
Building a NIDS Using a Two-Stage Classifier and Feature Reduction
through Statistical Methods

RAGHUVANSH RAJ, SOMYA GUPTA, MANAN LOHIA, H C TANEJA

Department of Mathematics
Delhi Technological University

Shahbad Daulatpur, Main Bawana Road, Delhi - 110042
INDIA

somya_bt2k16@dtu.ac.in http://www.dtu.ac.in

Abstract: - Today, data is produced, transmitted and stored across the internet in abundant quantities. In such a
world, modern-day network security systems have had to develop at an equally astounding rate in order to keep up
with the data deluge. Subsequently, companies spend a substantial amount of money, time and effort in
developing intrusion detection systems to ensure timely detection and prevention of malicious activity in order to
preserve system security. In our paper, we propose a two-stage algorithm to solve the problem of NIDS resulting
in fewer false positives and false negatives. We built and evaluated the performance of our IDS using the
benchmarked NSL-KDD dataset, which consists of 41 features, of which 3 are categorical and the remaining
numeric. Categorical features have been transformed via One Hot Encoding due to which the feature space
explodes to 122 features. Our aim henceforth is to reduce this feature space through methods of feature selection
and dimensionality reduction to develop a computationally inexpensive classifier capable of operating on the
reduced feature space using sequential models. The work has involved using autoencoders for feature space
reduction followed by a feed forward network, and has delivered encouraging results. We have then extended our
analysis to identify features which can be eliminated without any substantial loss of information available for the
classification algorithm. The remaining set of features can then be input into a different model to possibly provide
better results or reduce training and evaluation time.

Key-Words: Intrusion Detection, Feature Reduction, Artificial Neural Networks, NSL-KDD

Received: January 2, 2020. Revised: April 2, 2020. Accepted: April 16, 2020. Published: April 30, 2020.

1 Introduction
In the current scenario, the Internet has become a
necessity for daily life and is used for various
purposes such as education business and banking.
The Internet is extremely vast and diversified,
connecting millions of devices with each other to
create and save data but at the same time making it
vulnerable to attacks on sensitive information.
Exposure of one system could lead to the
subsequent contamination of another. With the
advancement of the Internet, the equipment for
network security has also evolved. This field is
extremely versatile and has grown in complexity to
prevent the various attacks that have been created
over time and put into action. Intrusion Detection
Systems (IDS) monitor networks for malicious
activity or privacy breaches to protect data
confidentiality and integrity, i.e. any form of
intrusion that may negatively affect privacy or
safety. Depending upon the deployed location, IDS
are majorly of two types; host-based and network-
based. Host-based IDS are installed on PCs and
network-based IDS are situated on networks.

These systems employ machine learning
techniques differentiating the malicious usage

patterns from the benign ones. In these techniques, a
model is trained on a training set consisting of data
points of both classes then applied on the test set to
compare the predicted classes to the actual ones then
tuned upon to improve the accuracy and complexity.
Once the desired output is achieved, the trained
model is employed in real-life scenarios to prevent
malicious data packets from going through the
network. To keep the model up-to-date, it is trained
in further samples to identify new types of malicious
attacks.

This paper employs the NSL-KDD dataset which
is a balanced resampling of the KDD CUP 99
dataset [1]. This dataset contains 5 classes with 4 of
them malicious attacks and 1 benign. The malicious
classes are DoS, Probe, R2L and U2R.

The main algorithms in effect make use of rule-
based methods such as SNORT [2], clustering
methods such as fuzzy [3], [4] and mini batch
kmeans [5], and neural networks [6], [7], [8]. These
methods make use of the direct dataset which has a
high variance and no clear decision boundary
between the different classes, making it a tougher
classification process and requiring a denser model
network.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.12 Raghuvansh Raj, Somya Gupta, Manan Lohia, H. C. Taneja

E-ISSN: 2224-2856 102 Volume 15, 2020

In this paper, we set out to propose and
implement a new method which first consists of pre-
processing via feature engineering using one hot
encoding followed by dimensionality reduction
using Principal Component Analysis (PCA) to
improve the efficiency of the resultant dataset for the
following steps. Secondly, outlier detection is
implemented as a binary classification problem with
the two classes being malicious and benign to
classify the malicious attacks with less complexity.
The last stage consists of multi-class classification
with all 5 classes in an effort to further classify the
attack and reduce the rate of false positives.

2 Related Work
Due to the increasing demand of computationally
inexpensive and extremely accurate network
intrusion detection systems, many algorithms have
been recently proposed that yield unbeatable
accuracies. Since the proposal of deep learning as a
method for intrusion detection [9] by Professor
Hinton in 2006, there have been huge advancements
in every field of computational intelligence, as has
been the case with intrusion detection systems.

[3], [4], make use of fuzzy clustering augmented
with Artificial Neural Networks (ANN) which
causes a drastic reduction in false positives. The
technique used by [4] results in extremely less false
positives due to the presence of an aggregating
ANN after the classification ANNs.

[6] uses autoencoders to reduce the feature space
and executes instructions on parallel processors.
This paper focuses more on the complexity of the
algorithm and the time taken by the algorithm,
which is why feature space reduction is done on a
rather drastic scale. Experiments show that such
drastic reduction in feature space result in stark
information loss which results in a less than ideal
situation.

[7], [10] make use of Long Short-Term Memory
(LSTM) and Recurrent Neural Network (RNN) to
introduce context among the features. These kinds
of neural networks are implemented by these papers
in a bidirectional sense and since context is
introduced in the first layer itself, the depth of the
network can be limited to 2-3. Although forward
propagation in this kind of network takes a
substantial amount of time due to bidirectional
connections in each layer, it causes minimal space
overhead due to a radical reduction in the number of
nodes and layers.

[11] uses genetic algorithms like crossover and
mutation to search for the optimal feature space in
neural networks. The idea of genetic algorithms is

inspired by evolution and how it results in the fittest
population (features in this case). Genetic
algorithms simply need a fitness measure that
results in the optimal feature space when run for
multiple epochs but the drawback with this method
lies in the complexity and time taken by the model as
it is essentially running over the entire dataset
multiple times.

In this paper we have attempted to create a
model that runs on a reduced feature space and
works as a robust classifier while providing
minimum false negatives. For this, we use a two-
step approach. First, anomaly detection is conducted
which detects malicious data points. Then,
multiclass classification which classifies data points
into respective classes and reduces the number of
false positives.

3 Preliminaries
In this section, a basic overview is provided of all
the related terms such as IDS, dimensionality
reduction, decision trees, ensemble methods and the
NSL-KDD dataset.

3.1 Intrusion Detection Systems
Intrusion Detection Systems are classified into two
major categories based on their approach and the
techniques and algorithms used to analyze traffic
data and detect intrusions, namely anomaly-based
and signature-based.

Signature based IDS compare live traffic data to
a stored database and try to match it with known
intrusion patterns in order to detect attacks, i.e., they
follow the well-known paradigm of rule-based
systems. Signature-based IDS deliver high accuracy
when detecting known intrusion patterns, but can
fail to detect newer types of attacks due to a lack of
any existing, match able patterns in the database. In
an era where attackers are always finding newer
ways to take control of a system or a network of
systems, signature-based IDS fail to offer an
adequate level of protection without a substantial
degree of risk. Another drawback of such
frameworks is the large administrative overhead
required to regularly maintain and update the
signature database to ensure that the system is able
to detect even the newest types of attacks [12].

Contrarily, anomaly-based IDS rely on detecting
deviations from what is considered to be normal
network behaviour to identify malicious activity.
Originally, anomaly-based systems used statistical
methods to model data representing ‘normal
behaviour’ and used these developed models to
identify and flag any significant deviations as

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.12 Raghuvansh Raj, Somya Gupta, Manan Lohia, H. C. Taneja

E-ISSN: 2224-2856 103 Volume 15, 2020

suspicious. However, recent efforts have pivoted to
focus on using machine learning and deep learning
along with advanced mathematical techniques to
develop improved anomaly-based IDS. Major
challenges that arise when attempting to build such
models is the high false alarm rates, owing to the
difficulty of modelling the ‘normal behaviour’ due
to non-linearity of data and a certain degree of
obscurity present in the data [13].

3.2 Dimensionality Reduction
Dimensionality reduction is an umbrella term for the
various processes aimed at reducing the number of
random variables in a dataset. This serves
multifarious purposes such as enabling visualization
of data and easing computational requirements. It
can also help remove contextual redundancies in the
dataset and simplify the overall process of data
analysis and model construction. Dimensionality
reduction is split majorly into two kinds of
techniques, feature selection and feature extraction.

Feature selection involves the selection of a
subset of the existing features. The selection of
features can be guided by strategies involving
information gain, gain ration, scoring features based
on their importance etc.

Feature extraction is a more complex set of
techniques that involve combining the existing
variables through various statistical, algebraic or
deep learning techniques to form a new, lower
dimensional set of features which can be used to
represent the dataset effectively. However, this
technique suffers with a loss of context as it is not
always possible to determine what exactly the new
features represent and some information is always
lost due to the decrease in number of features.

3.2.1 Principal Component Analysis
Principal Component Analysis (PCA) [5], [14] is a
kind of dimensionality reduction technique that
combines concepts from statistics and linear algebra
to perform feature extraction. The process involves
the use of covariance matrix and eigenvalues to
transform the existing dataset into a new dataset
using principal components derived from
eigenvectors. The following steps are involved in
PCA:

 For the dataset Dm × n containing m
datapoints with n features, subtract from
each element the mean of the column to
which it belongs to centre the datapoints at
the origin. Let this new matrix be D`.

 Calculate the covariance matrix od D`,
denoted by C.

 Obtain the eigenvalues and eigenvectors of
the matrix C.

 If d denotes the required number of
dimensions for the new dataset, select the
first d eigenvalues with the largest
magnitudes, and combine their
corresponding eigenvectors to form the
transformation matrix En × d.

 The reduced dataset is given by Fm × d = [
D`m x n] × [En x d]. (1)

3.2 Decision Trees
A decision tree is a classification algorithm that
forms a flowchart in a tree-like graph where at each
internal node an attribute is chosen on which to split
the dataset on. Consequently, each branch represents
one outcome of the split and any subsequent leaf
nodes constitute the classes. The entire path from the
root node to a leaf node can be regarded as a
classification rule [15]. They map both linear as
well as non-linear relationships.

The split at each internal node can be done on the
basis of information gain and Gini index. The model
proposed in this paper uses Gini index. Gini index
forces a binary tree which is ideal in our case as we
are initially working on a binary classification
model. The underlying principle for this splitting
algorithm is based on the fact that the probability of
two randomly chosen data tuples from the dataset
belonging to the same class is 1 if the dataset is
pure.

3.4 Ensemble Methods
The usage of ensemble methods is ideal in the
combination of a number of base models to produce
an optimal model. These methods take into
consideration a number of decision trees and use
those to find the ideal split at each internal node by
calculating which features to use.

Bagging [16] is an example of an ensemble
method that combines Bootstrapping and
Aggregation. From a sample of the dataset, multiple
bootstrapped samples are taken upon which a
decision tree is formed for each one. An algorithm is
then used to aggregate the trees and find the most
efficient predictor.

Random Forests [17] are another example. These
use the same concept as bagging except that they
work with the entire dataset rather than a sample.
Each tree in this method splits at different features
thus overall providing a larger ensemble to
aggregate over, eventually producing a more
accurate predictor.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.12 Raghuvansh Raj, Somya Gupta, Manan Lohia, H. C. Taneja

E-ISSN: 2224-2856 104 Volume 15, 2020

3.5 NSL-KDD
The NSL-KDD dataset [18] is a refined version of
the original KDD-CUP 99 dataset, which, after a
thorough analysis revealed, a number of
redundancies and other issues such as imbalanced
classes and a huge number of records which offered
many challenges to the construction of a
classification model. The improved NSL-KDD
dataset consists of 41 features and is split into the test
set and training set. The training set has 125,973
datapoints while the test set has 22,544 datapoints.
The test data is classified into 38 different classes,
of which 21 are present in the training data. 1 of
these classes corresponds to ‘normal activity’ while
the others are various attack types. For the sake of
brevity, the 37 other classes are categorized into 4
different attack types, as follows [19]:

Table 1. Categorization of the 37 different classes
into the 4 different attack types.
S. No. Attack Type Class in Dataset
1 DoS back, land, neptune, pod,

smurf, teardrop,
mailbomb, processtable,
udpstorm, apache2,
worm

2 Probe satan, ipsweep, nmap,
portsweep, mscan, saint

3 R2L guess_password,
ftp_write, imap, phf,
multihop, warezmaster,
xlock, xsnoop,
snmpguess,
snmpgetattack,
httptunnel, sendmail,
named

4 U2R buffer_overflow,
loadmodule, rootkit,
perl, sqlattack, xterm, ps

We follow the aforementioned classification in

our model. The following figures show the
distribution of datapoints belonging to each class.
As the distribution is highly skewed, we have used
the log of the counts for each class where necessary.

Fig.1 Class distribution of the test set.

Fig.2 Class distribution of the training set.

The 41 features can be divided into 4 major sets,
consisting of the basic features for any network
connection, content related features, time related
traffic features and host-based traffic features [20].
A description of the basic features is given in [20]
The remaining features are majorly binary variables
which provide additional information about the
network connection represented by the
corresponding datapoints.

4 Proposed Methodology
In this section, we provide the proposed
methodology for intrusion detection. The proposed
schematic is shown in figure 3.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.12 Raghuvansh Raj, Somya Gupta, Manan Lohia, H. C. Taneja

E-ISSN: 2224-2856 105 Volume 15, 2020

The proposed architecture consists of 4 steps;
each of these are explained in detail further:

Fig.3 Flow of the model

4.1 Feature Engineering
The initial phase of the model is the feature
engineering step. The NSL-KDD dataset consists of
a training set and a testing set. The training set has
41 features, out of which the 20th feature, i.e.,
num_outbound_cmds which is the number of
outbound commands in an ftp session [20], consists
of only zeros so the column is dropped. After
dropping the 20th column, we divide the dataset into
nominal and numerical features depending on the
data type. The nominal features undergo one-hot
encoding which expands the number of features to
become 84. The numerical features on the other
hand undergo min-max scaling so that features with
a broader range do not outweigh the features with a
smaller range. They are a total of 37 features. The
combined dataset of both numerical and nominal
features gives a total of 121 features. The feature
matrix formed is sparse due to one-hot encoding so

dimensionality reduction is carried out using PCA
on the 121 features. Retention of 67 features retains
99% variance of the original dataset. Then min-max
scaling once again to bring all the features within
the same range.

4.2 Binary Classification
In this step, binary classification is done to divide
the dataset into two classes namely, malicious and
benign. Ensemble methods have been tried and
tested to see which one works best. Random Forest,
AdaBoost and XGBoost have been compared in
terms of precision, recall and area under the receiver
operating characteristics (ROC) curve. The
precision-recall curves have been plotted to
calculate the threshold for the confidence score. The
optimal threshold value is the intersection of the
precision and recall curves in order to optimize both
metrics. The aim of binary classification was to
increase recall so as to reduce false negatives.

After applying binary classification, we have
divided the dataset into two categories one with
completely benign data points and another with both
benign and malicious data points as the number of
false positives are still relatively high.

4.3 Oversampling
Before we reach the step where we reduce the
number of false positives, we oversample the dataset
as the number of data points of U2R and R2L are
extremely less in comparison to the rest, i.e.,
Normal, DoS and Probe. This could potentially lead
to the problem of the network not being able to learn
the datapoints of those 2 classes. Since the samples
of U2R and R2L are less, the network is not able to
classify points into these 2 classes properly resulting
in false negatives. To solve this problem, we used
SVMSMOTE which oversampled for the 2 classes
and synthesized new data points.

4.4 Multi Class Classification
The last step is multi class classification. This is
done to reduce the number of false positives
occurring at the output of the model. An artificial
neural network (ANN) is fitted onto the output class
of binary classification that had both malicious and
benign data points after oversampling.

The datapoints are classified into the 5 classes,
namely Normal, DoS, Probe, U2R and R2L after
being fed through an ANN. The ANN architecture
that we have implemented consists of Convolutional
and LSTM layers and outputs the class probabilities
for all the 5 classes using SoftMax Activation at the
final layer and Rectified Linear Unit (ReLU)
activations at every other layer. Datapoints

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.12 Raghuvansh Raj, Somya Gupta, Manan Lohia, H. C. Taneja

E-ISSN: 2224-2856 106 Volume 15, 2020

classified as normal here as well as at the binary
classification stage form the combined population of
benign data points. Every other data point is
categorized first as malicious and then further into
the type of attack.

5 Experiment and Results
In this research, we have used scikit-learn and keras
with a tensorflow backend for the construction of
our models and we have used matplotlib for
generating graphs. All of the models have been
trained on Google Colaboratory using a Tesla K80
single core GPU with 25.51 GB RAM, although
RAM usage throughout our experiments was limited
to 10 GB.

During feature engineering, we applied PCA for
dimensionality reduction. The following graph
shows the retention of variance corresponding to the
number of components retained.

Fig.4 Variance Retention vs. Number of
Components.

For binary classification we have compares 3

methods: Random Forest Classifiers and boosting
algorithms AdaBoost and XGBoost. To obtain the
optimal set of parameters for each of these classifiers,
grid search was run on a suitable search space with
recall as the optimizing metric. This was followed
by comparing plots (Figure 5) of precision and recall
and finding the optimal threshold for a point to be
classified as malicious. Threshold tuning was based
on the fact that we weren’t looking for very high
precision values at this stage; recall was of primary
importance. Experiments suggested that threshold
values that brought precision and recall closest
together could be considered as optimal threshold
points as the relation between these 2 metrics is

almost inverse in nature, which means that
increasing recall via threshold tuning would result in
reduces precision.

Fig.5 Precision and recall scores as a function of the
decision threshold of Random Forest, AdaBoost,
and XGBoost respectively.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.12 Raghuvansh Raj, Somya Gupta, Manan Lohia, H. C. Taneja

E-ISSN: 2224-2856 107 Volume 15, 2020

Random Forest Classifiers gave the best
classification output overall (Fig.6) It and XGBoost
had a recall of 91%, while AdaBoost gave a recall
of 88%. Random Forest Classifiers gave a
maximum precision of 89% while AdaBoost and
XGBoost gave a precision of 84% and 88%
respectively.

XGBoost had the maximum area under curve
(AUC) of 0.96275, while Random Forest Classifiers
and AdaBoost had an AUC of 0.94587 and 0.94139
respectively (Fig.7).

Fig.6 Confusion matrices of Random Forest,
AdaBoost and XGBoost respectively.

Fig.7 ROC curves of Random Forest, AdaBoost and
XGBoost respectively

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.12 Raghuvansh Raj, Somya Gupta, Manan Lohia, H. C. Taneja

E-ISSN: 2224-2856 108 Volume 15, 2020

For multi-class classification, multiple neural
network architectures were considered comprising
of CNNs, RNNs, LSTMs, etc. The following
architecture, as suggested by [21] yielded best
results when trained on 100 epochs.

Fig.8 Architecture of the ANN

The loss convergence and accuracy over a course
of 100 epochs are shown by the following graph.

Fig.9 Loss convergence of the model

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.12 Raghuvansh Raj, Somya Gupta, Manan Lohia, H. C. Taneja

E-ISSN: 2224-2856 109 Volume 15, 2020

Fig.10 Accuracy convergence of the model.

The combined model, along with all binary
classifiers in consideration combined with the multi
class classifier gave the following results.

Fig.11 Confusion matrix of the multi class classifier.

6 Further Analysis
In this section, we resort to using various methods to
help understand the importance of each feature viz a
viz the information it provides in aiding the
classification process. Three standard techniques
have been used for the same, which are mentioned
and further elaborated upon below:

6.1 Decision Tree Classifiers
For categorical variables, we used the weighted Gini
index criterion after doing one hot encoding on the
variables. Each individual categorical variable was
separated into binary attributes. The weighted Gini
index was calculated using the following formula:

ீܹሺܣሻ ൌ ෍ ሺܽ௜ሻܩሺܽ௜ሻݓ
௔೔∈஺

ሺܽ௜ሻݓ ൌ
ܣ	݊݉ݑ݈݋ܿ	݊݅	௜ܽ	݁ݑ݈ܽݒ	݄ݐ݅ݓ	ݏ݁݅ݎݐ݊݁

ݐ݁ݏܽݐܽ݀	݊݅	ݏ݁݅ݎݐ݊݁	݈ܽݐ݋ݐ

ሺܽ௜ሻܩ ൌ ௜ܽ	ݎ݋݂	݀݁ݐ݈ܽݑ݈ܿܽܿ	ݔ݁݀݊ܫ	݅݊݅ܩ

(2)

Categorical variables in the dataset have been

inputted into a decision tree classifier to evaluate the
importance of each in the classification process.
This is measured as the total reduction of the Gini
importance criterion caused due to each feature. The
Gini Importance, also known as the Mean Decrease
in Impurity is calculated as the number of times a
feature is used to split a node, weighted according to
the number of samples split at each node in a
decision tree.

The conclusion in this regard is that while the
Flag and Service variables are crucial in detecting
intrusions, while the Protocol Type is not so
important owing to its low Gini scores.

Fig.12 Feature Importance’s using Decision Tree
Classifier

6.2 Univariate Selection
For nominal features, we compared their importance
using a chi square test (χ2) which is commonly used
for testing relationships between categorical
variables. The null hypothesis of the Chi-Square test
is that no relationship exists on the categorical
variables in the population; they are independent.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.12 Raghuvansh Raj, Somya Gupta, Manan Lohia, H. C. Taneja

E-ISSN: 2224-2856 110 Volume 15, 2020

We see from the following graph that these are
the top 10 features we have identified in order of
their importance.

Fig.13 Univariate Selection – Top 10 Features

Fig.14 Univariate Selection – Bottom 10 Features

6.2 Correlation Plot
Correlation plots are used to determine the degree of
correlation between every pair of features in a
dataset. Each element corresponds to the Pearson’s
correlation coefficient between the two variables.
Naturally, it is a symmetric matrix. Higher the
correlation coefficient between two features, the
stronger the linear relationship between them.
Hence, each coefficient can be considered as a

measure of the linear dependency between two
variables. Ideally, we want a linearly independent
set of features to maximize information present in
the data and minimize redundancy. Assuming a
threshold of 0.95 (or 95% correlation), we can
identify 5 pairs of highly correlated features.

Fig.15 Correlation Heatmap with 95% Threshold

Table 2. Legend for Correlation Heatmap
A Dst_Host_Serror_Rate

B Dst_Host_Srv_Serror_Rate

C Dst_Host_Srv_Rerror_Rate

D Num_Compromised

E Num_Root

F Serror_Rate

G Srv_Serror_Rate

H Rerror_Rate

I Srv_Rerror_Rate

7 Conclusion and Future Scope
The two-stage classification algorithm we
considered here has resulted in much better
evaluation results than the methods we explored. A
reduced feature space ensures forward propagation
through the model to work fast so that detection
overhead is minimized.

Based on the further analysis, a total of 9
features: 8 numerical and 1 nominal, can be
eliminated, reducing our feature space from 122 to
111. As the elimination has helped reduce
redundancies in the dataset, we can expect our

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.12 Raghuvansh Raj, Somya Gupta, Manan Lohia, H. C. Taneja

E-ISSN: 2224-2856 111 Volume 15, 2020

model to perform better due to advanced deep
learning algorithms on the new dataset. There is
further scope for removal based on correlation plot
data which would require further analysis.

Future scopes for this architecture include using
GANs for generating adversarial samples that can
compensate for the lesser proportion of U2R and
R2L samples and generate a more global feature
space that would result in better model parameters
and would detect a larger proportion of attacks. A
number of other over sampling techniques can be
compared to the results we have obtained in this
paper. The model can be trained on the new feature
space for an expected enhanced performance.

References:
[1] A. Divekar, M. Parekh, V. Savla, R. Mishra

and M Shirole, Benchmarking datasets for
Anomaly-based Intrusion Detection: KDD
CUP 99 alternatives, Proceedings on 2018
IEEE 3rd International Conference on
Computing, Communication and Security,
ICCCS 2018, 2018

[2] M. Roesch, Snort – Lightweight Intrusion
Detection for Networks, Proceedings of LISA
’99: 13th Systems Administration Conference,
Seattle, Washington, USA, 1999.

[3] G. Wang, J. Hao, J. Ma, L. Huang, A New
Approach to Intrusion Detecting using
Artificial Neural Networks and Fuzzy
Clustering, Expert Systems with Application,
vol. 37, no. 9, pp. 6225-6232, 2010

[4] S. Shraddha, Intrusion Detection using Fuzzy
Clustering and Artificial Neural Network,
Advances in Neural Networks, Fuzzy Systems
and Artificial Intelligence, pp. 209-217

[5] K. Peng, V. C. M. Leung and Q. Huang,
Clustering Approach Based on Mini Batch
Kmeans for Intrusion Detection System Over
Big Data, IEEE Access, vol. 6, no. 1, pp.
11897-11906, 2018

[6] S. Potluri and C. Diedrich, Accelerated Deep
Neural Networks for Enhanced Intrusion
Detection System, IEEE International
Conference on Emerging Technologies and
Factory Automation, EFTA, 2016

[7] C. Yin, Y. Zhu, J. Fei and X. He, A Deep
Learning Approach for Intrusion Detection
using Recurrent Neural Networks, IEEE
Access, vol. 5, no. 1, pp. 21954-21961, 2017

[8] J. Kim, N. Shin, S. Y. Jo and S. H. Kim,
Method of Intrusion Detection Using Deep
Neural Network, in IEEE, 2017

[9] Y. LeCun, Y. Bengio and G. Hinton, Deep
Learning, Nature, vol. 521, no. 1, pp. 436-444,
2015

[10] J. Kim, J. Kim, H. L. T. Thu and H. Kim,
"Long Short Term Memory Recurrent Neural
Network Classifier for Intrusion Detection,"
IEEE, 2016

[11] Z. Chiba, A. Noreddine, K. Moussaid, A. E.
Omri, M. Rida, Intelligent and Improved Self-
Adaptive Anomaly Based Detection System for
Networks, International Journal of
Communication Networks and Information
Security, vol. 11, no. 2, pp. 312-330, 2019

[12] P. Manandhar and Z. Aung, Intrusion Detection
Based on Outlier Detection Method,
International conference on Intelligent Systems,
Data Mining and Information Technology,
Bangkok, Thailand, 2014

[13] J. Vacca, Computer and Information Security
Handbook, Elsevier, 2009.

[14] M. E. Tipping and C. M. Bishop, Mixtures of
Probabilistic Principal Component Analysers,
Journal of the Royal Statistical Society, pp.
443-482, 1999

[15] K. Rai, M. S. Devi and A. Guleria, Decision
Tree Based Algorithm for Intrusion Detection,
Advanced Networking and Applications, vol. 7,
no. 4, pp. 2828-2834, 2016

[16] D. P. Gaikwad and R. C. Thool, Intrusion
Detection System using Bagging Ensemble
Method of Machine Learning, 2015
International Conference on Computing
Communication Control and Automation, Pune,
India, 2015

[17] J. Zhang, M. Zulkernine and A. Haque,
Random Forests Based Network Intrusion
Detection Systems, IEEE Transactions on
Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 38, no. 5, pp.
649-659, 2008

[18] Atthapol Ngaopitakkul, Chaiyan Jettanasen,
Dimas Anton Asfani, Yulistya Negara
Application of Discrete wavelet transform and
Back-propagation Neural Network for Internal
and External Fault Classification in
Transformer, International Journal of Circuits,
Systems and Signal processing, pp.458-463,
Volume 13, 2019

[19] Dehong Ding, Sisi Zhu, A Method of Forest-
Fire Image Recognition based on Ada Boost-
BP Algorithm, International Journal of
Circuits, Systems and Signal processing,
pp.312-319, Volume 13, 2019

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.12 Raghuvansh Raj, Somya Gupta, Manan Lohia, H. C. Taneja

E-ISSN: 2224-2856 112 Volume 15, 2020

