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Abstract: Bongard problems are a set of 100 visual puzzles posed by M. M. Bongard, where each puzzle consists of
twelve images separated into two groups of six images. The task is to find the unique rule separating the two classes
in each given problem. The problems were first posed as a challenge for the AI community to test machines ability
to imitate complex, context-depending thinking processes using only minimal information. Although some work
was done to solve these problems, none of the previous approaches could automatically solve all of them. The
present paper is a contribution to attack these problems with a different approach, combining the tools of persistent
homology alongside with machine learning methods. In this work, we present an algorithm and show that it is able
to solve problems involving differences in connectivity and size as examples, we also show that it can solve
problemsinvolvingamuchlargersetofdifferencesprovidedtherightG-equivariantoperators.
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1 Introduction
Bongard problems [9] consist of twelve boxes, six of
which follow a certain rule while the other six break
that rule. The task of the problem solver is to iden-
tify the underlying pattern. The following figure is an
example of such a problem

Fig. 1. Example of a Bongard problem

Bongard Problems present a great challenge
specifically because of the need for an interplay of
high and low-level vision with high-level cognition.
They are good indicators of some fundamental as-
pects of complex thinking processes [24]. Such as-
pects include pattern formation and abstraction, pat-
tern matching and recognition, clustering and catego-

rization, as well as memory and learning [18]. Bon-
gard problems are interesting as well for the possibil-
ity of being extended beyond the original posed prob-
lems.

Bongard Problems are not only a challenge for
the AI community, they can also be helpful for en-
gineers as well as mathematicians to understand and
model brain functions such as learning, finding sim-
ilarity, creating abstract ideas and acting by intuition
[9]. A machine that is able to solve Bongard Problems
is indicative of the presence of high-level cognitive
functions that can be further used to solve problems
that go beyond the original posed problems such as
retrieving similar images, finding a network of people
with similar interests, counting objects in images and
videos or annotating images.

Few efforts have been made to automatically
solve Bongard Problems. Some major attempts are
”RF4” by Saito and Nakano[30] and ”Phaeaco” by
Harry Foundalis [18]. RF4 is an inductive logic pro-
gramming system where images are handcoded into
logical formulas with computer vision being totally
avoided. It could solve in this way 41 of the 100 Bon-
gard problems [25]. Phaeaco, on the other hand, uses
images as inputs. It proceeds by building a ”mental
representation” of each of the images. From that rep-
resentation, it deduces the possible concepts that may
be common to the six images on the left, and those
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that may be common to the six images on the right,
and seeks a concept that is shared only by images on
the left, and not by those on the right. Of the original
100 Bongard problems it can only solve around 10.
An other recent approach is the one using Bayesian
inference and a symbolic visual vocabulary to repre-
sent visual concepts. This approach could solve the
largest number of Bongard Problems yet [12].

In this paper, we approach Bongard problems
from a different angle and consider ones that have not
been solved by any of the systems mentioned earlier.
The topological tool, as far as we know, has never
been used to attack these problems.

Topological Data Analysis (TDA) is a relatively
recent field of study that proved successful in retriev-
ing insight from data in many application domains.
Examples include image analysis [6], signal process-
ing [27], robot planning [29], sensor networks [26],
biology [33] and cosmology [32] to cite only a few.

Our contribution consists in using topological
data analysis and specifically persistent homology as
a means of representation using topological signatures
and a means of comparison and distinction through
the use of a metric on the space of these signatures.
Finding the unique rule separating the two classes in
each problem requires a good representation of the
images, and by that we mean a representation that al-
lows us to have ’multiple views’ of the data hence the
use of G-equivariant non-expansive operators (GE-
NEOs).

In this work, we are combining methods both
from TDA and machine learning. As a first step, and
depending on the pattern of interest, we either com-
pute persistence diagrams to capture topological fea-
tures by building lower star filtrations on the grayscale
images, or apply GENEOs on filtering functions in the
case where we are interested in subgroups of the self-
homeomorphism group of the space in question. As a
second step, the features computed with each method
are transformed into a finite-dimensional vector rep-
resentation or a distance matrix. They are then fed to
a clustering algorithm in order to decide which im-
ages are more similar to which. If the grouping is
similar to the one in the original problem, the fea-
ture responsible for this clustering is taken to be the
separating rule. In the next section, we give a brief
overview of clustering as the main machine learning
method in this paper, we next go through the mathe-
matics of topological data analysis and G-equivariant
non-expansive operators. In the section afterward, we
expose our algorithm along with sample problems be-
fore ending with a conclusion.

2 Clustering

Clustering is one of the most important tools used
for unsupervised machine learning tasks.It is used in
a variety of fields ranging from biology [28], image
segmentation [7], natural language processing [14], to
crime analysis [2] and climatology [23].
Clustering can both be used as a stand-alone tool to
make sense of unlabeled data, or as a preprocess-
ing step for exploratory purposes in order to visual-
ize connexions that might not be otherwise detected.
Clustering aims at grouping data points into classes
by minimizing intra-cluster similarities and maximiz-
ing inter-cluster similarities. Evaluating data similar-
ity depends on the choice of a similarity metric, these
can be the Euclidean distance, the Manhattan distance
or the cosine distance among many others. There is
no single algorithm for clustering. In the literature,
different clustering models are used across different
problem domains, and for each model, a variety of al-
gorithms are proposed. Such models include among
others: Connectivity models(e.g hierarchical cluster-
ing), centroid models (e.g k-means algorithm), dis-
tribution models (e.g expectation-maximization algo-
rithm) or density models (e.g DBSCAN).

For more details on the core methods for data
clustering, the application domains and the insights
obtained from the clustering process, we refer the in-
terested reader to [3]

3 Mathematical background

3.1 Persistent Homology

The central idea in this work is to find the pattern set-
ting apart the two classes of shapes in each Bongard
problem. Homology groups formalize the description
of the topology of geometric objects, specifically, per-
sistent homology gives us a way to make that distinc-
tion by means of comparing topological signatures.
The following is a formal overview of how this com-
parison is made.

3.1.1 Homology

Homology is the mathematical theory concerned with
distinguishing shapes and spaces in general on the ba-
sis of their holes. With respect to this theory, a sphere
and a cube are equivalent as they are both single con-
nected components with no holes. A sphere and a
torus, however, are not equivalent since the former
contains no holes whereas the latter contains among
others a two-dimensional hole. We formalize the intu-
ition behind homology in the rest of this section both
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for the continuous and the discrete settings.
Let X be a topological space. The construction

begins with a chain complex C(X). A chain com-
plex defined on a topological space X is a sequence
of abelian groups or modules (Ck)k≥0 connected by
homomorphisms called boundary operators

. . .
∂n+2−−−→ Cn+1

∂n+1−−−→ Cp
∂n−→ Cn−1

∂n−1−−−→ . . .

such that
Im∂n+1 ⊆ Ker∂n,

The boundary operators satisfy the fundamental
property: ∂n ◦ ∂n+1 = 0 for any n ≥ 1

Definition 1. Let X be a topological space. The n-th
homology group of X is the vector space

Hn(X) := Ker(∂n)/Im(∂n+1)

The n-th Betti number of X is the dimension βn(X) =
dimHn(X) of the vector space Hn(X)

The n-th Betty number actually corresponds to the
number of n− dimensional holes present in the data,
thus, β0 corresponds to the number of connected com-
ponents, β1 is the number of one-dimensional loops,
β2 is the number of two dimensional holes and so
forth.

3.1.2 Persistent homology

Since features can be of different scales or be nested, it
makes sense to track their appearance and disappear-
ance across increasing scales. Thus, instead of study-
ing the homology of the space as a whole, we build a
filtration of that space. We then compute the persistent
homology groups across the resulting subspaces.

Sublevel sets Filtration: A filtration of a toplog-
ical space X is a nested sequence of topological sub-
spaces

Fp : ∅ = X0 ⊆ X1 ⊆ X2 ⊆ . . .Xn = X,

Let f : X → R a real valued function. The sub-
level sets form a filtration Xr ⊆ Xs for all r ≤ s of
the topological space X , such that Xr = f−1]−∞, r]

Persistent homology groups and persistent Betti
numbers

For every r ≤ s we have an inclusion map from
the underlying space of Xr to that of Xs and therefore
an induced homomorphism,

f r,sp : Hp(Xr)→ Hp(Xs)

for each dimension p. The filtration thus corresponds
to a sequence of homology groups connected by ho-
momorphisms,

0 = Hp(X0)→ Hp(X1)→ · · · → Hp(Xn) = Hp(X),

one for each dimension p. The p-th persistent ho-
mology groups are the images of the homomorphisms
induced by inclusion,

Hr,s
p = Imf r,sp ,

for 0 ≤ r ≤ s ≤ n. The corresponding p-th persistent
Betti numbers are the ranks of these groups,

βr,sp = rankHr,s
p .

Persistence diagrams and persistence images:
The homology groups of the sublevel sets are encoded
in persistence diagrams. As r increases, new ho-
mology classes are born whereas others die as some
components merge with others. The level at which
a new component is created is called its birth time
and the level at which it merges with another com-
ponent is called its death time. The persistence of a
homology class is the difference between its birth and
death time. The x-coordinates of a persistence dia-
gram indicate birth time and the y-coordinates death
time, formally a persistence diagram is a countable
multiset of points in R2 along with the diagonal ∆ ={

(x, y) ∈ R2|x = y
}

, where each point on the diago-
nal has infinite multiplicity.

However, persistence diagrams don’t lend them-
selves well to machine learning tasks. Persistence im-
ages, on the other hand, are more suitable for that pur-
pose. Persistence images are finite vector representa-
tions of persistence diagrams. For a formal presenta-
tion, we refer the reader to [1]

Bottleneck distance: To measure similarities in
the space of persistence diagrams we endow it with
a metric: the bottleneck distance. It is defined as fol-
lows:

Definition 2. For two persistence diagramsD and E,
we define their Bottleneck (w∞) distance by:

w∞(D,E) := inf
η
sup
x∈D
‖x− η(x)‖∞

where η ranges over bijections between D and E

For further details, the interested reader is re-
ferred to [11], [16], [17].

Images are formed of pixels. In order to solve the
present problem, computations will naturally be car-
ried out in the discrete setting. It is thus necessary to
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use a model that is adjusted for such a setting. Sim-
plicial homology, which is one of the most common
homology theories, presents itself as a valid approach
as its is more suitable for computations.

In practice, given point cloud data, we construct a
simplicial complex on top of that data.

Definition 3. [21]
Let S be a discrete set. An abstract simplicial

complex is a collectionK of finite subsets of S, closed
under restriction: for each σ ∈ K, all subsets of
σ are also in K. Each element σ ∈ K is called a
k−simplex, where | σ |= k + 1. Given a k−simplex
σ, its faces are the simplices corresponding to all sub-
sets σ ⊂ S

We can compute homology for simplicial com-
plexes

Definition 4. [15]
Let K be a simplicial complex. The Z/2Z vector

space generated by the p−dimensional simplices ofK
is denoted Cp(K). It consists of all p−chains, which
are formal sums

c =
∑
j

λjσj

where the λj are 0 or 1 and the σj are p−simplices in
K.
The boundary, ∂(σj), is the formal sum of the (p −
1)−dimensional faces of σj and the boundary of the
chain is obtained by extending ∂ linearly,

∂(c) =
∑
j

λj∂(σj)

where addition is modulo 2. It is not difficult to check
that ∂ ◦ ∂ = ∂2 = 0

As in the continuous setting, the p-th homology
group of K is the vector space

Hp(K) := Ker(∂p)/Im(∂p+1)

We can also define persistence for simplicial com-
plexes

Definition 5. [15] A subcomplex is a subset of sim-
plices that is closed under the face relation. A filtra-
tion of a simplicial complex K is a nested sequence of
subcomplexes that starts with the empty complex and
ends with the complete complex, ∅ = K0 ⊆ K1 ⊆
· · · ⊆ Km = K

The subcomplexes are the analog of the sublevel
sets in the continuous setting and their persistence is
computed in the same way we described earlier.

3.2 G-equivariant non-expansive operators

As stated earlier, one way of getting topological
summaries of data is by building sublevel set filtra-
tions on top of that data and computing persistence
diagrams. However, persistent homology in the form
we described cannot distinguish between summaries
produced by a filtering function f and and a filtering
function f ◦ g when g is a self homeomorphism [13].
That being the case, only a few Bongard problems
would benefit from the use of classical persistent
homology when the invariance group is the group
of all self-homeomorphisms, which we’ll denote
Homeo(X). Other problems would better make use
of invariance with respect to proper subgroups of
Homeo(X). One example of these problems is the
one at the method section.
A major source of inspiration in that regard was the
following work [8], [20], [19]. Our main effort is to
explore the possibility of using their results in the
case of Bongard Problems.

For every BP, we might be interested in get-
ting invariance with respect to priorly chosen sub-
groups G of Homeo(X). Applying G-equivariant
non-expansive operators on filtrations will allow us to
get multiple measurements associated with each fil-
tration. These measurements can be thought of as dif-
ferent ’lenses’ through which we see our data. We
then approximate the natural distance between mea-
suring functions and construct a distance matrix which
is then fed to the clustering algorithm.

The subgroup G of Homeo(X) transforms the
set Φ of filtering functions by a right group action

f : Φ×G→ Φ

(ϕ, g) 7→ ϕ ◦ g

We first give the definition of G-equivariant non-
expansive operators

Definition 6. Let Φ be a topological subspace of
C0(X,R), the set of admissible filetring functions on
X , and G a subgroup of Homeo(X).
F is a G-equivariant non-expansive operators if it
verifies the following properties:

1. F is a function from Φ to Φ

2. F (ϕ ◦ g) = F (ϕ) ◦ g for every ϕ ∈ Φ and every
g ∈ G

3. ‖F (ϕ1) − F (ϕ2)‖∞ ≤ ‖ϕ1 − ϕ2‖∞ for every
ϕ1, ϕ2 ∈ Φ

As previously said, computing the bottleneck dis-
tance between two persistence diagrams is not well
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suited for some problems in shape comparison, hence
the need to introduce the natural pseudo-distance as a
more powerful approach in comparing two filtrations.

Definition 7. The natural pseudo distance with re-
spect to a group G is defined by

dG(ϕ1, ϕ2) = inf
g∈G

max
x∈X

| ϕ1(x)− ϕ2(g(x)) |

The natural pseudo distance, however, presents a
challenge; it is difficult to compute. To address this is-
sue, DFmatch is introduced in [20] as a tool to approx-
imate dG, which is also a G-invariant pseudo-metric
on Φ

Definition 8. Let F(Φ, G) be the set of all G-
equivariant non expansive operators and F be a non
empty subset of F(Φ, G)

DFmatch(ϕ1, ϕ2) = sup
F∈F

dmatch(rk(F (ϕ1)), rk(F (ϕ2)))

for every ϕ1, ϕ2 ∈ Φ. dmatch corresponds to the
bottleneck distance and rk denotes the k-th persistent
Betti number function with respect to the function ϕ.

4 Method and experiments
In this section, we present the general algorithm for
solving Bongard problems, as well as the algorithm
for two sample feature functions where we both use
classical persistent homology and apply G-equivariant
non expansive operators.

In our approach to this problem, we assume that
images can be studied and compared through their
topological signatures, we also assume that given the
right feature function along with the right cluster-
ing parameters, it is possible to find a grouping that
matches perfectly the one in the original problem.

We first give a summary of the entire method in
the figure below.

Fig. 2. Summarized Method

4.1 The abstract general algorithm

Algorithm 1: Abstract General Algorithm
Input : 12 Bongard images with

corresponding class
Output: The separating feature/rule

1 while not all feature functions are called do
2 feature← random feature call ;
3 cluster images based on feature ;
4 match← compare original and resulting

clusters ;
5 if match is perfect then
6 return feature ;

7 return ”solution not found”;

Algorithm 2: Sample feature functions

1 Function Connex(image):
2 Convert image to grayscale image;
3 Construct lower star image;
4 Compute H0;
5 Compute persistence diagram ;
6 Transform persistence diagram to

persistence image;
7 return persistence diagram , persistence

image;
8 ;
9 Function Equivariance(images):

10 operators← list of operators ;
11 for img in images do
12 lower star image← compute lower

star filtration of img ;
13 apply list of operators on

lower star image ;
14 end
15 for all pairs of lower star image with the

same applied operator do
16 Approximate the natural pseudo

distance ;
17 end
18 Compute distance matrix ;
19 return Distance Matrix ;
20 ;

4.1.1 General Description
The algorithm takes as input the 12 Bongard images
along with their corresponding classes. It makes use
of a list of randomly callable functions, each of which
is responsible for the computation of a certain feature.
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The called function returns a feature vector or a dis-
tance matrix on the basis of which the clustering is
performed. The algorithm then compares the result-
ing cluster labels with the classes given as input. If the
labels match, the algorithm states the function/feature
called as the separating rule and the algorithm is sus-
pended. Otherwise, the function is removed from the
list and an other one is called. As long as the feature is
not found, the algorithm keeps calling functions until
the list is exhausted.

4.1.2 The features set

The problems at hand are of geometric and topolog-
ical nature. In this context,capturing geometric fea-
tures and topological shape invariants makes sense.
These invariants serve as candidates for the separat-
ing rule we are looking for. For each problem, we
might be interested in different features such as con-
nexity, the convex hull, the area or the skeleton among
others.

We must note that our starting list of features is
by no means exhaustive. Yet, it would serve as a good
starting point for solving some Bongard problems. We
can extend it further by mixing and matching a greater
number of patterns to see which ones fit the given in-
put images.

4.1.3 Feature-Based clustering

Once we compute the selected features, we transform
them into a suitable format. We then feed them as in-
put to a clustering algorithm. Research on data clus-
tering methods has been extensive. Different cluster-
ing algorithms are used for different tasks. In this
work, our algorithm of choice is DBSCAN (Density-
Based Spatial Clustering of Applications with Noise)
[31]. As its name suggests, it is a density based
method. It attempts to cluster data points on the basis
of a density function. DBSCAN separates the given
data into regions of high density and others of low
density.

When working with DBSCAN, it is important to
specify two important parameters; A minimum num-
ber of samples n and a distance ε. Using these two pa-
rameters, the algorithm is able to determine what we
call core samples. These are samples such that there
are n samples within a distance ε.

Core samples are a central component to DB-
SCAN. These are samples in areas of high density
which constitute the building block of a cluster.

A cluster is then a set of core samples , but not
only. The cluster is built by recursively taking each
core sample and finding all of its neighbours that are

core samples.The set of non-core samples will be sam-
ples on the cluster borderlines .

4.1.4 Clustering evaluation and Separating rule
Since we have a known clustering solution, we have
a ground truth clustering against which we can evalu-
ate our results. If the resulting and original clustering
match, the features responsible for that outcome are
traced back and given as output.

In this paper, we are using the Adjusted Rand In-
dex [22] as a measure of similarity between the orig-
inal and resulting clusterings. When two clusterings
are similar, we get a positive ARI score with 1 being
a perfect match.

The raw index is given by

RI =
a+ b

C
nsamples

2

,

where a denotes the number of pairs of elements that
are both in the same set in the original and resulting
clusterings and b the number of pairs of elements that
are in different sets in the two clusterings.

In order to correct for chance, we define the ad-
justed Rand index as follows:

ARI =
RI − E[RI]

max(RI)− E[RI]
.

In the next section, we demonstrate the use of
both persistent homology in its classical form and in
combination with G-equivariance to solve two differ-
ent Bongard problems.

4.2 Problem 1: Classical persistent homol-
ogy

The following figure presents Bongard Problem # 23.
In order to solve this problem, we first compute per-
sistence diagrams of the images, transform them into
persistence images and then feed them to the cluster-
ing algorithmm before deciding if the number of com-
ponents is actually the separating rule.

Fig. 3. Problem # 23
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Persistence Diagrams
Using Ripser library [5], we compute the 0-
dimensional lower star filtration on each of the twelve
images. Internally, the function first constructs a
sparse matrix whose elements are the image pixels,
these are taken to be vertices and each one of them is
connected to its spatial neighbours. Every two con-
nected vertices share an edge whose weight is the
maximum of the two pixel values. We get the fol-
lowing results:

(a) Persistence Diagrams of left images

(b) Persistence Diagrams of right images

Fig. 4. Computed Persistence Diagrams

Persistence Images Persistence diagrams serve
as a representation of homological information. How-
ever, it is hard to directly use them for machine learn-
ing tasks. Persistence images , on the other hand, are
well suited for that purpose. These are actually finite
-dimensional vector representations of persistence di-
agrams. They too verify stability with respect to small
perturbations [1].

We get the following results using the Persim li-
brary [34] .

(a) Persistence Images of left images

(b) Persistence Images of right images

Fig. 5. Computed Persistence Images

In our first problem, we cluster images using the
DBSCAN algorithm on the basis of the connex func-
tion output. The most important paramaters to set are
the minimum number of samples in each cluster and
the ε parameter that determines the maximum distance
between two samples to be considered as neighbors.
In this case, the ε parameter is set to 2. Since the
twelve images should be separated into two classes
of six images each, we set the minimum number of
samples parameter to 6.

By computing the adjusted random index, we ver-
ify the match between the resulting and the original
groupings. A perfect matching score of 1 indicates
that the difference between the two sets of images re-
sides in the number of connected components. It is
the separating rule we are looking for.

4.3 Problem 2: G-equivariance

The following problem presents homeomorphic ob-
jects that can’t be separated using persistence dia-
grams in the classical form. In this setting, the use of
G-equivariant non expansive operators presents itself
as a better alternative to compare shapes and detect
the rule of interest.
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Fig. 6. Problem 2

Let G be the group of all equiareal transforma-
tions of the form g : x 7→ Ax + B, where A is a uni-
modular matrix and B a random matrix of the same
shape as the given image.

One way of constructing G-equivariant non-
expansive operators is by means of permutants as de-
scribed in [10]. We present here some of the operators
we used to perform our experiments:
F1(ϕ) = 1

2(ϕ(Ax+B) + ϕ(Ax−B))

F2(ϕ) = 1
3(ϕ(Ax+B) + ϕ(Ax) + ϕ(Ax−B))

F3(ϕ) = 1
5(ϕ(Ax+B)+ϕ(Ax+C)+ϕ(Ax−B)+

ϕ(Ax− C))
ϕ being the filtering function, A a unimodular matrix
and B and C two random matrices.

These operators can serve as a basis to create new
ones. The interested reader can refer to [4] for results
on generating new operators from pre-built ones along
with proofs.

Remark: Since the setF of all G-equivariant non
expansive operators can be approximated by a finite
subset of F [20], we only need a small subset of op-
erators to perform a clustering that matches the given
one.

The problems we discussed above have been
solved by both major approaches discussed in this pa-
per, namely, by Phaeaco and the visual language and
pragmatic reasoning approach. The Bongard prob-
lems we’re presenting next have not been solved by
neither approach. In almost all these problems in-
stances, shapes in each group present similarities that
can’t be captured using literal concepts. For exam-
ple, a solver that relies on such approach would not
make the difference between a triangle represented
with straight lines and one represented with curved
lines as in the case of BP#10.

For such cases, persistent homology and G-
equivariant operators present powerful tools mainly
for two reasons: firstly, because persistent homology
can separate relevant features from noise and is more
concerned with the general shape of data, and sec-
ondly, because GENEOs present the algorithm with

Fig. 7. BP # 10

Fig. 8. BP # 97

Fig. 9. BP # 100
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multiple functions through which to see the data, thus
giving it more ability to recognize the possible pattern
governing the sets of images.

Letting G be the group of all similarity transfor-
mations, we can contsruct G-equivariant non expan-
sive operators which serve as tools to identify images
with similar patterns and arrange Bongard images into
clusters that match the original ones.

5 Conclusion

Given a Bongard problem, one would first observe the
given images, make a hypothesis about which prop-
erty is responsible for the separation of the two sets
of images, verify that this property or rule holds for
all images on the left but holds for none of the images
on the right. One would pursue this process in a loop,
multiplying the points of view, taking some properties
into account and ignoring others until the separating
rule is found.

The algorithm we proposed in this paper works in
the same fashion. The algortihm constructs different
representations of the same images, through the use
of persistent homology summaries and G-equivariant
non-expansive operators, allowing it to view the im-
ages using different ’lenses’, the choice of the prop-
erty that might explain the separation of the two sets
is made at random. Performing clustering based on
the chosen property and matching it with the original
grouping allows the algorithm to decide if the sepa-
rating rule was found. That being said, this line of re-
search, i.e: approaching BP’s by means of persistent
homology, is still at its begining. Further experiments
are still conducted on discussed BPs and many ques-
tions remain unanswered. Some of them are related to
the construction of TDA tools like the construction of
GENEOs and others are more specific to BPs.

We list here some of these questions:

• How can one better construct new GENEOs from
already built ones?

• How can one choose which properties to con-
sider first?

• How can the algorithm benefit from the use of
memory to solve new problems?

• Is there a complete set of GENEOs that would
allow us to solve all BPs?

We will further explore some of these questions
in future work.
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