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Abstract: A new adaptive differential evolution algorithm with restart (ADE-R) is proposed as a general-purpose 
method for solving continuous optimization problems. Its design aims at simplicity of use, efficiency and 
robustness. ADE-R simulates a population evolution of real vectors using vector mixing operations with an 
adaptive parameter control based on the switching of two selected intervals of values for each scaling factor and 
crossover rate of the basic differential evolution algorithm. It also incorporates a restart technique to supply new 
contents to the population to prevent premature convergence and stagnation. The method is tested on several 
benchmark functions covering various types of functions and compared with some well-known and state-of-art 
methods. The experimental results show that ADE-R is effective and outperforms the compared methods.  
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1 Introduction 
      Solving continuous optimization problems is an 
important task in engineering, economics and applied 
sciences. Difficult optimization problems often occur 
in computational systems involving several decision 
variables. For example, clustering data vectors in 
data science requires optimized conditions of many 
representative clusters [1,2], and training artificial 
neural networks needs optimized weights to classify 
the input data in supervised learning [3,4]. Such 
continuous optimization problems usually consist of 
high dimensional objective functions which are 
nonlinear and may contain large numbers of local 
optima. Thus, the efficient optimization methods 
become indispensable tools to handle the problems. 
These solution methods can be divided into two 
groups: local methods and global methods [5]. The 
local methods use the derivatives (or some analytical 
approximations of directions) and require the initial 
approximate solutions, which makes them sensitive 
to the initial guesses and limits their solving ability 
for general applications. To address this issue, many 
researchers have proposed the global methods or the 
stochastic direct search methods as the alternative 
approach. The available global methods include 
population-based methods, swarm-based methods, 
and most of nature-inspired methods [6].      

       In this study, we focus on the differential 
evolution algorithm (DE)  which is a popular 
population-based method [7]. DE has been shown to 
be an efficient method but its performance depends 
on the control parameters and the problems to be 
solved [8, 9]. The aim of this work is to improve the 
performance of the basic DE by incorporating a 
suitable, adaptive parameter control and a restart 
technique. The obtained adaptive differential 
evolution algorithm is called ADE- R.  It combines 
two main features of the adaptive switching of two 
selected intervals of values for each scaling factor 
and crossover rate of the basic DE, and a simple 
restart to prevent premature convergence and 
stagnation.  The enhanced performance of the 
proposed ADE- R is empirically shown through 
extensive comparisons with several well- known 
methods on various benchmark functions. 
 
2. Literature review 
   2.1 The basic differential evolution 
algorithm 
     Differential evolution algorithm is proposed by 
Storn and Price in the years 1995-1997 [7,10] .  Due 
to its simple structure and efficiency, it has attracted 
many practitioners and researchers during the past 
two decades. A large number of modifications, 
improvements and variants have been proposed and 
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tested [8,11-13]. Like genetic and evolutionary 
algorithms that have been known many years before 
[14], DE consists of three basic population 
operations:  mutation, crossover and selection.  Its 
main distinguishing features are the differential 
mutation and the combined binomial crossover to 
each target vector to obtain a trial vector for 
comparing in the greedy selection. First, a population 
of NP real vectors are initialized by uniform random 
distribution in the search ranges. For each generation 
and each target vector xi, three different random 
population vectors 1 2 3, ,r r rx x x , which are also 
different from the target vector, are used to generate 
a mutant vector v by adding the scaled difference of 
two vectors to another one: 1 2 3( )r r rv x F x x= + −

where F is the scaling factor. Then, some components 
of the target vector are exchanged with those of the 
mutant vector according to the crossover rate C to 
produce the trial vector.  The target vector will be 
replaced by the trial vector if it produces a better 
solution.  This description shows the three important 
control parameters of the basic DE:  the population 
size NP,  the scaling factor F and the crossover rate 
C.  These control parameters have been found to 
affect the DE's performance greatly and in order to 
successfully solve a specific problem, a user needs to 
supply the suitable values [15-19]. Moreover, 
different parameter settings may be required for 
different stages of optimization.  To overcome the 
problems, various mechanisms for setting or 
adjusting the control parameters and the adaptive 
versions of the differential evolution algorithm have 
been designed and proposed [20, 21]. 
 
2.2 The adaptive differential evolution 
algorithms 
     The review of some well-known adaptive 
differential evolution variants are given.  Some of 
them are considered state-of-art methods and will be 
used to compare their performances with that of our 
proposed ADE-R. The concepts of parameter control 
have been already widely studied for the evolu-
tionary algorithm [22] .  They can be classified into 
three groups:  deterministic parameter control, 
adaptive parameter control and self-adaptive 
parameter control.  Deterministic parameter control 
alters the strategy parameters by some deterministic 
rule without using any feedback from the search 
while the adaptive parameter control monitors and 
utilizes the feedback from the search.  Self- adaptive 
parameter control is a higher level of an adaptive 
control which encodes some information into some 
components of the individual vectors and utilizes the 
evolution process to alter and promote the strategy 

parameters.  In 2005, Liu and Lampinen proposed a 
fuzzy adaptive differential algorithm (FADE)  by 
using fuzzy logic controllers as the parameter control 
for DE [23]. FADE uses the authors' designed fuzzy 
sets and fuzzy rules to dynamically control the 
parameters F and C. Compared with a static DE with 
F=0.9 and C=0.9, FADE shows a better convergence 
speed, particularly for high-dimensional test 
functions. In 2006, Brest et al. presented a DE version 
with self- adaptive control parameter settings, which 
is called jDE [24] .  The control parameters F and C 

are adjusted by means of evolution and are applied at 
the individual level.  The values Fl=0.1 and Fu=0.9  
are set and a new value F takes values 

()l uF rand F=   in the range of [0.1,1]  in a random 
manner with the probability t1=0.1. Similarly, C takes 
new values in [ 0,1]  in a random manner with the 
probability t2=0.1.  The new values of F and C are 
obtained before the mutation and crossover are 
performed and the better parameter values are 
propagated by the selection operations.  They tested 
jDE on 25 benchmark functions and showed that it 
outperformed overall the basic DE with static values 
F = 0.5 and C = 0.9. It was also shown to outperform 
FADE and other two variants of evolutionary 
programming algorithm.  
     Qin and Suganthan in 2005 [25], and Qin et al. in 
2009 [26]  proposed an adaptive DE called SaDE.  It 
is a self- adaptive DE that gradually self- adapts both 
the trial vector generation strategies and their 
associate control parameters.  Four well- known 
mutant vector generation strategies are used and the 
probabilities to choose each strategy are initialized 
to equal probability.  The F and C values for each 
individual population vector are initialized by normal 
distributions N(0.5,0.3) and N(0.5,0.1), respectively. 
A learning period (LP)  is set to update the center of 
the probability distribution of each strategy according 
to the records from the successful selection 
operations. Through the learning and evolution 
process, SaDE aims to produce and promote the good 
control parameters.  On several test functions, they 
have shown that SaDE outperformed overall the 
basic DE algorithms with various static values of F 

and C.  It was also shown to outperform FADE and 
slightly outperform overall jDE. 
      At about the same time, Zhang and Sanderson 
introduced an adaptive differential evolution with an 
optional external archive called JADE in 2009 [27] . 
JADE implements a new mutation strategy that 
utilizes some top best individuals and the optional 
archive operation that utilizes historical data to 
provide information of progress direction. These two 
operations aim to diversify the population and 
improve the convergence performance.  The trial 
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vectors that fail in the selection process are added to 
the archive set of inferior solutions and used in the 
mutation to diversify and balance the use of best 
individuals, which also helps prevent getting trapped 
to a local minimum. For each generation and for each 
individual, the values F and C are randomly 
initialized by using the Cauchy distribution and 
normal distribution, respectively.  Then at the end of 
each generation, the centers of distributions are 
updated according to the extracted information 
obtained from the set of successful values. JADE has 
two new parameters:  p for the proportion of top best 
individuals used in the mutation ( the greediness of 
the mutation strategy)  and c for controlling the rate 
of parameter adaptation.  Note that for JADE, the 
authors used larger sizes of populations for test 
functions at higher dimensions (NP=30 for 10D  , 
NP =100 for D = 30 and NP = 400 for D = 100). Their 
simulation results show that JADE performs better 
than the classic DE with F= 0.5 and C= 0.9, the 
adaptive DE algorithms jDE and SaDE, the canonical 
particle swarm optimization, and other evolutionary 
algorithms from the literature in terms of 
convergence performance for a set of 20 benchmark 
problems. In addition, JADE with an external archive 
shows promising results for relatively high-
dimensional problems.  
     In 2016, Leon and Xiong presented the greedy 
adapting differential evolution algorithm called 
GADE which adds the greedy adjustment of the 
control parameters F and C during the running of DE 
[28] .  The greedy search is performed for better 
parameter assignments in successive learning periods 
in the whole evolutionary process. For each learning 
period, the current parameter assignment and its 
neighboring assignments are tested, used and 
propagated to the next learning period.  The initial 
center values of F and C are set to 0. 5.  Then, the 
greedy search creates two neighborhoods F-d1, F+d1 
and C-d2, C+d2 where d1= d2 = 0.01. The best of them 
is identified using the metric of progress rate and the 
learning period LP =  20 ( generations)  is used to 
update the new center values.  They tested GADE 
(with NP=60)  on 25 benchmark functions in 
comparison with five other DE variants including the 
basic DE with F=0.9 and C=0.9, SaDE and JADE. It 
gives overall best performance in terms of the 
summation of relative errors. 
     Recently in 2019, Opara and Arabas [29]  have 
presented a useful survey on theoretical results 
obtained so far for DE.  The survey gives a 
comprehensive view on the understanding of the 
underlying mechanisms of DE and suggests some 
promising research directions.  For the topic 
concerning the convergence proofs of DE, they 

pointed out  several important works. Hu et al. proved 
that the classical DE cannot guarantee global 
convergence on a class of multimodal functions [30]. 
When the whole population is within a sufficiently 
large attraction basin of a single local optimum, the 
population cannot leave this basin because of elitist 
selection. However, the convergence can be obtained 
by softening the selection in DE and adding a 
mutation strategy that samples from the whole 
feasible set [31] .  There is also another way to 
introduce the global optimization property to DE by 
re- initializing the population, or its part, for every 
some fixed iterations [32].  This fact is utilized in the 
design of our proposed ADE-R method in which a 
restart technique is incorporated to enhance the 
convergence, and at the same time to prevent the 
premature convergence or the stagnation of the basic 
DE. 
     From the review of the selected adaptive DE 
variants, we can observe the structural concepts and 
the implementation techniques in designing an 
adaptive DE.  Our proposed ADE-R aims at 
simplicity of use (both in the structure and 
implementation), efficiency and robustness.  Its 
mutation and crossover strategies manage the 
allowed values from the two selected intervals for the 
control parameters F and C, respectively.  The 
probabilities for choosing these parameters are 
controlled by a simple adaptive mechanism of 
counter updating, adjusting and resetting. 
 
 3 The design of the proposed ADE-R 
method 
   As a stochastic population-based method, the basic 
DE improves the population of the individuals by the 
mutation, crossover and selection operations with the 
three main control parameters NP, F and C that are 
kept fixed during the optimization process [7] .  For 
our proposed ADE-R, a relatively small population 
size NP is used and also kept fixed.  Using a small 
population size is aimed for smaller number of 
function evaluations and a faster convergence speed. 
However, evolving a population of small size will 
lead to premature convergence or stagnation easily 
due to limited population diversity [15-19] .  To 
encounter these convergence problems, ADE- R 
incorporates a simple restart technique to periodically 
replace some of the worst individuals with the new 
generated ones to supply new contents to the 
population. The restart technique works together with 
the adaptive mechanism of the algorithm. 
     For each of the control parameters F and C, ADE-
R implements a probability-based switching control 
to learn and bias toward the use of the suitable values 
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from the two selected intervals.  The two intervals of 
values for F are [0.5, 0.7]  and [0.7, 0.9] , which are 
aimed to provide short and long step sizes F in the 
mutation.  And the two intervals of values for C are 
[0.0, 0.1] and [0.9, 1.0], which are aimed to provide 
better crossover vectors for the cases of multimodal 
functions and nonseparable functions, respectively. 
     Without loss of generality, we consider the 
minimization of a real-valued objective function 

:[ , ]Df L U R→ , where L and U are the bounds for 
each component of a vector in the domain of  f.  The 
ADE-R algorithm can be described as follows. 
 
Step 1  Set NP=20; NR =300 and PR =20 where NP 

is the population size or the number of individual 
vectors of dimension D, NR is for the restart 
operation which restarts PR percent of the vectors 
( excluding the best vector solution)  at every NR 
generations. 
 
Step 2  Initialization: Initialize the population matrix 

[ ]iP x=  where ,[ ]i i jx x=    for i =1,2,…,NP and  j = 
1,2,…,D and each component of the vector ix  is 
uniformly randomized in [L,U]. Evaluate all vectors 

ix  and record the current best vector xbest and its 
best value fbest. 
 
Step 3  Setting control parameters: Set the initial 
probabilities pf1=pf2=0.5 and the corresponding 
counters nf1= nf2 =0 for mutation.  And pc1 =  pc2 = 
0.5 and the corresponding counters nc1 =nc2 =0 for 
crossover. 
 
Step 4 For each generation, generate two uniform 
random numbers a1 and a2  between 0 and 1. 
• If a1 < pf1, random F1, F2 in the range of [0.5, 0.7]. 
Otherwise, random F1, F2  in the range of [0.7, 0.9]. 
•  If a2<pc1, random C in the range of [ 0.0, 0.1] . 
Otherwise, random C in the range of [0.9, 1.0]. 
 
Step 5 Mutation: For each target vector ix , choose 
five random integer indices r1,r2,r3,r4,r5  (r1 is also 
different from i, the rest can be equal) from 1 to NP. 
Generate a mutant vector v by the equation 
 

1 1 2 3 2 4 5( ) ( )r r r r rv x F x x F x x= + − + −  
 

This equation samples the directions and step sizes F1 
and F2, and also indirectly corrects the contents of 
vector components by confirming the similar 
contents and reducing the differences. The values of 
F1 and F2 are generated, used and adapted for each 
generation. 

Step 6  Crossover:  Construct the trial vector u ( for 
the target vector ix )  by replacing some components 
of ix  with the corresponding components of mutant 
vector v as follows: 

; () or ,
;

j

j

ij

v rand C j IC
u

x otherwise

 =
= 


 

where C is the crossover rate in the range of [0, 1] 
and IC is a randomly fixed index from 1 to D  ( for 
this current crossover), which guarantees a change of 
at least one component.  The function rand()  gives a 
uniform random number between 0 and 1 and 
generates a new random number for each  j = 1,…,D. 
For each generation, the value of C is also adaptively 
controlled in the same manner as those of F1 and F2. 
 
Step 7 Selection:  Apply the greedy selection.  The 
trial vector u will replace the associated target vector 

ix  if u is fitter (f(u) < f( ix )). It also updates the xbest 

and  fbest  if  f(u)  < fbest.  The dynamic updating of 
the target vector is used for a fast evolution process. 
 
Step 8 Updating control parameters: Update pf1, pf2, 
pc1 and pc2 as follows.  If a better solution found in 
the selection is generated with a1 < pf1  then increase 
nf1 : =  nf1+ 1; otherwise, increase nf2 : =  nf2 +  1. 
Similarly, if it is generated with a2 < pc1 then increase 
nc1 := nc1 + 1; otherwise, increase nc2 := nc2 + 1. If 

1 2 ) 100(nf nf +  then adjust nf1 := nf1 + 5 and nf2 := 
nf2 + 5 (to prevent both of them from 0). Update pf1 
=  nf1/(nf1+nf2)  and pf2 =  nf2/(nf1+nf2) .  Similarly, if 

1 2 ) 100(nc nc +  then adjust nc1 :=  nc1 +  5 and nc2 
:= nc2+ 5 (to prevent both of them from 0). Update 
pc1 = nc1/(nc1+ nc2) and pc2 = nc2/(nc1 + nc2). Reset 
the associate counters to 0 when the probabilities are 
updated. 
 
Step 9 Restart:  Apply the restart for every NR 

generations i. e. , when modulo(g,NR)  =0 where g is 
the current generation. Randomly choose PR percent 
of population vectors (excluding the xbest)  to be 
replaced with the new generated ones. 
 
Step 10 Repeat steps ( 4) - ( 9)  until reaching the 
stopping condition (the maximum number of 
function evaluations nfmax or the value to reach VTR 

for fbest) .  Then, report the obtained best solution as 
an approximate solution of the problem. 
 
      The flowchart of the proposed ADE-R algorithm 
is illustrated in Fig. 1. 
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Set adaptive control parameters pf1=pf2=pc1=pc2=0.5 and nf1=nf2=nc1=nc2=0 

i=1 

Set a target vector ix   

(Mutation) 
Generate the mutant vector v 

(Crossover) 
Generate the trial vector u from xi and v 

fbest<VTR or 
nfe>nfmax 

No 

Yes 

i=NP 

Yes 

Yes 

Report xbest and fbest 

Stop 

No 

No 

g:=g+1 modulo(g,NR)=0 

Random a1 and a2 between 0 and 1 

Start 

Set NP, nfmax, NR, PR, and VTR 

Generate initial population. Evaluate all vectors xi ; i=1,2,…,NP. 
Find and set xbest and fbest.=1, 

Set the generation number g=1 and number of function evaluations nfe=0 

Random F1 and F2 in [0.5,0.7] or [0.7,0.9] according to a1 and pf1 

Random C in [0,0.1] or [0.9,1] according to a2 and pc1 

(Selection) 
Compute f(u), nfe:=nfe+1. Update xi by u if f(u)<f(xi).  
Update xbest and fbest by u and f(u) if f(u)<fbest. 

Update adaptive control parameters 

Apply the restart operation according to PR 

i:=i+1 

Fig. 1. Flowchart of the proposed ADE-R method. 
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Table 1.  Test functions [25,30,31]. 
 

Function Formulation Type Global 
optimum 

Search 
range 

Sphere 2
1

1
( )

D

i

i

f x x
=

=  
US 0  [-100,100]D 

Schwefel 1.2 2
2

1 1
( ) ( )

D i

j

i j

f x x
= =

=   
US 0  [-100,100]D 

Rosenbrock 1
2 2 2

3 1
1

( ) 100( ) ( 1)
D

i i i

i

f x x x x
−

+

=

= − + −  
UN 1  [-100,100]D 

Schwefel 2.22 
4

1 1

( )
DD

i i

i i

f x x x
= =

= +   
UN 0  [-100,100]D 

Rastrigin 2
5

1
( ) 10 ( 10cos(2 ))

D

i i

i

f x D x x
=

= + −  
MS 0  [-5.2,5.2]D 

Schwefel 
6

1

( ) 418.98288727243369

sin( )
D

i i

i

f x D

x x
=

=

−
 

MS 420.96  [-500,500]D 

Ackley 
2

7
1

1

1( ) 20exp( 0.2 )

1exp( cos(2 ))

20 exp(1)

D

i

i

D

i

i

f x x
D

x
D



=

=

= − −

−

+ +



  

MN 0  [-32,32]D 

Griewank 
2

8
1 1

1( ) cos( ) 1
4000

DD
i

i

i i

x
f x x

i= =

= − +   
MN 0  [-600,600]D 

Shifted sphere 2
9

1
( ) ;

D

i

i

f x z z x o
=

= = −  
US o  [-100,100]D 

Shifted Schwefel 1.2 2
10

1 1
( ) ( ) ;

D i

j

i j

f x z z x o
= =

= = −   
US o  [-100,100]D 

Shifted  Rastrigin 
2

11
1

( ) 10 ( 10cos(2 ));
D

i i

i

f x D z z

z x o


=

= + −

= −

  

MS o  [-5,5]D 

Shifted Ackley 
2

12
1

1

1( ) 20exp( 0.2 )

1exp( cos(2 )) 20

exp(1);

D

i

i

D

i

i

f x z
D

z
D

z x o



=

=

= − −

− +

+ = −



  

MN o  [-32,32]D 

Shifted Griewank 
2

13
1 1

1( ) cos( ) 1 ;
4000

DD
i

i

i i

z
f x z

i

z x o

= =

= − +

= −

   

MN o  [0,600]D 
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     From the above description, the proposed ADE-R 
extends the basic DE by modifying and incorporating 
the following important mechanisms:  the adaptation 
of the control parameters F and C based on the 
switching of two selected intervals of values for each 
of them, the mutation using five random population 
vectors which adds two scaled difference pairs to 
another vector, and the restart technique to 
periodically supply small amount of new contents to 
the evolving population. 
 
4  Preliminary experiments and results 
     This section presents the experiments to find 
suitable parameters for the proposed ADE-R 
algorithm and show its computational complexity 
compared with that of the basic DE algorithm. The 
test functions used for the preliminary experiments 
and the comparison experiments in the next section 
are listed in Table 1. They cover all 4 important types 
of functions: unimodal and separable (US), unimodal 
and nonseparable ( UN) , multimodal and separable 
(MS), and multimodal and nonseparable (MN). Their 
formulations, types, global minima, and search 

ranges are given.  Note that the functions f9 to f13 are 
the shifted versions of the preceding functions. 
     The experiments are carried out on an Intel® core 
i5 processor 2.0 GHz and 4 GB RAM. The ADE-R 
algorithm is coded in Scilab version 6.0.2, an open 
source software available at http://www.scilab.org/. 
 
4.1 Finding suitable parameters for ADE-R 
    The first experiment tests the performances of 
ADE-R using various settings of NP, D, and NR on 
two representative functions: highly nonseparable 
Rosenbrock function and highly multimodal  
Griewank function. Aiming for a small population, 
the population sizes are varied as NP = 10, 20, 30. 
The dimensions and the fixed periods (generations) 
for applying a restart are varied as D = 5, 10, 20, and 
NR = 200, 300, 400. The 1010VTR −= and nfmax = 
20000D are used, and each configuration is 
performed 30 independent runs. The number of 
successful runs (NS), the mean of number of function 
evaluations (Mean nfe) and the percentage of 
standard derivation of the function evaluations 
(%SD) are reported in Table 2. 

Table 2.  Performances of ADE-R with different settings of NP, D, and NR at 1010VTR −= averaged over 
30 independent runs for Rosenbrock and Griewank functions. 
 

NP D NR Rosenbrock Griewank 
NS Mean nfe (%SD) NS Mean nfe (%SD) 

10 5 200 28 33436.93(44.24) 12 9738.67(40.89) 
300 28 25174.86(56.41) 11 8905.73(25.52) 
400 28 24778.96(74.99) 10 7009.90(30.62) 

10 200 28 130456.75(24.66) 10 16860.00(26.51) 
300 29 121838.21(26.93) 14 14827.21(25.97) 
400 25 122064.32(22.45) 7 15096.43(18.29) 

20 200 22 310317.68(22.11) 21 14870.19(32.58) 
300 24 277871.96(24.79) 22 14178.10(21.95) 
400 23 274012.74(23.43) 25 13296.08(17.65) 

20 5 200 30 16027.77(19.99) 28 30873.43(32.10) 
300 30 15820.83(17.55) 30 28703.83(18.91) 
400 30 16460.20(24.70) 30 27880.47(18.82) 

10 200 30 39617.13(11.02) 27 58748.82(29.83) 
300 30 40717.57(11.84) 30 47170.70(19.09) 
400 30 41832.17(15.81) 28 43502.14(19.28) 

20 200 30 131814.13(13.80) 27 57326.26(43.75) 
300 30 132702.83(12.79) 30 41908.13(33.05) 
400 30 131188.33(14.45) 30 37865.90(26.27) 

30 5 200 30 28248.43(18.26) 30 52923.63(18.11) 
300 30 28742.17(16.26) 30 49291.07(21.73) 
400 30 27335.23(18.60) 30 46322.10(25.19) 

10 200 30 79231.57(10.26) 28 120920.86(19.13) 
300 30 77262.27(12.97) 30 78176.60(22.10) 
400 30 81026.80(20.23) 30 70493.87(18.01) 

20 200 30 241753.90(8.11) 30 126546.50(40.98) 
300 30 232716.00(10.12) 30 68580.10(25.95) 
400 30 231391.33(11.52) 30 60496.87(27.63) 
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     From this table, the convergence results are 
considered first. The population size NP=10 is too 
small since it gives the successful runs NS less than 
30 for all combinations of D and NR. Both NP=20 
and 30 give good convergence results but using 
NP=30 requires more computations (nfe). For 
NP=20, we can observe that only NR=300 gives 
NS=30 for all cases of D. Thus, this setting (NP=20 
and NR=300) is employed in the proposed ADE-R as 
described in section 3. 

4.2 Computational complexity of  
      ADE-R 
     This experiment compares the runtimes of the 
ADE-R and basic DE algorithms for optimizing the 
Sphere function at D=50. The ADE-R algorithm uses 
the setting NP=20 and NR=300 from the first 
experiment while the basic DE uses the setting 
NP=50, F=0.5 and C=0.9 as recommended in [7]. 
The nfmax=60000 is set and at every 4000 function 
evaluations the current best function values and the 
runtimes for each algorithm are recorded. The 
comparisons of their convergence and runtime 
graphs are shown in Fig. 2. We can observe that 
ADE-R gives slightly faster convergence speed and 
also slightly less runtime. Thus, the proposed 
algorithm does not incur more computational 
complexity.  
 
5 Comparison experiments and results 
    To assess the performance of the proposed  ADE-
R method, we compare it with several well-known 

population-based methods including both the basic 
methods and the more advanced methods with the 
adaptive parameter controls.  ADE-R and other 
methods are tested on the 13 selected test functions 
[25, 27, 28, 33, 34] and the performance comparisons 
are divided into four experiments. 
   The results of all comparison experiments are 
shown in Tables 3-7. In each table, the best values are 
indicated in bold.  If the best function values or 
numbers of function evaluations of the compared 

methods are not reported in the references, the 
notation “n/a” is used. If a method cannot succeed for 
some runs out of the total runs, the notation “-” is 
used. For the case that a method fails for all runs, the 
notation “--” is used.  
     In section 5.1, we implement the compared 
methods by using the recommended settings from the 
literature and use our stopping criterion 1010VTR −=  
while the different stopping criteria are set according 
to the original papers for sections  5.2, 5.3, and 5.4. 
Except for the experiment in section 5.1, the results 
of all other methods are taken from the original 
papers. 
 
5.1 Performance comparison of ADE-R with 
basic DE, PSO, and ABC algorithms   
      We compare the performances of ADE-R, basic 
differential evolution algorithm (DE), particle swarm 
optimization (PSO)  and artificial bee colony 
algorithm (ABC) .  The experiment is conducted by 
setting  NP=50  for all classic algorithms whereas NP 

=20 is used for ADE-R.  The dimensions are varied 

 
(a)                                                                               (b) 

 
Fig. 2. (a)  Convergence graphs and  (b) Runtimes (second) of ADE-R and basic DE for the 

                             50-dimensional Sphere function. 
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as D=5, 10, 30, 50 and the maximum number of 
function evaluations nfmax =50000D is set for all test 
functions except the Rosenbrock function for which 
nfmax=150000D is used.  The value to reach 

1010VTR −= is set and 50 independent runs are 
performed for each algorithm.  The control 
parameters of basic DE are F=0.5 and C=0.9 as 
recommended in [7] .  For PSO, the inertia weight w 

is started with 0.9 and decreased linearly to 0.4, and 
C1=C2=2 is used as recommended in [ 35] .  The 
parameter for ABC is limit NP D=   as in [36]. For 
comparison, the number of successful runs (NS), the  
mean of number of function evaluations (Mean nfe), 
and the percentage of standard deviation of the 
function evaluations (% SD) are reported.  
     The results of comparing the performances of DE,  
PSO, ABC and ADE-R for minimizing the test 
function f1-f8 are shown in Table 3 and Table 4 and 
the convergence graphs of all methods for D=30 are 
illustrated in Fig. 3.  For the ability and stability of 
solving each problem, the number of successful runs 

NS out of the total 50 runs is considered first.  It is 
evident that ADE-R outperforms all other methods. 
ADE-R solves all test functions at all dimensions 
D=5, 10, 30, 50 successfully for all 50 runs and gives 
the smallest numbers of function evaluations.  The 
convergence graphs for D=30 in Fig. 3 clearly show 
its fast convergence speeds.  
      The basic DE can solve most of these test 
functions except for one highly nonseparable 
Rosenbrock function and two multimodal Rastrigin 
and Schwefel functions at high dimensions D= 30, 
50.  Excluding these test functions, DE gives the 
convergence graphs that are very close to those of 
ADE-R. 
      PSO cannot solve most of the multimodal 
functions:  Schwefel 1. 2, Rastrigin, Schwefel, and 
Griewank, at high dimensions D=10, 30, 50.  It can 
solve all the other test functions including the 
multimodal Ackley function. However, the 
convergence graph comparison shows that it has 
relatively slow convergence speeds.  

Table 3. Performance comparison of DE, PSO, ABC and ADE-R at 1010VTR −= averaged over 50 independent 
runs for f1-f4. 
 

Functions D Statistics DE PSO ABC ADE-R Significance 
 5 NS 50 50 50 50 +,+,+ 
  Mean nfe(%SD) 6128.28(3.28) 46902.14(3.34) 11902.52(4.08) 4630.68(4.44)  
 10 NS 50 50 50 50 +,+,+ 
  Mean nfe(%SD) 13090.36(3.27) 100998.12(2.11) 26500.72(2.84) 10259.34(3.40)  
Sphere 30 NS 50 50 50 50 +,+,+ 
  Mean nfe(%SD) 38969.54(2.51) 358375.98(1.47) 88664.60(2.22) 34442.76(3.14)  
 50 NS 50 50 50 50 +,+,+ 
  Mean nfe(%SD) 69677.70(5.71) 648755.48(1.21) 153280.84(2.06) 60437.66(2.38)  
 5 NS 50 50 50 50 +,+,+ 
  Mean nfe(%SD) 7477.16(3.35) 53117.42(2.93) 292925.40(2.92) 6717.48(12.55)  
 10 NS 50 50 0 50 +,+,++ 
Schwefel 
1.2 

 Mean nfe(%SD) 21477.88(5.12) 130061.72(2.39) -- 19934.66(10.45)  
30 NS 50 50 0 50 +,+,++ 

  Mean nfe(%SD) 227246.24(6.55) 609435.24(1.90) -- 193841.64(6.48)  
 50 NS 50 50 0 50 +,+,++ 
  Mean nfe(%SD) 673550.84(4.81) 1289121.40(1.49) -- 569999.36(5.08)  
 5 NS 36 44 0 50 +,+,++ 
  Mean nfe(%SD) 19146.72(79.19) 217331.33(6.16) -- 16641.94(27.34)  
 10 NS 48 30 0 50 +,+,++ 
Rosen-  Mean nfe(%SD) 179004.50(54.91) 419833.73(5.80) -- 41992.46(16.08)  
brock 30 NS 36 33 0 50 +,+,++ 
  Mean nfe(%SD) 3270826.30(17.15) 1253743.60(7.23) -- 244203.76(16.99)  
 50 NS 0 25 0 50 ++,+,++ 
  Mean nfe(%SD) -- 1952210.60(7.52) -- 531859.28(7.97)  
 5 NS 50 50 50 50 +,+,+ 
  Mean nfe(%SD) 10161.42(3.23) 59720.16(2.03) 19896.14(3.21) 7245.86(3.77)  
Schwefel 
2.22 

10 NS 50 50 50 50 +,+,+ 
 Mean nfe(%SD) 21974.00(2.28) 116789.46(1.62) 42847.30(1.76) 15661.94(3.06)  

30 NS 50 50 50 50 +,+,+ 
  Mean nfe(%SD) 62175.04(2.06) 385935.66(1.47) 139942.50(1.27) 51409.22(1.77)  
 50 NS 50 50 50 50 +,+,+ 
  Mean nfe(%SD) 98524.98(4.44) 688973.98(1.24) 240754.64(1.01) 89421.32(2.25)  
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      ABC can solve the Sphere, Schwefel 2.22, and all 
of the multimodal functions. For these test functions, 
it has better convergence speeds than PSO. However, 
it cannot solve the Rosenbrock function for all 
dimensions and cannot solve the Schwefel 1.2 
function at D=10, 30, 50.       
      For the performance comparison of DE and 
ADE-R, the results clearly show the benefits of the 
parameter adaptation of ADE-R. The basic DE using 
the fixed parameters F= 0.5 and C= 0.9, as widely 
recommended and accepted, can provide generally 
good performances for easy- to- moderate problems 
with low dimensions ( 10D  ), but not for the highly  
nonseparable and multimodal functions, especially at 
high dimensions. 
     The Welch t- test at a 0.05 level of significance 
shown in the last column is also used to compare the 
performances of ADE-R with those of DE, PSO, and 
ABC in this order. The values “+ ”, “0”, and “-” 
denote that ADE-R performs significantly better 
than, similarly to, and worse than a compared 
method. The value “++” denotes that the  solutions of 

ADE-R can reach 1010VTR −= while those of the 
compared methods cannot.  
 
5. 2 Performance comparison of ADE- R with 
jDE, JADE and IABC algorithms 
     In this experiment, the performances of ADE-R 
are compared with those of jDE, JADE [27] and 
IABC [34] on the test functions f1 -f8  at dimension 
D=30. The nfmax values are set between 45 10 to 

62 10   depending on the original settings for the 
considered functions. For each algorithm, 50 
independent runs are performed, and the mean of best 
function values (Mean fb) and the standard deviation 
(SD) are reported in Table 5. The results of JADE are 
from its original authors while the results of jDE are 
from the experimental runs of the JADE's authors. 
The results of both methods are reported in [27]. The 
results of IABC are compared with those of jDE and 
JADE in [34]. For difficult test functions, this 
experiment uses two settings of the maximum 
number of  function  evaluations (nfmax)  as in [27], 

Table 4. Performance comparison of DE, PSO, ABC and ADE-R at 1010VTR −=  averaged over 50 independent 
runs for f5-f8. 
 

Functions D Statistics DE PSO ABC ADE-R Significance 
 5 NS 50 50 50 50 +,+,+ 
  Mean nfe(%SD) 21221.80(13.61) 54629.10(7.12) 17803.10(6.05) 6170.54(7.36)  
 10 NS 18 16 50 50 +,+,+ 
  Mean nfe(%SD) 80390.78(24.20) 128731.12(10.78) 39803.90(4.09) 13432.66(4.34)  
Rastrigin 30 NS 0 0 50 50 ++,+,+ 
  Mean nfe(%SD) -- -- 140665.04(6.26) 54003.82(5.02)  
 50 NS 0 0 50 50 ++,++,+ 
  Mean nfe(%SD) -- -- 259768.62(5.66) 119735.84(5.21)  
 5 NS 50 42 50 50 +,+,+ 
  Mean nfe(%SD) 11020.82(11.79) 204021.26(5.68) 17854.04(5.82) 5657.38(6.07)  
 10 NS 49 0 50 50 +,+,+ 
  Mean nfe(%SD) 42320.12(16.83) -- 39273.44(4.36) 12211.36(4.90)  
Schwefel 30 NS 0 0 50 50 ++,++,+ 
  Mean nfe(%SD) -- -- 132172.08(3.85) 43238.80(2.45)  
 50 NS 0 0 50 50 ++,++,+ 
  Mean nfe(%SD) -- -- 234691.00(4.20) 80506.92(3.83)  
 5 NS 50 50 50 50 +,+,+ 
  Mean nfe(%SD) 10602.18(2.73) 61491.54(2.45) 22892.26(2.42) 7985.04(4.10)  
 10 NS 50 50 50 50 +,+,+ 
  Mean nfe(%SD) 22202.78(2.25) 122731.42(1.48) 48612.60(2.06) 17211.06(3.23)  
Ackley 30 NS 49 50 50 50 +,+,+ 
  Mean nfe(%SD) 63378.69(3.05) 416518.56(1.49) 154410.00(1.02) 55635.70(2.32)  
 50 NS 37 50 50 50 +,+,+ 
  Mean nfe(%SD) 112384.08(4.43) 751469.76(1.24) 262882.40(1.32) 95548.08(1.77)  
 5 NS 43 6 49 50 +,+,+ 
  Mean nfe(%SD) 38394.93(14.61) 87352.50(42.61) 41340.61(27.10) 25422.72(19.98)  
 10 NS 13 0 43 50 +,++,+ 
  Mean nfe(%SD) 38748.77(25.21) -- 59967.16(29.67) 44236.26(21.61)  
Griewank 30 NS 36 0 50 50 +,++,+ 
  Mean nfe(%SD) 40416.31(3.55) -- 108302.52(6.49) 42939.32(15.61)  
 50 NS 37 0 50 50 +,++,+ 
  Mean nfe(%SD) 69884.35(5.83) -- 172363.84(4.77) 64940.34(6.51)  
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      Fig. 3. Convergence graphs of DE, PSO, ABC and ADE-R for 30-dimensional functions. 
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and compares the final function values. We consider 
the obtained function value less than 2010−  as 0. Also 
note that the author of IABC selected only either one 
of the settings for those test functions.The last 
column of the table shows the performances of ADE-
R compared with those of jDE, JADE, and IABC in 
this order using the Welch t-test at a 0.05 level of 
significance. The notation “*” denotes that the values 
of compared methods are not reported. 
     For the Sphere, Schwefel 1.2 and Schwefel 2.22 
functions, all methods can successfully solve the 
problems with the means equal to 0 except for jDE 
on Schwefel 1.2. The ADE-R clearly outperforms on 
Rosenbrock function for both nfmax settings while all 
other methods perform quite poorly on this function. 
For Rastrigin and Schwefel functions ADE- R 
performs better than other methods when considering 
both nfmax settings.  
    For the other two multimodal Ackley and 
Griewank functions, all methods give comparable 
results. jDE performs quite poorly for the low nfmax 

settings while IABC performs slightly better for these 
settings on both functions. JADE performs slightly 
better on Ackley function for the high nfmax setting. 
     
 

 
5.3 Performance comparison of ADE-R with 
SaDE algorithm 
    This experiment compares the performances of 
ADE-R and SaDE [26]  on 8 test functions including 
5 shifted ones at dimensions D=10, 30. Each method 
performs 30 independent runs at 510 .VTR −=  The NS 
and Mean nfe of both algorithms are presented in 
Table 6. The results of SaDE are not provided in [26] 
for particular test functions at some dimensions.      
ADE-R successfully solves all functions at both 
dimensions and clearly outperforms on Rosenbrock, 
Schwefel, Shifted Rastrigin and Shifted Griewank 
functions.  Moreover, ADE-R performs much better 
than SaDE for Schwefel function at both dimensions 
and for Shifted Rastrigin at D=10 with each nfe value 
of ADE-R being roughly half of that of SaDE.  For 
other functions, both SaDE and ADE-R give 
comparable results. SaDE performs slightly better on 
Schwefel 2.22, Shifted Sphere, Shifted Schwefel 1.2 
and Shifted Ackley functions at high dimension 
D=30.  However, it succeeds only 24 out of 30 runs 
for Shifted Griewank at D=30.  From this, we may 
conclude that for overall cases, ADE-R performs 
better than SaDE. 
 

Table 5. Performance comparison of jDE, JADE, IABC and ADE-R for 30-dimensional functions 
averaged over 50 independent runs. 
 

Functions nfmax Statistics jDE[27] JADE[27] IABC[34] ADE-R Significance 
Sphere 150,000 Mean fb 0 0 0 0 +,0,0 
  (SD) (0) (0) (0) (0)  
Schwefel 1.2 500,000 Mean fb 5.20E-14 0 0 0 +,0,0 

 (SD) (1.10E-13) (0) (0) (0)  
Rosenbrock 300,000 Mean fb 1.30E+01 8.00E-02 n/a 8.26E-13 +,+,* 
  (SD) (1.40E+01) (5.60E-01) (n/a) (5.81E-12)  
 2,000,000 Mean fb 8.00E-02 8.00E-02 4.75E-03 0 +,+,+ 
  (SD) (5.60E-01) (5.60E-01) (4.22E-02) (0)  
Schwefel 
2.22 

200,000 Mean fb 0 0 0 0 0,0,0 
 (SD) (0) (0) (0) (0)  

Rastrigin 100,000 Mean fb 1.50E-04 1.00E-04 0 0 +,+,0 
  (SD) (2.00E-04) (6.00E-05) (0) (0)  
 500,000 Mean fb 0 0 n/a 0 +,+,* 
  (SD) (0) (0) (n/a) (0)  
Schwefel 100,000 Mean fb 7.90E-11 3.30E-05 0 0 +,+,0 
  (SD) (1.30E-10) (2.30E-05) (0) (0)  
 900,000 Mean fb 0 0 n/a 0 0,0,* 
  (SD) (0) (0) (n/a) (0)  
Ackley 50,000 Mean fb 3.50E-04 8.20E-10 3.87E-14 1.98E-09 +,-,- 
  (SD) (1.00E-04) (6.90E-10) (8.52E-15) (1.07E-09)  
 200,000 Mean fb 4.70E-15 4.40E-15 n/a 7.55E-15 -,-,* 
  (SD) (9.60E-16) (0) (n/a) (0)  
Griewank 50,000 Mean fb 1.90E-05 9.90E-08 0 1.24E-11 +,+,- 
  (SD) (5.80E-05) (6.00E-07) (0) (5.89E-11)  
 300,000 Mean fb 0 0 n/a 0 0,0,* 
  (SD) (0) (0) (n/a) (0)  
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Table 6. Performance comparison of SaDE and 
ADE-R for 10 and 30-dimensional functions at 

510VTR −= averaged over 30 independent runs. 
 

Function D Statistics SaDE 
[26] 

ADE-R 

Rosenbrock 10 NS 30 30 
 Mean nfe 42446 34053 
30 NS n/a 30 
 Mean nfe n/a 221587 

Schwefel 2.22 10 NS n/a 30 
 Mean nfe n/a 8698 
30 NS 30 30 
 Mean nfe 25137 29739 

Schwefel 10 NS 30 30 
 Mean nfe 16663 8429 
30 NS 30 30 
 Mean nfe 77920 30944 

Shifted  
sphere 

10 NS 30 30 
 Mean nfe 8375 6537 
30 NS 30 30 
 Mean nfe 20184 22426 

Shifted 
Schwefel 1.2 

10 NS 30 30 
 Mean nfe 14867 13409 
30 NS 30 30 
 Mean nfe 118743 125536 

Shifted 
Rastrigin 

10 NS 30 30 
 Mean nfe 23799 9574 
30 NS 30 30 
 Mean nfe 58723 42367 

Shifted 
Ackley 

10 NS 30 30 
 Mean nfe 12123 9761 
30 NS 30 30 
 Mean nfe 26953 32201 

Shifted 
Griewank 

10 NS 30 30 
 Mean nfe 35393 25427 
30 NS 24 30 
 Mean nfe - 32643 

 
 
5. 4 Performance comparison of ADE-R with 
GADE algorithm 
     The performances of ADE-R and GADE [28] are 
compared on test functions with D= 30.  For each 
method, 30 independent runs are performed at 

810 .VTR −= The Mean fb and SD for both algorithms 
are presented in Table 7.  The Welch t- test at a 0.05 
level of significance is conducted and the results are 
shown in the last column. The table shows that ADE-
R can successfully solve all 10 test functions whereas 
GADE can successfully solve only 7 functions.  The 
function values obtained by GADE for Schwefel 1.2, 
Rosenbrock, and Shifted Schwefel 1.2 functions are 
quite poor. This indicates that ADE-R is more 
effective than GADE. 
 
 

Table 7. Performance comparison of GADE and 
ADE-R for 30-dimensional functions at 810VTR −=

averaged over 30 independent runs. 
 

Function Statistics GADE 
[28] 

ADE-R Signi-
ficance 

Sphere Mean fb 0 0 0 
(SD) (0) (0)  

Schwefel 
1.2 

Mean fb 3.09E-01 0 + 
(SD) (7.00E+00) (0)  

Rosenbrock Mean fb 2.54E+01 0 + 
(SD) (5.26E+01) (0)  

Schwefel 
2.22 

Mean fb 0 0 0 
(SD) (0) (0)  

Rastrigin Mean fb 0 0 0 
(SD) (0) (0)  

Ackley Mean fb 0 0 0 
(SD) (0) (0)  

Griewank Mean fb 0 0 0 
(SD) (0) (0)  

Shifted 
sphere 

Mean fb 0 0 0 
(SD) (0) (0)  

Shifted 
Schwefel 1.2 

Mean fb 6.63E+00 0 + 
(SD) (2.60E+01) (0)  

Shifted 
Rastrigin 

Mean fb 0 0 0 
(SD) (0) (0)  

 
6 An application of ADE-R  for solving 
an engineering design problem 
   The ADE-R algorithm is applied to solve the 
cantilever beam design problem [37] which is related 
to the weight optimization of a cantilever beam with 
square cross section  (see Fig. 4). The beam is rigidly 
supported at node 1, and there is a given vertical force 
acting at node 6. The design variables are the heights 
(or widths) of the different beam elements.  The 
bound constraints are set as 0.01 100.jx   This 
problem can be written as follows: 
 

Min f(x) = 0.0624(x1 + x2 + x3+ x4+ x5) 
 
subject to  

g(x) 3 3 3 3 3
1 2 3 4 5

61 37 19 7 1 1 0.
x x x x x

= + + + + −   

 

 
Fig. 4.  Cantilever beam design  [37]. 
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 Since the problem is constrained, the penalty 
technique is adopted to adjust the objective function. 
The penalty function is defined by 

p(x) = 100[min(0,g(x))]. 
 Then the  unconstrained objective function 

                      F(x) = f(x)+p(x) 

is used for ADE-R. Note that only the feasible 
solutions with p(x)=0 are considered at the end of the 
optimization process. The maximum number of 
generations maxgen=500 is set and 30 independent 
runs are performed.  
       The ADE-R algorithm gives the convergence 
results for all 30 runs with the max, mean, min, and 
SD of  fmin values equal to 1.3412507, 1.340127, 
1.3399566, and 0.0002793, respectively. The best 
solutions of the problem obtained by ADE-R, 
Cuckoo Search algorithm (CS) [37], and analytic 
method [38] are compared and presented in Table 8.  
  
7 Discussion 
    In section 4.1, the effect of using different settings 
of population size (NP), dimension (D) and the fixed 
period of generations for a restart (NR) on the 
performance of ADE-R algorithm is verified. It has 
been shown that ADE-R using NP = 20 and NR = 300 
can achieve good convergence results. It also shows 
that the adaptive control of the scaling factor and 
crossover rate values, and a restart technique allow 
the use of the relatively small population size. In 
section 4.2, the ADE-R with this setting has been 
shown to have the same computational complexity as 
that of the basic DE.  
    The performance comparisons of ADE-R and 
several other methods are conducted in section 5. In 
section 5.1, ADE-R has been shown to significantly 
outperform the basic DE, PSO, and ABC algorithms. 
In section 5.2, 5.3 and 5.4, ADE-R has also been 
shown to overall outperform four well-known 
adaptive DE variants.  
    In section 6, the ADE-R algorithm is applied to 
solve a constrained engineering design problem. By 
using the penalty technique to transform the problem 
into the unconstrained optimization problems, ADE-
R can solve it very well and also gives high quality 
solutions. 

   The setting of NP=20 and NR=300 for the proposed 
ADE-R is only a general suggestion obtained in this 
study. Although it gives the satisfied performances 
on the comparison tests and a real-world application, 
applying the algorithm to other specific optimization 
problems may require a minor adjustment of these 
control parameters. 
 
8  Conclusions 
      In this research, an efficient adaptive differential 
evolution algorithm named ADE-R is presented for 
solving a wide range of continuous optimization 
problems. It is aimed as a general-purpose 
optimization method which has a simple structure 
and is easy to implement.  The parameter adaptation 
based on the switching of two selected interval values 
for each of the scaling factor and crossover rate of the 
basic DE, the associated mutation operation, and a 
restart technique are designed to work together to 
balance both intensifying and diversifying searches. 
The restart technique is particularly helpful in 
preventing premature convergence and stagnation. 
Extensive experiments show that ADE-R 
outperforms several well-known and state-of-art 
methods. 
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