenbrock Mean fb 2.54E+01 0 +
(SD) (5.26E+01) (0)

Schwefel
2.22

Mean fb 0 0 0
(SD) (0) (0)

Rastrigin Mean fb 0 0 0
(SD) (0) (0)

Ackley Mean fb 0 0 0
(SD) (0) (0)

Griewank Mean fb 0 0 0
(SD) (0) (0)

Shifted
sphere

Mean fb 0 0 0
(SD) (0) (0)

Shifted
Schwefel 1.2

Mean fb 6.63E+00 0 +
(SD) (2.60E+01) (0)

Shifted
Rastrigin

Mean fb 0 0 0
(SD) (0) (0)

6 An application of ADE-R for solving
an engineering design problem
 The ADE-R algorithm is applied to solve the
cantilever beam design problem [37] which is related
to the weight optimization of a cantilever beam with
square cross section (see Fig. 4). The beam is rigidly
supported at node 1, and there is a given vertical force
acting at node 6. The design variables are the heights
(or widths) of the different beam elements. The
bound constraints are set as 0.01 100.jx This
problem can be written as follows:

Min f(x) = 0.0624(x1 + x2 + x3+ x4+ x5)

subject to

g(x) 3 3 3 3 3
1 2 3 4 5

61 37 19 7 1 1 0.
x x x x x

= + + + + −

Fig. 4. Cantilever beam design [37].

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 266 Volume 15, 2020

 Since the problem is constrained, the penalty
technique is adopted to adjust the objective function.
The penalty function is defined by

p(x) = 100[min(0,g(x))].
 Then the unconstrained objective function

 F(x) = f(x)+p(x)

is used for ADE-R. Note that only the feasible
solutions with p(x)=0 are considered at the end of the
optimization process. The maximum number of
generations maxgen=500 is set and 30 independent
runs are performed.
 The ADE-R algorithm gives the convergence
results for all 30 runs with the max, mean, min, and
SD of fmin values equal to 1.3412507, 1.340127,
1.3399566, and 0.0002793, respectively. The best
solutions of the problem obtained by ADE-R,
Cuckoo Search algorithm (CS) [37], and analytic
method [38] are compared and presented in Table 8.

7 Discussion
 In section 4.1, the effect of using different settings
of population size (NP), dimension (D) and the fixed
period of generations for a restart (NR) on the
performance of ADE-R algorithm is verified. It has
been shown that ADE-R using NP = 20 and NR = 300
can achieve good convergence results. It also shows
that the adaptive control of the scaling factor and
crossover rate values, and a restart technique allow
the use of the relatively small population size. In
section 4.2, the ADE-R with this setting has been
shown to have the same computational complexity as
that of the basic DE.
 The performance comparisons of ADE-R and
several other methods are conducted in section 5. In
section 5.1, ADE-R has been shown to significantly
outperform the basic DE, PSO, and ABC algorithms.
In section 5.2, 5.3 and 5.4, ADE-R has also been
shown to overall outperform four well-known
adaptive DE variants.
 In section 6, the ADE-R algorithm is applied to
solve a constrained engineering design problem. By
using the penalty technique to transform the problem
into the unconstrained optimization problems, ADE-
R can solve it very well and also gives high quality
solutions.

 The setting of NP=20 and NR=300 for the proposed
ADE-R is only a general suggestion obtained in this
study. Although it gives the satisfied performances
on the comparison tests and a real-world application,
applying the algorithm to other specific optimization
problems may require a minor adjustment of these
control parameters.

8 Conclusions
 In this research, an efficient adaptive differential
evolution algorithm named ADE-R is presented for
solving a wide range of continuous optimization
problems. It is aimed as a general-purpose
optimization method which has a simple structure
and is easy to implement. The parameter adaptation
based on the switching of two selected interval values
for each of the scaling factor and crossover rate of the
basic DE, the associated mutation operation, and a
restart technique are designed to work together to
balance both intensifying and diversifying searches.
The restart technique is particularly helpful in
preventing premature convergence and stagnation.
Extensive experiments show that ADE-R
outperforms several well-known and state-of-art
methods.

Acknowledgment

The authors would like to thank Department of
Mathematics, Faculty of Science, Khon Kaen
University for simulation equipment support.

References:

[1] S. J. Nanda and G. Panda, A survey on nature

inspired metaheuristic algorithms for
partitional clustering, Swarm and Evolu-

tionary Computation, 16, 2014, pp. 1-18.
[2] A. José-García and W. Gómez-Flores,

Automatic clustering using nature-inspired
metaheuristics: A survey, Applied Soft

Computing, 41, 2016, pp. 192-213.
[3] L. Hamm, B. W. Brorsen and M. T. Hagan,

Comparison of stochastic global optimization
methods to estimate neural network weights,
Neural Process Lett, 26, 2007, pp. 145-158.

Table 8. The best solutions for the cantilever beam design problem obtained by ADE-R, CS algorithms and the
analytic method.

Methods x1 x2 x3 x4 x5 fmin
CS [37] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
ADE-R 6.0160544 5.3102067 4.4949328 3.5003258 2.1521444 1.3399566
Analytic method [38] 6.0160159 5.3091739 4.4943296 3.5014750 2.15266533 1.339956367

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 267 Volume 15, 2020

[4] A. P. Piotrowski, Differential evolution
algorithms applied to neural network training
suffer from stagnation, Applied Soft
Computing, 21, 2014, pp. 382-406.

[5] G. Venter, Review of optimization techniques,
in: R. Blockley, S. Wei (eds.), Encyclopedia
of aerospace engineering, Wiley and Sons,
2010.

[6] I. Boussaïd, J. Lepagnot and P. Siarry, A
survey on optimization metaheuristics,
Information sciences, 237, 2013, pp. 82-117.

[7] R. Storn and K. Price, Differential evolution:
A simple and efficient heuristic for global
optimization over continuous spaces, J Glob

Optim, 11(4), 1997, pp. 341-359.
[8] S. Das and P. N. Suganthan, Differential

evolution: A survey of the state- of- the- art,
IEEE Trans Evol Comput, 15(1), 2011, pp.
4-31.

[9] S. Das, S.S. Mullick and P. Suganthan, Recent
advances in differential evolution - An
updated survey, Swarm Evol. Comput, 27,
2016, pp. 1-30.

[10] R. Storn and K. Price, Differential evolution

a simple and efficient adaptive scheme for

global optimization over continuous spaces,
Technical Report TR-95-012, ICSI, 1995.

[11] R. Storn, Differential evolution research-
trends and open questions, in: U. K.
Chakraborty (ed.), Advances in Differential

Evolution, Springer, 2008, pp. 1-31.
[12] F. Neri and V. Tirronen, Recent advances in

differential evolution: A survey and
experimental analysis, Artif Intell Rev, 33,
2010, pp. 61-106.

[13] T. Eltaeib and A. Mahmood, Differential
Evolution: A Survey and Analysis, Applied

Sciences, 8(10), 2018, pp. 1945.
[14] T. Bäck and H. P. Schwefel, An overview of

evolutionary algorithms for parameter opti-
mization, Evol. Comput, 1(1), 1993, pp. 1-23.

[15] J. Lampinen and I. Zelinka, On stagnation
of the differential evolution algorithm, in: R.
Matouek, P. Omera (eds.) , Proceedings of

Mendel 2000, 6th international conference on

soft computing, 2000, pp. 76-83.
[16] R. Gamperle, S. D. Muller and P.

Koumoutsakos, A parameter study for
differential evolution, in: A. Gremla, N. E.
Mastorakis (eds.), Advances in intelligent

systems, fuzzy systems, evolutionary

computation, WSEAS Press, 2002, pp. 293-
298.

[17] D. Zaharie, Critical values for control
parameters of differential evolution

algorithm, Proceedings of the 8th

international Mendel conference on soft

computing, 2002, pp. 62-67.
[18] D. Zaharie, Control of population diversity

and adaptation in differential evolution
algorithms, Proceedings of the 9th

international Mendel conference on soft

computing, 2003, pp. 41-46.
[19] A. P. Piotrowski, Review of differential

evolution population size, Swarm Evol.

Comput., 32, 2017, pp. 1-24.
[20] T. C. Chiang, C. N. Chen and Y. C. Lin,

Parameter control mechanisms in differential
evolution: a tutorial review and taxonomy,
2013 IEEE symposium on differential
evolution (SDE), 2013, pp. 1-8.

[21] R. D. Al-Dabbagh, F. Neri, N. Idris, and M.
S. Baba, Algorithmic design issues in
adaptive differential evolution schemes:
Review and taxonomy, Swarm Evol.

Comput., 43, 2018, pp. 284-311.
[22] A. E. Eiben, R. Hinterding, and Z.

Michalewicz, Parameter control in
evolutionary algorithms, IEEE Trans. Evol.

Comput., 3(2), 1999, pp. 124-141.
[23] J. Liu and J. Lampinen, A fuzzy adaptive

differential evolution algorithm, Soft Comput,
9(6), 2005, pp. 448-462.

[24] J. Brest, S. Greiner, B. Boskovic, M.
Mernik, and V. Zumer, Self-adapting control
parameters in differential evolution: A
comparative study on numerical benchmark
problems, Evol. Comput. IEEE Trans., 10(6),
2006, pp. 646-657.

[25] A. K. Qin and P. N. Suganthan, Self-adaptive
differential evolution algorithm for numerical
optimization, Proceedings of the 2005 IEEE

congress on evolutionary computation, 2,
2005, pp. 1785-1791.

[26] A. K. Qin, V. L. Huang, and P. N. Suganthan,
Differential evolution algorithm with strategy
adaptation for global numerical optimization,
IEEE Trans Evol Comput, 13(2), 2009, pp.
398-417.

[27] J. Q. Zhang and A. C. Sanderson, JADE:
adaptive differential evolution with optional
external archive, IEEE Trans. Evol. Comput.,
13(5), 2009, pp. 945-958.

[28] M. Leon and N. Xiong, Adapting differential
evolution algorithms for continuous
optimization via greedy adjustment of control
parameters, Journal of artificial intelligence

and soft computing research, 6(2), 2016, pp.
103-118.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 268 Volume 15, 2020

[29] K. Opara and J. Arabas, Differential
Evolution: A survey of theoretical analyses,
Swarm Evol. Comput., 44, 2019, pp. 546-558.

[30] Z. Hu, Q. Su, X. Yang, and Z. Xiong, Not
guaranteeing convergence of differential
evolution on a class of multimodal functions,
Appl. Soft Comput., 41, 2016, pp. 479-487.

[31] Z. Hu, S. Xiong, Q. Su, and Z. Fang, Finite
Markov chain analysis of classical differential
evolution algorithm, J. Comput. Appl. Math.,
268, 2014, pp. 121-134.

[32] Y. Wang and J. Zhang, Global optimization
by an improved differential evolutionary
algorithm, Appl. Math. Comput., 188(1),
2007, pp. 669-680.

[33] P. N. Suganthan, N. Hansen, J. J. Liang, K.
Deb, Y. P. Chen, A. Auger, and S. Tiwari,
Problem definitions and evaluation criteria

for the CEC 2005 special session on real-

parameter optimization, Nanyang Technol.
Univ., Singapore, Tech. Rep. KanGAL
#2005005, IIT Kanpur, India, 2005.

[34] W. Gao and S. Liu, Improved artificial bee
colony algorithm for global optimization,
Information Processing Letters, 111, 2011,
pp. 871-882.

[35] Y. Shi and R. C. Eberhart, Empirical study of
particle swarm optimization, Proceedings of

the 1999 Congress on Evolutionary

Computation-CEC99, 1999, pp. 1945-1950.
[36] D. Karaboga and B. Basturk, On the

performance of artificial bee colony (ABC)
algorithm, Applied Soft Computing, 8, 2008,
pp. 687-697.

[37] A. H. Gandomi, X. S. Yang, and A. H. Alavi,
Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization
problems, Engineering with Computers, 29,
2013, pp. 17-35.

[38] X. S. Yang, C. Huyck, M. Karamanoglu, and
N. Khan, True global optimality of the
pressure vessel design problem: A benchmark
for bio-inspired optimization algorithms,
International Journal of Bio-Inspired

Computation (IJBIC), 5(6), 2013, pp. 329-
335.

 Creative.Commons.Attribution.License.4.0.
(Attribution.4.0.International.,.CC.BY.4.0).

 This article is published under the terms of the
Creative Commons Attribution License 4.0
 https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.27 Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 269 Volume 15, 2020

https://link.springer.com/journal/366
http://www.inderscience.com/jhome.php?jcode=ijbic
http://www.inderscience.com/jhome.php?jcode=ijbic
http://www.inderscience.com/info/inarticletoc.php?jcode=ijbic&year=2013&vol=5&issue=6

