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Abstract: - Today, data is produced, transmitted and stored across the internet in abundant quantities. In such a 
world, modern-day network security systems have had to develop at an equally astounding rate in order to keep up 
with the data deluge. Subsequently, companies spend a substantial amount of money, time and effort in 
developing intrusion detection systems to ensure timely detection and prevention of malicious activity in order to 
preserve system security. In our paper, we propose a two-stage algorithm to solve the problem of NIDS resulting 
in fewer false positives and false negatives. We built and evaluated the performance of our IDS using the 
benchmarked NSL-KDD dataset, which consists of 41 features, of which 3 are categorical and the remaining 
numeric. Categorical features have been transformed via One Hot Encoding due to which the feature space 
explodes to 122 features. Our aim henceforth is to reduce this feature space through methods of feature selection 
and dimensionality reduction to develop a computationally inexpensive classifier capable of operating on the 
reduced feature space using sequential models. The work has involved using autoencoders for feature space 
reduction followed by a feed forward network, and has delivered encouraging results. We have then extended our 
analysis to identify features which can be eliminated without any substantial loss of information available for the 
classification algorithm. The remaining set of features can then be input into a different model to possibly provide 
better results or reduce training and evaluation time. 
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1 Introduction 
In the current scenario, the Internet has become a 
necessity for daily life and is used for various 
purposes such as education business and banking. 
The Internet is extremely vast and diversified, 
connecting millions of devices with each other to 
create and save data but at the same time making it 
vulnerable to attacks on sensitive information. 
Exposure of one system could lead to the 
subsequent contamination of another. With the 
advancement of the Internet, the equipment for 
network security has also evolved. This field is 
extremely versatile and has grown in complexity to 
prevent the various attacks that have been created 
over time and put into action. Intrusion Detection 
Systems (IDS) monitor networks for malicious 
activity or privacy breaches to protect data 
confidentiality and integrity, i.e. any form of 
intrusion that may negatively affect privacy or 
safety. Depending upon the deployed location, IDS 
are majorly of two types; host-based and network-
based. Host-based IDS are installed on PCs and 
network-based IDS are situated on networks.  

These systems employ machine learning 
techniques differentiating the malicious usage 

patterns from the benign ones. In these techniques, a 
model is trained on a training set consisting of data 
points of both classes then applied on the test set to 
compare the predicted classes to the actual ones then 
tuned upon to improve the accuracy and complexity. 
Once the desired output is achieved, the trained 
model is employed in real-life scenarios to prevent 
malicious data packets from going through the 
network. To keep the model up-to-date, it is trained 
in further samples to identify new types of malicious 
attacks. 

This paper employs the NSL-KDD dataset which 
is a balanced resampling of the KDD CUP 99 
dataset [1]. This dataset contains 5 classes with 4 of 
them malicious attacks and 1 benign. The malicious 
classes are DoS, Probe, R2L and U2R. 

The main algorithms in effect make use of rule-
based methods such as SNORT [2], clustering 
methods such as fuzzy [3], [4] and mini batch 
kmeans [5], and neural networks [6], [7], [8]. These 
methods make use of the direct dataset which has a 
high variance and no clear decision boundary 
between the different classes, making it a tougher 
classification process and requiring a denser model 
network. 
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In this paper, we set out to propose and 
implement a new method which first consists of pre- 
processing via feature engineering using one hot 
encoding followed by dimensionality reduction 
using Principal Component Analysis (PCA) to 
improve the efficiency of the resultant dataset for the 
following steps. Secondly, outlier detection is 
implemented as a binary classification problem with 
the two classes being malicious and benign to 
classify the malicious attacks with less complexity. 
The last stage consists of multi-class classification 
with all 5 classes in an effort to further classify the 
attack and reduce the rate of false positives. 

 
2 Related Work 
Due to the increasing demand of computationally 
inexpensive and extremely accurate network 
intrusion detection systems, many algorithms have 
been recently proposed that yield unbeatable 
accuracies. Since the proposal of deep learning as a 
method for intrusion detection [9] by Professor 
Hinton in 2006, there have been huge advancements 
in every field of computational intelligence, as has 
been the case with intrusion detection systems. 

[3], [4], make use of fuzzy clustering augmented 
with Artificial Neural Networks (ANN) which 
causes a drastic reduction in false positives. The 
technique used by [4] results in extremely less false 
positives due to the presence of an aggregating 
ANN after the classification ANNs. 

[6] uses autoencoders to reduce the feature space 
and executes instructions on parallel processors. 
This paper focuses more on the complexity of the 
algorithm and the time taken by the algorithm, 
which is why feature space reduction is done on a 
rather drastic scale. Experiments show that such 
drastic reduction in feature space result in stark 
information loss which results in a less than ideal 
situation. 

[7], [10] make use of Long Short-Term Memory 
(LSTM) and Recurrent Neural Network (RNN) to 
introduce context among the features. These kinds 
of neural networks are implemented by these papers 
in a bidirectional sense and since context is 
introduced in the first layer itself, the depth of the 
network can be limited to 2-3. Although forward 
propagation in this kind of network takes a 
substantial amount of time due to bidirectional 
connections in each layer, it causes minimal space 
overhead due to a radical reduction in the number of 
nodes and layers. 

[11] uses genetic algorithms like crossover and 
mutation to search for the optimal feature space in 
neural networks. The idea of genetic algorithms is 

inspired by evolution and how it results in the fittest 
population (features in this case). Genetic 
algorithms simply need a fitness measure that 
results in the optimal feature space when run for 
multiple epochs but the drawback with this method 
lies in the complexity and time taken by the model as 
it is essentially running over the entire dataset 
multiple times. 

In this paper we have attempted to create a 
model that runs on a reduced feature space and 
works as a robust classifier while providing 
minimum false negatives. For this, we use a two-
step approach. First, anomaly detection is conducted 
which detects malicious data points. Then, 
multiclass classification which classifies data points 
into respective classes and reduces the number of 
false positives. 

 
3 Preliminaries 
In this section, a basic overview is provided of all 
the related terms such as IDS, dimensionality 
reduction, decision trees, ensemble methods and the 
NSL-KDD dataset. 
 
3.1 Intrusion Detection Systems 
Intrusion Detection Systems are classified into two 
major categories based on their approach and the 
techniques and algorithms used to analyze traffic 
data and detect intrusions, namely anomaly-based 
and signature-based.  

Signature based IDS compare live traffic data to 
a stored database and try to match it with known 
intrusion patterns in order to detect attacks, i.e., they 
follow the well-known paradigm of rule-based 
systems. Signature-based IDS deliver high accuracy 
when detecting known intrusion patterns, but can 
fail to detect newer types of attacks due to a lack of 
any existing, match able patterns in the database. In 
an era where attackers are always finding newer 
ways to take control of a system or a network of 
systems, signature-based IDS fail to offer an 
adequate level of protection without a substantial 
degree of risk. Another drawback of such 
frameworks is the large administrative overhead 
required to regularly maintain and update the 
signature database to ensure that the system is able 
to detect even the newest types of attacks [12]. 

Contrarily, anomaly-based IDS rely on detecting 
deviations from what is considered to be normal 
network behaviour to identify malicious activity. 
Originally, anomaly-based systems used statistical 
methods to model data representing ‘normal 
behaviour’ and used these developed models to 
identify and flag any significant deviations as 
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suspicious. However, recent efforts have pivoted to 
focus on using machine learning and deep learning 
along with advanced mathematical techniques to 
develop improved anomaly-based IDS. Major 
challenges that arise when attempting to build such 
models is the high false alarm rates, owing to the 
difficulty of modelling the ‘normal behaviour’ due 
to non-linearity of data and a certain degree of 
obscurity present in the data [13]. 
 
3.2 Dimensionality Reduction 
Dimensionality reduction is an umbrella term for the 
various processes aimed at reducing the number of 
random variables in a dataset. This serves 
multifarious purposes such as enabling visualization 
of data and easing computational requirements. It 
can also help remove contextual redundancies in the 
dataset and simplify the overall process of data 
analysis and model construction. Dimensionality 
reduction is split majorly into two kinds of 
techniques, feature selection and feature extraction. 

Feature selection involves the selection of a 
subset of the existing features. The selection of 
features can be guided by strategies involving 
information gain, gain ration, scoring features based 
on their importance etc.  

Feature extraction is a more complex set of 
techniques that involve combining the existing 
variables through various statistical, algebraic or 
deep learning techniques to form a new, lower 
dimensional set of features which can be used to 
represent the dataset effectively. However, this 
technique suffers with a loss of context as it is not 
always possible to determine what exactly the new 
features represent and some information is always 
lost due to the decrease in number of features. 
 
3.2.1 Principal Component Analysis  
Principal Component Analysis (PCA) [5], [14] is a 
kind of dimensionality reduction technique that 
combines concepts from statistics and linear algebra 
to perform feature extraction. The process involves 
the use of covariance matrix and eigenvalues to 
transform the existing dataset into a new dataset 
using principal components derived from 
eigenvectors. The following steps are involved in 
PCA:  

 For the dataset Dm × n containing m 
datapoints with n features, subtract from 
each element the mean of the column to 
which it belongs to centre the datapoints at 
the origin. Let this new matrix be D`. 

 Calculate the covariance matrix od D`, 
denoted by C. 

 Obtain the eigenvalues and eigenvectors of 
the matrix C. 

 If d denotes the required number of 
dimensions for the new dataset, select the 
first d eigenvalues with the largest 
magnitudes, and combine their 
corresponding eigenvectors to form the 
transformation matrix En × d. 

 The reduced dataset is given by Fm × d = [ 
D`m x n ] × [ En x d ]. (1) 

 
3.2 Decision Trees 
A decision tree is a classification algorithm that 
forms a flowchart in a tree-like graph where at each 
internal node an attribute is chosen on which to split 
the dataset on. Consequently, each branch represents 
one outcome of the split and any subsequent leaf 
nodes constitute the classes. The entire path from the 
root node to a leaf node can be regarded as a 
classification rule [15]. They map both linear as 
well as non-linear relationships. 

The split at each internal node can be done on the 
basis of information gain and Gini index. The model 
proposed in this paper uses Gini index. Gini index 
forces a binary tree which is ideal in our case as we 
are initially working on a binary classification 
model. The underlying principle for this splitting 
algorithm is based on the fact that the probability of 
two randomly chosen data tuples from the dataset 
belonging to the same class is 1 if the dataset is 
pure. 
 
3.4 Ensemble Methods 
The usage of ensemble methods is ideal in the 
combination of a number of base models to produce 
an optimal model. These methods take into 
consideration a number of decision trees and use 
those to find the ideal split at each internal node by 
calculating which features to use. 

Bagging [16] is an example of an ensemble 
method that combines Bootstrapping and 
Aggregation. From a sample of the dataset, multiple 
bootstrapped samples are taken upon which a 
decision tree is formed for each one. An algorithm is 
then used to aggregate the trees and find the most 
efficient predictor. 

Random Forests [17] are another example. These 
use the same concept as bagging except that they 
work with the entire dataset rather than a sample. 
Each tree in this method splits at different features 
thus overall providing a larger ensemble to 
aggregate over, eventually producing a more 
accurate predictor. 
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3.5 NSL-KDD 
The NSL-KDD dataset [18] is a refined version of 
the original KDD-CUP 99 dataset, which, after a 
thorough analysis revealed, a number of 
redundancies and other issues such as imbalanced 
classes and a huge number of records which offered 
many challenges to the construction of a 
classification model. The improved NSL-KDD 
dataset consists of 41 features and is split into the test 
set and training set. The training set has 125,973 
datapoints while the test set has 22,544 datapoints. 
The test data is classified into 38 different classes, 
of which 21 are present in the training data. 1 of 
these classes corresponds to ‘normal activity’ while 
the others are various attack types. For the sake of 
brevity, the 37 other classes are categorized into 4 
different attack types, as follows [19]: 
 
Table 1. Categorization of the 37 different classes 
into the 4 different attack types. 
S. No. Attack Type Class in Dataset 
1 DoS back, land, neptune, pod, 

smurf, teardrop, 
mailbomb, processtable, 
udpstorm, apache2, 
worm 

2 Probe satan, ipsweep, nmap, 
portsweep, mscan, saint 

3 R2L guess_password, 
ftp_write, imap, phf, 
multihop, warezmaster, 
xlock, xsnoop, 
snmpguess, 
snmpgetattack, 
httptunnel, sendmail, 
named 

4 U2R buffer_overflow, 
loadmodule, rootkit, 
perl, sqlattack, xterm, ps 

 
We follow the aforementioned classification in 

our model. The following figures show the 
distribution of datapoints belonging to each class. 
As the distribution is highly skewed, we have used 
the log of the counts for each class where necessary. 
 
Fig.1 Class distribution of the test set. 

 
 
Fig.2 Class distribution of the training set. 

 
 

The 41 features can be divided into 4 major sets, 
consisting of the basic features for any network 
connection, content related features, time related 
traffic features and host-based traffic features [20]. 
A description of the basic features is given in [20] 
The remaining features are majorly binary variables 
which provide additional information about the 
network connection represented by the 
corresponding datapoints.  

 
4 Proposed Methodology 
In this section, we provide the proposed 
methodology for intrusion detection. The proposed 
schematic is shown in figure 3. 
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The proposed architecture consists of 4 steps; 
each of these are explained in detail further: 
 
Fig.3 Flow of the model 

 
 
4.1 Feature Engineering 
The initial phase of the model is the feature 
engineering step. The NSL-KDD dataset consists of 
a training set and a testing set. The training set has 
41 features, out of which the 20th feature, i.e., 
num_outbound_cmds which is the number of 
outbound commands in an ftp session [20], consists 
of only zeros so the column is dropped. After 
dropping the 20th column, we divide the dataset into 
nominal and numerical features depending on the 
data type. The nominal features undergo one-hot 
encoding which expands the number of features to 
become 84. The numerical features on the other 
hand undergo min-max scaling so that features with 
a broader range do not outweigh the features with a 
smaller range. They are a total of 37 features. The 
combined dataset of both numerical and nominal 
features gives a total of 121 features. The feature 
matrix formed is sparse due to one-hot encoding so 

dimensionality reduction is carried out using PCA 
on the 121 features. Retention of 67 features retains 
99% variance of the original dataset. Then min-max 
scaling once again to bring all the features within 
the same range. 
 
4.2 Binary Classification 
In this step, binary classification is done to divide 
the dataset into two classes namely, malicious and 
benign. Ensemble methods have been tried and 
tested to see which one works best. Random Forest, 
AdaBoost and XGBoost have been compared in 
terms of precision, recall and area under the receiver 
operating characteristics (ROC) curve. The 
precision-recall curves have been plotted to 
calculate the threshold for the confidence score. The 
optimal threshold value is the intersection of the 
precision and recall curves in order to optimize both 
metrics. The aim of binary classification was to 
increase recall so as to reduce false negatives.  

After applying binary classification, we have 
divided the dataset into two categories one with 
completely benign data points and another with both 
benign and malicious data points as the number of 
false positives are still relatively high. 
 
4.3 Oversampling 
Before we reach the step where we reduce the 
number of false positives, we oversample the dataset 
as the number of data points of U2R and R2L are 
extremely less in comparison to the rest, i.e., 
Normal, DoS and Probe. This could potentially lead 
to the problem of the network not being able to learn 
the datapoints of those 2 classes. Since the samples 
of U2R and R2L are less, the network is not able to 
classify points into these 2 classes properly resulting 
in false negatives. To solve this problem, we used 
SVMSMOTE which oversampled for the 2 classes 
and synthesized new data points. 
 
4.4 Multi Class Classification 
The last step is multi class classification. This is 
done to reduce the number of false positives 
occurring at the output of the model. An artificial 
neural network (ANN) is fitted onto the output class 
of binary classification that had both malicious and 
benign data points after oversampling.  

The datapoints are classified into the 5 classes, 
namely Normal, DoS, Probe, U2R and R2L after 
being fed through an ANN. The ANN architecture 
that we have implemented consists of Convolutional 
and LSTM layers and outputs the class probabilities 
for all the 5 classes using SoftMax Activation at the 
final layer and Rectified Linear Unit (ReLU) 
activations at every other layer. Datapoints 
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classified as normal here as well as at the binary 
classification stage form the combined population of 
benign data points. Every other data point is 
categorized first as malicious and then further into 
the type of attack. 

 
5 Experiment and Results 
In this research, we have used scikit-learn and keras 
with a tensorflow backend for the construction of 
our models and we have used matplotlib for 
generating graphs. All of the models have been 
trained on Google Colaboratory using a Tesla K80 
single core GPU with 25.51 GB RAM, although 
RAM usage throughout our experiments was limited 
to 10 GB.  

During feature engineering, we applied PCA for 
dimensionality reduction. The following graph 
shows the retention of variance corresponding to the 
number of components retained. 
 
Fig.4 Variance Retention vs. Number of 
Components. 

 
For binary classification we have compares 3 

methods: Random Forest Classifiers and boosting 
algorithms AdaBoost and XGBoost. To obtain the 
optimal set of parameters for each of these classifiers, 
grid search was run on a suitable search space with 
recall as the optimizing metric. This was followed 
by comparing plots (Figure 5) of precision and recall 
and finding the optimal threshold for a point to be 
classified as malicious. Threshold tuning was based 
on the fact that we weren’t looking for very high 
precision values at this stage; recall was of primary 
importance. Experiments suggested that threshold 
values that brought precision and recall closest 
together could be considered as optimal threshold 
points as the relation between these 2 metrics is 

almost inverse in nature, which means that 
increasing recall via threshold tuning would result in 
reduces precision. 
 
Fig.5 Precision and recall scores as a function of the 
decision threshold of Random Forest, AdaBoost, 
and XGBoost respectively. 
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Random Forest Classifiers gave the best 
classification output overall (Fig.6) It and XGBoost 
had a recall of 91%, while AdaBoost gave a recall 
of 88%. Random Forest Classifiers gave a 
maximum precision of 89% while AdaBoost and 
XGBoost gave a precision of 84% and 88% 
respectively. 

XGBoost had the maximum area under curve 
(AUC) of 0.96275, while Random Forest Classifiers 
and AdaBoost had an AUC of 0.94587 and 0.94139 
respectively (Fig.7). 
 
Fig.6 Confusion matrices of Random Forest, 
AdaBoost and XGBoost respectively. 

 

 
 

 
 

Fig.7 ROC curves of Random Forest, AdaBoost and 
XGBoost respectively 
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For multi-class classification, multiple neural 
network architectures were considered comprising 
of CNNs, RNNs, LSTMs, etc. The following 
architecture, as suggested by [21] yielded best 
results when trained on 100 epochs. 
 
Fig.8 Architecture of the ANN 

 
 

The loss convergence and accuracy over a course 
of 100 epochs are shown by the following graph. 
 
Fig.9 Loss convergence of the model 
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Fig.10 Accuracy convergence of the model. 

 
 

The combined model, along with all binary 
classifiers in consideration combined with the multi 
class classifier gave the following results. 
 
Fig.11 Confusion matrix of the multi class classifier. 

 
 
6 Further Analysis 
In this section, we resort to using various methods to 
help understand the importance of each feature viz a 
viz the information it provides in aiding the 
classification process. Three standard techniques 
have been used for the same, which are mentioned 
and further elaborated upon below: 
 
6.1 Decision Tree Classifiers 
For categorical variables, we used the weighted Gini 
index criterion after doing one hot encoding on the 
variables. Each individual categorical variable was 
separated into binary attributes. The weighted Gini 
index was calculated using the following formula: 

ீܹሺܣሻ ൌ ෍ ሺܽ௜ሻܩሺܽ௜ሻݓ
௔೔∈஺

 

 

ሺܽ௜ሻݓ ൌ
ܣ	݊݉ݑ݈݋ܿ	݊݅	௜ܽ	݁ݑ݈ܽݒ	݄ݐ݅ݓ	ݏ݁݅ݎݐ݊݁

ݐ݁ݏܽݐܽ݀	݊݅	ݏ݁݅ݎݐ݊݁	݈ܽݐ݋ݐ
 

 
ሺܽ௜ሻܩ ൌ  ௜ܽ	ݎ݋݂	݀݁ݐ݈ܽݑ݈ܿܽܿ	ݔ݁݀݊ܫ	݅݊݅ܩ

 
(2) 

 
Categorical variables in the dataset have been 

inputted into a decision tree classifier to evaluate the 
importance of each in the classification process. 
This is measured as the total reduction of the Gini 
importance criterion caused due to each feature. The 
Gini Importance, also known as the Mean Decrease 
in Impurity is calculated as the number of times a 
feature is used to split a node, weighted according to 
the number of samples split at each node in a 
decision tree. 

The conclusion in this regard is that while the 
Flag and Service variables are crucial in detecting 
intrusions, while the Protocol Type is not so 
important owing to its low Gini scores. 
 
Fig.12 Feature Importance’s using Decision Tree 
Classifier 

 
 

6.2 Univariate Selection 
For nominal features, we compared their importance 
using a chi square test (χ2) which is commonly used 
for testing relationships between categorical 
variables. The null hypothesis of the Chi-Square test 
is that no relationship exists on the categorical 
variables in the population; they are independent. 
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We see from the following graph that these are 
the top 10 features we have identified in order of 
their importance.  
 
Fig.13 Univariate Selection – Top 10 Features 

 
 

Fig.14 Univariate Selection – Bottom 10 Features 

 
 

6.2 Correlation Plot 
Correlation plots are used to determine the degree of 
correlation between every pair of features in a 
dataset. Each element corresponds to the Pearson’s 
correlation coefficient between the two variables. 
Naturally, it is a symmetric matrix. Higher the 
correlation coefficient between two features, the 
stronger the linear relationship between them. 
Hence, each coefficient can be considered as a 

measure of the linear dependency between two 
variables. Ideally, we want a linearly independent 
set of features to maximize information present in 
the data and minimize redundancy. Assuming a 
threshold of 0.95 (or 95% correlation), we can 
identify 5 pairs of highly correlated features. 
 
Fig.15 Correlation Heatmap with 95% Threshold 

 
 

Table 2. Legend for Correlation Heatmap 
A Dst_Host_Serror_Rate 

B Dst_Host_Srv_Serror_Rate 

C Dst_Host_Srv_Rerror_Rate 

D Num_Compromised 

E Num_Root 

F Serror_Rate 

G Srv_Serror_Rate 

H Rerror_Rate 

I Srv_Rerror_Rate 

 
7 Conclusion and Future Scope 
The two-stage classification algorithm we 
considered here has resulted in much better 
evaluation results than the methods we explored. A 
reduced feature space ensures forward propagation 
through the model to work fast so that detection 
overhead is minimized. 

Based on the further analysis, a total of 9 
features: 8 numerical and 1 nominal, can be 
eliminated, reducing our feature space from 122 to 
111. As the elimination has helped reduce 
redundancies in the dataset, we can expect our 
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model to perform better due to advanced deep 
learning algorithms on the new dataset. There is 
further scope for removal based on correlation plot 
data which would require further analysis. 

Future scopes for this architecture include using 
GANs for generating adversarial samples that can 
compensate for the lesser proportion of U2R and 
R2L samples and generate a more global feature 
space that would result in better model parameters 
and would detect a larger proportion of attacks. A 
number of other over sampling techniques can be 
compared to the results we have obtained in this 
paper. The model can be trained on the new feature 
space for an expected enhanced performance.  
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