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Abstract: The sensor-less control is a major issue in control domain. The use of sensors has several downsides like
high cost, fragility and low reliability. Furthermore, the physical environment sometimes, does not allow to use
sensors. Due to the multiple variables and non-linearity of induction motor dynamics, the estimation of the rotor
speed and flux without the measurement is still a very challenging subject. The main objective of this paper is to
present a comparative study between two observer’s structures, a full order adaptive observer based on Lyapunov
theory and inherently extended Kalman filter which did not take the speed as adaptive quantity. Both of them are
linked to a vector controlled induction motor drive. The effectiveness and estimation accuracy is investigated in
detail by simulation results.
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1 Introduction
Induction motor is the most commonly used electrical
machine, it is cheaper, rugged and easier to maintain
compared to other alternatives. It has two main parts:
stator and rotor, stator is a stationary part and rotor is
the rotating part. Stator is made by stacking thin slot-
ted highly permeable steel lamination inside a steel or
cast iron frame, winding passes through slots of sta-
tor. When a three phase AC current passes through
it, something very interesting happens. It produces a
rotating magnetic field, the speed of rotation of a mag-
netic field is known as synchronous speed. It’s called
an induction motor because electricity is inducted in
rotor by magnetic induction rather than direct elec-
tric connection. To collapse such electric magnetic
induction, to aid such electromagnetic induction, in-
sulated iron core lamina are packed inside the rotor,
such small slices of iron make sure that Eddy current
losses are minimal. And this is another big advantage
of three phase induction motors [1].
Regardless of the used control strategy, the measure-
ment of speed and flux is an essential step for control
design in electrical drives. In another cases, the imple-
mentation of control algorithms requires the knowl-
edge of all the the state vector components. How-
ever, the use of sensors is associated with several dis-
advantages, like high cost, fragility and reduced reli-
ability. In addition, sensors require a regular main-

tenance, and in some applications, it is inappropriate
to install them due to the physical and environmental
constraints. A similar situation arises when a sensor
breaks down [2].
The main proposed solution in literature is to avoid
these difficulties of utilizing sensors by limiting their
use and replacing them with software sensors. This
strategy is known by sensor-less control theory in
the automatic field, it takes a grand part in this do-
main. The software sensors are called estimators or
observers. The objective of sensor-less control for
electrical machines is to estimate mechanical speed or
flux and its position [3]. The speed sensor-less con-
trol for AC drives has taken a big attention in industry
application in the past decade, since it can reduce the
cost and avoid the difficulty of installing mechanical
sensors [4].
Over and above, the sensor-less control applications
can improve the control system by reducing the num-
ber of the used sensors, reduce the cost of installa-
tion and cabling and increases the reliability of the
drive. Thus, the observers remain an important area
in process engineering. Many considerable researches
have been proposed for the estimation of rotor speed
and flux of electrical drives such as model reference
adaptive system (MRAS) [5, 6], full order adaptive
observers [7] and Kalman filter [8]. Moreover, the de-
sign of observers based on sliding mode methodology
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had an important discussion in many works.
For non-linear problems Kalman can overcome this
difficulty by using a linearised approximation, where,
the stochastic continuous time system must be ex-
pressed in the discrete form in order to fit with the
structure of extended Kalman filter. The process of
observation of the extended Kalman filter is given
in two stages, prediction and filtering. The predic-
tion stage is aimed to obtain the next predicted states
and predicted state-error covariance, while in the fil-
tering stage, the next estimated states is obtained as
the sum of the next predicted states and a correction
term. However, the high degree of complexity of EKF
structure and the high system orders causes higher
computational requirement (i.e. the sampling time).
Thus, additional challenges and problems are intro-
duced, such as the reduction of dynamic performance
and the increase of harmonics. Nevertheless, the de-
velopment of new processors technology (DSPs and
FPGAs) solves this problem due to the powerful cal-
culations processing [9].

2 Induction motor drive modelling

The induction motor has many state space mathemat-
ical models, each model is expressed by assuming a
certain state vector. The modelling of AC machines is
based mainly on the work of G. Kron, who gave birth
to the concept of generalized machine as described
in reference [10]. Park’s model is a special case of
this concept. It is often used for the synthesis of
control laws and estimators. Described by a non lin-
ear algebra-differential system, Park’s model reflects
the dynamic behaviour of the electrical and electro-
magnetic modes of the asynchronous machine. It ad-
mits several classes of state representations. These
model classes depend directly on the control objec-
tives (torque, speed, position), the nature of the power
source of the work repository and the choice of state
vector components (flux or currents, stator or rotor).
In this paper, the mathematical model of the machine
in use is described in the stator fixed reference frame
(U, V) (stationary frame) by assuming the stator cur-
rents and the rotor fluxes as state variables.
The mathematical model of a three-phase squirrel
cage IM drive in α− β reference frame is:{

Ẋ = AX + BU
Y = CX

(1)

Where X , U and Y are the state, the input and
the output vector respectively.
X=[isα isβ φrα φrβ]t ; U=[usα usβ]t ; Y=[isα isβ]t

A=


−λ 0 K

Tr
Kωr

0 −λ −Kωr K
Tr

Lm
Tr

0 − 1
Tr

−ωr
0 Lm

Tr
ωr − 1

Tr

 ;

B=


1
σLs

0

0 1
σLs

0 0
0 0

 ;C=

[
1 0 0 0
0 1 0 0

]
With

λ = Rs
σ.Ls

+ 1−σ
σ.Tr

;K = 1−σ
σ.Lm

; σ = 1− L2
m

Ls.Lr
; Tr = Lr

Rr

The state space mathematical model of the induc-
tion motor drive is shown in Figure 1.

Figure 1: IM state space mathematical model

3 Adaptive Luenberger observer for
flux and speed estimation

The adaptive flux observer is a deterministic type of
observers based on a deterministic model of the sys-
tem [11]. In this work, the adaptive Luenberger state
observer (ALO) is used to estimate the flux compo-
nents and the rotor speed by including an adaptive
mechanism based on the Lyapunov theory [12]. In
general, the equations of the ALO can be expressed as
follow: {

ˆ̇X = AX̂ + BU + L(Y − Ŷ )

Ŷ = CX̂
(2)

The symbolˆdenotes the estimated value and L is
the observer gain matrix. The mechanism of adapta-
tion speed is deduced by Lyapunov theory [13]. The
estimation error of the stator current and rotor flux,
which is the difference between the observer and the
model of the motor, is given by:

ė = (A− LC)e+ ∆AX̂ (3)

Where: e = X − X̂

∆A = A−Ã =


0 0 0 K∆ωr
0 0 −K∆ωr 0
0 0 0 −∆ωr
0 0 ∆ωr 0

 (4)
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And: ∆ωr = ωr − ω̂r

Definition 1 We consider the following Lyapunov
function:

V = et.e+
(∆ωr)

2

λ
(5)

Where λ is a positive coefficient, its derivative is
given as follow:

V̇ = et[(A− LC)t + (A− LC)]e

−2K∆ωr(eisα φ̂rβ − eisβ φ̂rα) +
2

λ
∆ωr ˙̂ωr

(6)

With ω̂r is the estimated rotor speed. The adap-
tation law for the estimation of the rotor speed can be
deduced by the equality between the second and third
terms of Equation (6):

ω̂r =

∫
λK(eisα φ̂rβ − eisβ φ̂rα)dt (7)

The feedback gain matrix L is chosen to ensure
the fast and robust dynamic performance of the closed
loop observer [14].

L =


l1 −l2
l2 l1
l3 −l4
l4 l3

 (8)

With l1, l2, l3 and l4 are given by:
l1 = (k1 − 1)(γ + 1

Tr
) ; l2 = −(k1 − 1)ω̂r

l3 =
(k21−1)
K (γ −K Lm

Tr
) + (k1−1)

K (γ + 1
Tr

) ;

l4 = − (k1−1)
K ω̂r

Remark 2 k1 is a positive coefficient obtained by
pole placement approach; a wise choice was made for
its value which is 1.06 in order to guarantee a fast re-
sponse [15].

4 Extended Kalman filter for flux
and speed estimation

4.1 IM drive extended model

The continuous model of the induction machine ex-
tended to the electrical rotational speed is represented
by a non-linear system of state equations [16, 17]:{

Ẋe(t) = f(Xe(t), U(t)) = AXe(t) + BU(t)
Y (t) = h(Xe(t)) = CXe(t)

(9)
In which:

Xe=
[
X Θ

]t
=
[
isα isβ φrα φrβ ωr

]t
;

Y=
[
isα isβ

]t
;U=

[
usα usβ

]t
With:

A =


−γ 0 µ

Tr
µωr 0

0 −γ −µωr µ
Tr

0
Lm
Tr

0 1 − 1
Tr

−ωr 0

0 Lm
Tr

ωr
1
Tr

0

0 0 0 0 0

 ;

B =


1
σLs

0

0 1
σLs

0 0
0 0
0 0



4.2 Discretization of the continuous model

The previous model of the induction machine must
be discretized for the implementation of the extended
Kalman filter. If quasi-constant control voltages are
assumed over a sampling period Ts as in reference
[18], the discrete augmented state model can be ap-
proximated by:{

Xek+1
=f(Xek , Uk)=AdXek + BdUk

Yk=h(Xek)=CdXek
(10)

The matrices of this model are obtained by a
limited development in Taylor series of order one
[19]:
Ad ≈ eATs = I + ATs ; Bd = BTs ; Cd = C

This leads to :

Ad =


1 − Tsγ 0 Ts

µ
Tr

Tsµωr 0

0 1 − Tsγ −Tsµωr Ts
µ
Tr

0

Ts
Lm
Tr

0 1 − Ts
Tr

−Tsωr 0

0 Ts
Lm
Tr

Tsωr 1 − Ts
Tr

0

0 0 0 0 1

 ;

Bd =


Ts

1
σLs

0

0 Ts
1
σLs

0 0
0 0
0 0



4.3 Implementation of the EKF to the IM
discrete system

The application of the extended Kalman filter to the
discrete system of the induction machine, taking into
account the presence of state noise Wk and measure-
ment noise Vk. This leads to the following expres-
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sions:{
Xek+1

=f(Xek , Uk) +Wk=AdXek + BdUk +Wk

Yk=h(Xek) + Vk=CdXek + Vk
(11)

With:
Xek+1

=
[
Xk Θk

]t
;Yk=

[
isαk isβk

]t
;

Uk=
[
usαk usβk

]t
;Wk=

[
Wxk WΘk

]t
Similarly, the linearisation matrix Hk is written

as follows: Hk =

[
1 0 0 0 0
0 1 0 0 0

]
In the determination of the initial covariance ma-

trix P0|0, it is generally limited to the choice of el-
ements on the diagonal. These elements are chosen
in such a way that they correspond to the uncertainty
about estimates of initial state variables.
Figure 2 shows the principle of an extended Kalman
filter.

Figure 2: Extended Kalman filter principle

4.3.1 Choice of covariance matrices Q and R

It is via these matrices that the various measured,
predicted and estimated states will pass. Their
goals are to minimize the errors associated with
approximate modelling and the presence of noise on
the measurements. This is the most difficult point
of applying the Kalman filter to observation. The
matrix Q linked to the noises tainting the state, allows
to adjust the estimated quality of the modelling and
discretization. A strong value of Q gives a high
value of the gain K stimulating the importance of
the modelling and the dynamics of the filter. A high
value of Q can, however, create an instability of the
observation. The matrix R regulates the weight of
the measurements. A high value indicates a great
uncertainty of the measurement. On the other hand,
a low value makes it possible to give a significant
weight to the measurement [20].
Xe0|0 =

[
0 0 0 0 0

]t
;

P0|0 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ;

Q =


q11 0 0 0 0
0 q22 0 0 0
0 0 q33 0 0
0 0 0 q44 0
0 0 0 0 q55

 ;

R =

[
r11 0
0 r22

]
The parameters of the calibration matrices of the

Kalman filter Q and R were chosen as follows:
q11=q22=q33=q44=10−6 ; q55=106 ; r11=r22=106.

The state space mathematical model of an ob-
server is illustrated by Figure 3.

Figure 3: Observer state space mathematical model

Figure 4 shows the sensor-less vector controlled
IM drive strategy.

Figure 4: Proposed control scheme
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5 Results and discussion

In this section, an EKF is implemented in a sensor-less
vector controlled IM drive. The EKF and ALO are
designed to observe the motor state vector: d-q sta-
tor phase current components ids, iqs, d-q rotor flux
components φdr, φqr and the mechanical speed ωr.
The control law and the observer are implemented in
MatLab/Simulink. And in order to show the system
robustness against the external perturbation, a load
torque of 10 N.m is applied at t1=0.6s and removed
at t2=1.6s.
Figures 5 to 18 illustrate a performance comparison
between the two observers: EKF in the left and ALO
in the right. Figure 5 shows the speed response ac-
cording to a step reference of 100 rad/s. Both ob-
servers show good dynamic at starting up and the
speed regulation loop rejects the applied load distur-
bance quickly. The two observers kept the same fast
speed response since the same PI speed controller is
used for both speed loops, there is no difference in the
transient response. The system response time is very
quick and does not exceed 0.2s.
Figure 6 shows the rotor flux response, it achieves the
reference which is 1 Wb very quickly. Even the step
reference starts at 0.2 s, the rotor flux response is in-
dependent to the speed application. It is reaching the
reference very rapidly at the starting up. Then, Figure
7 shows the torque responses with the load applica-
tion. At the beginning, the speed controller operates
the system at the physical limit since the step refer-
ence is the hardest for most control processes.

Until now, no apparent difference in the perfor-
mance of the two observers, Figures 9 to 18 will re-
veal this difference. Figures 9 and 10 illustrate re-
spectively the observed stator current components ids
and iqs. We can notice clearly the superiority of the
EKF, no fluctuations seen around the reference. EKF
uses a series of measurements containing noise and
other inaccuracies contrary to ALO that employs only
free noise measurements. Figures 11 and 12 illus-
trate respectively the observed rotor flux components
φdr and φqr. No fluctuations seen around the refer-
ence for both observers, only a small static error of
observation. Finally, Figures 13 to 18 illustrate the
static error of all the observed components: the ma-
chine state parameters, the rotor flux and the mechan-
ical speed.
All the quantities observed by the EKF are filtered and
precise, the EKF is a very good observer for the sys-
tems that present any kind of noise. It will exploit the
noise in order to estimate the quantity. It’s very impor-
tant to note that the EKF observation process is given
in two stages: prediction and filtering.

6 Conclusion
All the closed-loop observers are classified as de-
terministic observers, they can be easily corrupted
by measuring noise and require parameter adapta-
tion algorithms. The Kalman filter observers have
high convergence rate and good disturbance rejection,
which can take into account the model uncertainties,
random disturbances, computational inaccuracies and
measurement errors. These properties are the advan-
tages of extended Kalman filters over other estimation
methods. For these reasons, they had wide application
in sensor-less control in spite of their computational
complexity. For non-linear problems, Kalman filter-
ing can overcome this difficulty by using a linearised
approximation, where, the stochastic continuous time
system must be expressed in the discrete form in order
to fit with the structure of the EKF. The EKF observa-
tion process is given in two stages, prediction and fil-
tering. The prediction stage is aimed to obtain the next
predicted states and predicted state-error covariance,
while in the filtering stage, the next estimated states is
obtained as the sum of the next predicted states and a
correction term.
However, the high degree of complexity of EKF struc-
ture and the high system orders cause a higher com-
putational requirement (the sampling time). Thus,
additional challenges and problems are introduced,
such as the reduction of dynamic performance and
the increase of harmonics. Nevertheless, the devel-
opment of new processors technology (DSPs and FP-
GAs) solves this problem due to the powerful calcula-
tions processing.

7 Appendix

Table 1 lists the rated power and parameters of the
used machine.

Table 1: IM drive rated power and parameters

Rated power 3 kW
Voltage 380 V

Frequency 50 Hz
Pair pole 2

Rated speed 1440 rpm
Stator resistance 2.2 Ω

Rotor resistance 2.68 Ω

Stator inductance 0.229 H
Rotor inductance 0.229 H

Mutual inductance 0.217 H
Moment of inertia 0.047 kg.m2

Viscous friction coefficient 0.004 N.s/rad
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Figure 5: Speed response
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Figure 10: iqs current response
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Figure 11: φdr flux response

Time (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
o
to

r 
q
-f

lu
x 

(W
b
)

×10-3

-5

-4

-3

-2

-1

0

1

2

φ
qr

φ
qr

observed

Time (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
o
to

r 
q
-f

lu
x 

(W
b
)

×10-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

φ
qr

φ
qr

observed

Figure 12: φqr flux response

Time (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
p
e
e
d
 e

rr
o
r 

(r
a
d
/s

)

-1

-0.5

0

0.5

1

1.5

Ω
actual

 - Ω
observed

Time (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
p
e
e
d
 e

rr
o
r 

(r
a
d
/s

)

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Ω
actual

 - Ω
observed

Figure 13: Mechanical speed error
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Figure 14: Rotor flux error
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Figure 15: ids component error
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Figure 16: iqs component error
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Figure 17: φdr component error
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Figure 18: φqr component error
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