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Abstract: In this paper we propose a new heuristic algorithm for solving a maximum clique search problem (MCP).
While the proposed algorithm (called TrustCLQ) uses a general approach to solving MCP, it is almost independent
of the order of vertices and does not exploit a partition of the graph into independent sets. The algorithm was tested
on DIMACS library graphs which are often employed for testing MCP solution algorithms. TrustCLQ algorithm
was compared with the well-known ILS heuristic algorithm (as well as with a standard algorithm from networkx
library)onDIMACSdatasets.Moreover,TrustCLQalgorithmhasbeentestedonFacebooksocialgraphs.
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1 Introduction
The Maximum Clique Problem (MCP) is one of the
most well-known NP-hard problems in graph the-
ory [1]. A clique in a graph is a subset of vertices
that form a complete subgraph. A maximum clique in
a graph is the maximum-sized subset of such vertices.

Applications of the maximum clique problem are
quite wide. In bioinformatics, MCP is used in com-
puter analysis of genomic databases, e.g. in the search
for potential regulatory structures of ribonucleic acids.
In social networks, MCP is used for clustering data,
e.g. for dividing various communities into groups
(clusters) that share common properties. Cluster al-

location allows each of them to be processed by a sep-
arate auxiliary server. In chemistry, the MCP problem
underlies the search for the maximum general sub-
structure in the graph describing the structure of the
chemical compound. In addition, MCP is a mathe-
matical model of a number of problems arising in the
electronic equipment design.

In these applications, exact MCP solutions are
usually required. However, the size of input data is
usually too huge (input graphs can contain up to a mil-
lion vertices). Thus, the important topic of MCP re-
search is the development of new approaches for find-
ing MCP solutions taking into account the features of
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graphs that arise in applications.
Let G = (V,E) be an undirected graph, where

V = {1, . . . , n} is the set of vertices and E ⊂ V × V
is the set of edges. LetG(S) = (S,E∩S×S) denote
the subgraph formed by the subset of vertices S. The
notionGwill be used for the complement of the graph
G, G = (V,E), where E = {(i, j)|i, j ∈ V, i 6=
j and (i, j) /∈ E}. Two vertices i and j are adjacent
if (i, j) ∈ E. The neighbors of vertex i are the set of
vertices adjacent to i, N(i) = {j ∈ V : (i, j) ∈ E}.
Let AG denote the adjacency matrix of graph G; the
adjacency matrix has size n × n, AG = (aij), where
aij = 1 if (i, j) ∈ E and aij = 0, otherwise. The
degree deg(i) of vertex i in G is defined as the num-
ber of neighbors of vertex i in G and will be denoted
by |N(i)|. Let δ(G) and ∆(G) denote the least and
greatest degree of vertices in G, respectively.

A graph G = (V,E) is called complete if all its
vertices are adjacent to each other, i.e. if ∀i, j ∈ V ,
i 6= j, (i, j) ∈ E. We define a clique C as a sub-
set of vertices such that G(C) is complete. An inde-
pendent set in G is a subset of the vertices of I such
that the subgraph G(I) formed by them does not con-
tain edges. A clique (independent set) is called max-
imum if there is no larger clique (independent set) in
the graph.

The clique number is the number of vertices in
the maximum clique in G and traditionally denoted
by ω(G). The independence number α(G) is defined
similarly. It is easy to see that C is a maximum clique
in G if and only if C is a maximal independent set in
G, therefore ω(G) = α(G).

There are several dozens of algorithms for solv-
ing MCP which can be classified either exact algo-
rithms or heuristic ones. Exact algorithms are usu-
ally based on exhaustive search in conjunction with
the branch-and-bound method or different vertex-
coloring schemes [2]. The exact algorithms such as
the MCQ algorithm [3], MCR [4], MCS [5], Max-
CliqueDyn [6], MaxCliquePara (MCP) [7], BBmax-
Clique [8], FastMaxClique (FMC) [9], parallel max-
imum clique (PMC) algorithm [10], an implementa-
tion of a MotzkinStraus-based iterative clique-finding
algorithm for GPUs [11], among many others, have
proved their applicability in solving MCP. One of the
currently best exact approaches was proposed in the
paper [12].

Heuristic algorithms employ a wide variety of
ideas including reactive local search [13], randomness
in DLS [14] and CLS algorithms [15], a deterministic
greedy heuristic that adds vertices in an order depend-
ing on their weights in UALEX-MS algorithm [16], a

hybrid evolutionary method in EAG [17]. Often, spe-
cific properties of the studied graph are used, e.g. a
special order of vertices, the known lower and upper
bounds, the chromatic number of a graph, etc. Ex-
act algorithms are ineffective in solving NP-complete
problems, since they are based on exhaustive search.
While heuristic algorithms are not accurate, they may
be more promising in real applications, since they ob-
tain the solution in much lesser time. Heuristic algo-
rithms all differ in accuracy, speed, and they often use
specific properties of graphs. One of the currently best
heuristic methods is LSCC+BMS, proposed in the pa-
per [18].

The recent development on MCP can be found in
papers [19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

In this paper, one of such algorithms is proposed
and examined. We present a novel simple iterative al-
gorithm for maximum clique finding. The standard
iterative approach is extended by using the trust indi-
cator of vertices. The proposed method belongs to the
class of heuristic optimization methods. Therefore,
the proposed algorithm may be convenient for solv-
ing many real-world problems related to large social
networks.

In this paper, the proposed algorithm is compared
with the ILS heuristic algorithm [29] as well as with
a standard algorithm implemented in the networkx
library https://networkx.github.io
(max_clique(), below nx.max_clique
functions) on DIMACS data sets. The empirical
results show that the TrustCLQ algorithm performs
better than the standard algorithm from networkx
library. Moreover, TrustCLQ algorithm has been
tested on Facebook social graphs.

2 Trust-Based Algorithm (Trust-
CLQ)

The main ideas used in heuristic algorithms include
vertex cut-off, independent set cut-off, centralization
coefficient selection, pseudo-random selection. The
proposed algorithm is based on some of these ideas.
An effective fast heuristic should combine as many
strengths as possible (including accuracy) and as few
weaknesses as possible (e.g. execution time). More-
over, the rejection of one or another approach should
provide clear advantages. It is not possible to ob-
tain high accuracy without significant loss of time,
because one way or another it all comes down to a
complete enumeration of all branches of the decision
tree.
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2.1 Vertex trust indicator
The new approach in the MCP solution proposed in
this paper will be based on the use of the trust indi-
cator for each vertex in the graph. It has the follow-
ing intuitive practical meaning. If we expected that
the vertex v will form a clique of size k, but it has
not happened at an iteration, then we decrease confi-
dence in the vertex. Since vertices with a greater de-
gree are less likely to form a clique of size k on the
first attempt, the trust in them should melt away more
slowly. In this paper we propose to evaluate the vertex
trust indicator by

trust(v) = trust(v)− k

deg(v) + 1
(1)

at each iteration of the algorithm.
Note that the vertex trust indicator may also incor-

porate a dependence on the binomial coefficient, since
the maximum number of cliques of size k in a graph
with n vertices is equal to n!

k!(n−k)! . However, due to
the sparseness of real graphs, the number of possible
cliques is much less than expected. For this reason,
we use a very simplified and approximate method of
evaluating a vertex trust defined by equation (1). As
will be shown below, this approach showed acceptable
accuracy on sparse graphs.

The initial value of the trust indicator of each ver-
tex can be set to 1. This indicator can be changed
before running the algorithm. The higher the value
of the trust indicator for a vertex, the higher should be
the accuracy of the solution obtained by the algorithm,
since a larger value of the trust indicator increases the
number of iterations, each of which has a chance to
improve the solution.

This method allows anyone to search for maxi-
mum cliques in graphs about which nothing is known
in advance. The algorithm does not use the concepts
of graph coloring and the number of its independent
sets. In this sense, the proposed approach is more uni-
versal. At the same time, one can adjust the accuracy
of the algorithm by changing the initial value of ver-
tex trust indicator. If one needs to get an approximate
solution on a large graph, then the initial value of ver-
tex trust indicator can be set to minimum. If one need
to obtain the most possible accurate solution, then the
indicator should be set higher.

Obviously, if there is a clique of size k in the
graph, then there is also a clique of size k−1. It would
be logical that one should not continue to search for
large cliques in the absence of smaller ones. However,
this is only correct with respect to exact algorithms.

When it comes to our heuristic algorithm, then
equation (1) comes into play to find an heuristic eval-
uation of each vertex. As one can see, with an increase
in the size of the clique k, the number of possible
cliques decreases. Therefore, by cutting off vertices
with a small degree, such algorithms are assumed to
be able to demonstrate a good accuracy. Thus, the
probability of finding the best solution may be in-
creasing.

2.2 Vertex removal
One of the elements of our algorithm is the removal
of irrelevant vertices. It may work in a positive way,
since it reduces the size of the search tree and in-
creases the likelihood of finding the optimal solution.
In our algorithm, we will remove a vertex in two cases.

• In the first case, the vertices are removed using
the degree-based criterion. Suppose we are look-
ing for a clique of size k in a graph. Then all
vertices with degree deg(v) + 1 < k should be
permanently removed from the graph. This will
not affect the solution, but only allow it to be im-
proved due to the fact that the “useless” vertices
will not affect the size of the search tree.

• In the second case, the vertices are removed
when a confidence in the vertex is lost. If the
trust indicator (1) of vertex v at a certain itera-
tion becomes less than zero, i.e. trust(v) < 0,
then the vertex is removed from the graph.

2.3 TrustCLQ algorithm
The proposed algorithm (called TrustCLQ algo-
rithm) consists of several functions. The main func-
tion findMaxClique accepts an undirected and un-
weighted graph without multi-edges and loops. Ver-
tex numeration starts from zero. If nothing is known
about the upper border of the clique, then we can
safely assume that it is equal to the number of vertices
in the graph. If the lower boundary is unknown, then
it is equal to 1 or δ(G), i.e. the least degree of vertices
in G. The initial solution is the empty set. The pseu-
docode of findMaxClique function can be found
in Algorithm 1. The function moves from the bot-
tom boundary to the top boundary. If a clique of size
i is searched, then the function immediately removes
from the graph all vertices with degree deg(v)+1 < i.
They will no longer be considered in the algorithm ex-
ecution. Vertices from the graph are removed using
the reduceVertex function (Algorithm 4).
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Then the main function findMaxClique runs
the clique search function named findClique on
the updated graph and update our solution. The pseu-
docode of function findClique is presented in Al-
gorithm 2. The function directly chooses a solution
and calculates the trust indicator (1) for each vertex.
The global variable SCALE is responsible for that and
its value can be changed before each run of the algo-
rithm.

Function findClique takes the next vertex and
tries to build a solution that will be no worse than the
already known solution, i.e. it should be a clique of
size at least LB. For each vertex, a list of candidates
is formed that can be included in the solution. The
Bron-Kerbosch algorithm is employed to perform a
complete search of all possible variations of candi-
dates. At each iteration, TrustCLQ selects one of
them randomly. This candidate is added to the solu-
tion without any checks, since the meaning of the list
of candidates is that they are all suitable for inclusion
to the solution. After that, the list is updated to the
current one.

The update function updateCandidates is
presented in Algorithm 3. While this reduces the
search tree to a minimum, it reduces the accuracy. If
the solution has been improved, then control is trans-
ferred back to function findMaxClique.

An important feature of the algorithm is that it
allows to control the accuracy by changing the ini-
tial value of the trust indicator (the SCALE parame-
ter). For example, with the initial value of the trust
indicator of 1

n , where n is the number of vertices in
the graph, the algorithm has low accuracy. However,
with an increase of its value, the accuracy increases
(of course, along with the running time of the algo-
rithm). One can choose between a high initial value
of the trust indicator, which leads to a higher running
time, but provides a solution close to optimal, or a low
initial value of the trust indicator, which gives a quick
but an inaccurate result.

Note that the algorithm does not require a signif-
icant amount of additional memory to work. It stores
only a local copy of the graph and several sets whose
cardinality does not exceed the number of the graph
vertices.

The running time is difficult to estimate, since it
also depends on the internal structure of the graph. In
the course of the empirical study, it could be noted
that the average value of the vertex degree has a great
influence on the running time. Indeed, despite the fact
that there are a lot of links in social graphs, they are
processed by the algorithm quite quickly, since their

density is very low.
The algorithm can also be used to solve the prob-

lem of an independent set finding. In this case, it is
necessary to take the complement of the graph and
submit it as the input to the algorithm.

Algorithm 1 findMaxClique(G)
1: answer ← ∅
2: for i = 1; i < |G| do
3: for all v ∈ G do
4: if |N(v)|+ 1 < i then
5: reduceV ertex(G, v)
6: end if
7: end for
8: tmp← findClique(G, |answer|+ 1)
9: if |tmp| > |answer| then

10: answer ← tmp
11: i← |answer|+ 1
12: else
13: i← i+ 1
14: end if
15: end for
16: return answer

If the solution has not been improved at an it-
eration, then the trust indicator of the vertex, from
which this solution was formed, decreases according
to equation (1). If the value of the trust indicator of the
vertex becomes negative, then the vertex is removed
from the graph. If the algorithm does not find a clique
that improves the solution, then it returns the empty
set. However, this does not unambiguously indicate
that a maximum clique has been found. The solution
can still be improved by cutting off another vertices
and restarting the algorithm.

The algorithm was implemented in Python and
its code can be found by link https://github.
com/stacy-s/MCP. All runs were carried out on
the Amazon EC, Intel Xeon Platinum 8000 series
(Skylake-SP) 3.1 GHz, 2vCPU, 1Gb.

3 Empirical results
3.1 DIMACS graphs
To test TrustCLQ algorithm, we will use sev-
eral graphs from DIMACS benchmark set
http://iridia.ulb.ac.be/˜fmascia/
maximum_clique/DIMACS-benchmark,
which are usually employed to test the algorithms
designed to solve the maximum clique problem. All
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Algorithm 2 findClique(G,LB)

1: for all v ∈ G do
2: trustv ← SCALE
3: end for
4: while there is at least one vertex with non-

negative trust indicator trustv do
5: for all v ∈ G do
6: if trustv > 0 then
7: candidates← N(v)
8: clique← {v}
9: while candidates is not empty and
|clique|+ |candidates| ≥ LB do

10: u ← a vertex randomly chosen
from candidates

11: clique← clique ∪ {u}
12: updateCandidates(G, candidates, u)
13: end while
14: if |clique| ≥ LB then
15: return clique
16: else
17: trustv ← trustv − LB

|N(v)+1|
18: if trustv ≤ 0 then
19: reduceV ertex(g, v)
20: end if
21: end if
22: end if
23: end for
24: end while
25: return ∅

graphs differ from each other in their characteristics.
The DIMACS benchmark set consists of the graphs
that are widely used to test the solution for MCP
[30]. All test graphs are constructed based on various
principles. For example, graphs of the gen family are
generated as follows: they take as a basis a complete
subgraph of a known size and add the necessary
number of edges to it.

Table 1 shows the results and running time for the
TrustCLQ, nx.max_clique algorithms as well
as the results for the ILS algorithm (results for the ILS
algorithm were obtained in [31]).

The algorithm showed the most inaccurate results
when using the initial trust indicator value of 0.01. It
can be explained by the fact that almost always after
an unsuccessful construction of a clique, the vertex is
removed from the graph, since the value of the trust
indicator immediately becomes negative.

Algorithm 3 updateCandidates(G, candidates, u)

1: tmp← ∅
2: for all v ∈ candidates do
3: if there is an edge (u, v) then
4: tmp← tmp ∪ {v}
5: end if
6: end for
7: return tmp

Algorithm 4 reduceV ertex(G, v)

1: remove v from V (list of vertices)
2: for all v ∈ E (E – list of all edges) do
3: if there is an edge (u, v) or (v, u) then
4: remove this edge from E
5: end if
6: end for

Empirical results presented in Table 1 shows that
the TrustCLQ algorithm running time and its ac-
curacy is increasing with an increase in the value of
the SCALE parameter. The results also show that the
TrustCLQ algorithm has a greater accuracy and a
shorter running time than the nx.max_clique al-
gorithm on almost all graphs from the DIMACS data
set. Moreover, in some cases, the TrustCLQ al-
gorithm obtains the exact solution and performs no
worse than the ILS algorithm.

3.2 The performance of the TrustCLQ algo-
rithm on Social networks

The portal [32] contains several hundred of differ-
ent real networks arisen in a wide range of applied
areas including biological networks, chemical struc-
tures, economic relationships, infrastructure and road
networks, and social networks. The TrustCLQ algo-
rithm was tested on dozens of Facebook graphs taken
from [32].

These graphs are very different from DIMACS
graphs in terms of the node degree distribution as well
as the edge density. Table 2 presents some of the ob-
tained results. It shows that even with a large number
of nodes and edges, the algorithm works much faster
than on DIMACS graphs. This is due to the much
greater sparseness of social networks, since a persons
ability to form social connections with other network
participants is limited. In addition, in the social net-
works, the spread in the vertex degrees is greater than
in random graphs.
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Dataset |V | t0.1 ω0.1 t1.0 ω1.0 ωILS ωbest tnx ωnx

0 C1000.9 1000 185.63 52 2015.27 54 - - 149.5 47
1 C125.9 125 0.05 30 0.49 31 - - 0.63 26
2 C2000.5 2000 322.74 14 2705.67 14 - - - -
3 C250.9 250 0.38 38 11.37 39 - - 3.52 33
4 C500.9 500 4.24 44 89.23 47 - - 21.9 40
5 DSJC1000 5 1000 19.01 14 157.96 14 - - 74.12 11
6 DSJC500 5 500 1.28 11 11.66 12 - - 10.83 10
7 MANN a27 378 8.27 123 61.86 123 126 126 10.66 104
8 MANN a45 1035 507.19 335 6154.56 337 344 345 178.72 276
9 MANN a9 45 0.0 15 0.01 16 16 16 0.05 13
10 brock200 1 200 0.08 18 1.54 19 21 21 1.21 16
11 brock200 2 200 0.04 9 0.56 12 12 12 0.96 8
12 brock200 3 200 0.05 14 0.72 13 15 15 1.07 11
13 brock200 4 200 0.07 13 0.82 14 17 17 1.15 12
14 brock400 1 400 2.07 21 26.44 22 23 27 7.74 18
15 brock400 2 400 2.78 20 19.19 21 24 29 8.05 18
16 brock400 3 400 1.88 20 31.33 22 24 31 7.56 19
17 brock400 4 400 2.96 21 19.03 22 26 33 7.59 18
18 brock800 1 800 16.81 17 181.63 18 19 23 44.56 15
19 brock800 2 800 17.41 17 175.39 18 20 24 45.0 16
20 brock800 3 800 20.56 18 162.28 18 19 25 44.15 16
21 brock800 4 800 15.47 17 173.13 18 19 26 44.15 16
22 c-fat200-1 200 0.01 12 0.01 12 12 12 2.56 12
23 c-fat200-2 200 0.01 24 0.02 24 24 24 2.11 24
24 c-fat200-5 200 0.03 58 0.05 58 58 58 1.98 58
25 c-fat500-1 500 0.06 14 0.07 14 14 14 43.89 14
26 c-fat500-10 500 0.29 126 0.55 126 126 126 22.49 126
27 c-fat500-2 500 0.08 26 0.09 26 26 26 39.65 26
28 c-fat500-5 500 0.15 64 0.22 64 64 64 29.28 64
29 gen200 p0.9 44 200 0.2 33 2.45 35 44 44 1.51 30
30 gen200 p0.9 55 200 0.19 34 2.43 42 55 55 1.76 37
31 gen400 p0.9 55 400 1.63 40 69.33 45 54 55 8.35 37
32 gen400 p0.9 65 400 1.7 41 60.5 45 64 65 9.11 38
33 gen400 p0.9 75 400 1.65 41 34.1 45 75 75 10.27 40
34 hamming10-2 1024 176.39 277 2391.11 307 473 512 887.33 512
35 hamming10-4 1024 104.68 31 1005.45 32 - - 59.64 33
36 hamming6-2 64 0.0 32 0.02 32 32 32 0.18 32
37 hamming6-4 64 0.0 4 0.0 4 4 4 0.06 4
38 hamming8-2 256 0.68 96 10.61 111 128 128 11.17 128
39 hamming8-4 256 0.29 13 1.68 13 16 16 1.45 16
40 johnson16-2-4 120 0.05 8 0.29 8 8 8 0.2 8
41 johnson32-2-4 496 11.38 16 122.29 16 - - 5.15 16
42 johnson8-2-4 28 0.0 4 0.0 4 4 4 0.01 4
43 johnson8-4-4 70 0.0 11 0.02 14 14 14 0.09 14
44 keller4 171 0.05 11 0.46 11 11 11 0.65 9
45 keller5 776 29.24 23 255.78 25 27 27 33.44 20
46 keller6 3361 18566.02 47 - - - - - -
47 p hat1000-1 1000 3.39 9 3.32 9 10 10 64.41 8
48 p hat1000-2 1000 17.1 34 17.32 34 44 46 60.79 28
49 p hat1000-3 1000 46.68 46 47.93 46 67 68 97.47 46

Table 1: Results and running time of TrustCLQ, nx.max clique and ILS algorithms on the DIMACS graphs; tnx
denotes the running time of the nx.max clique algorithm, t0.1 and t1.0 denotes the running time of the TrustCLQ
algorithm for SCALE = 0.1 and SCALE = 1.0, respectively; ωbest is the best-known solution; ωILS denotes
the solution obtained by the ILS algorithm; ω0.1 and ω1.0 denote the solutions obtained by the TrustCLQ algorithm
for SCALE = 0.1 and SCALE = 1.0, respectively
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Dataset |V | t1.0 ω1.0 ωLB

socfb-American75.mtx 6k 40.57 39 9
socfb-Amherst41.mtx 2k 5.98 21 10
socfb-Auburn71.mtx 18k 663.72 56 13
socfb-BC17.mtx 12k 200.13 35 12
socfb-BU10.mtx 20k 483.46 38 12
socfb-Baylor93.mtx 13k 319.47 54 11
socfb-Berkeley13.mtx 23k 832.31 42 15
socfb-Bingham82.mtx 10k 150.24 42 10
socfb-Bowdoin47.mtx 2k 4.94 22 9
socfb-Brandeis99.mtx 4k 16.74 23 9
socfb-Brown11.mtx 9k 140.75 32 10
socfb-Bucknell39.mtx 4k 18.38 29 9
socfb-CMU.mtx 7k 65.80 44 15
socfb-Cal65.mtx 11k 180.57 50 19
socfb-Caltech36.mtx 769 0.38 20 12
socfb-Colgate88.mtx 3k 15.82 33 12
socfb-Columbia2.mtx 12k 242.18 31 10
socfb-Cornell5.mtx 19k 653.97 40 13
socfb-Dartmouth6.mtx 8k 102.01 28 11
socfb-Duke14.mtx 10k 229.36 33 9
socfb-Emory27.mtx 7k 103.40 52 10
socfb-FSU53.mtx 28k 1346.47 54 24
socfb-Indiana.mtx 30k 1492.60 47 11
socfb-Indiana69.mtx 30k 1501.44 47 11
socfb-JMU79.mtx 14k 240.37 38 9
socfb-JohnsHopkins55.mtx 5k 31.62 44 9
socfb-Lehigh96.mtx 5k 34.60 37 10
socfb-MIT.mtx 6k 62.37 32 9
socfb-MSU24.mtx 32k 1565.69 46 11
socfb-MU78.mtx 15k 389.12 48 11
socfb-Maine59.mtx 9k 90.58 28 11
socfb-Maryland58.mtx 21k 652.87 53 9
socfb-Mich67.mtx 67k 8.76 27 14
socfb-Michigan23.mtx 30k 1539.24 44 11
socfb-Middlebury45.mtx 3k 11.00 24 13
socfb-Mississippi66.mtx 11k 262.77 47 10
socfb-NYU9.mtx 22k 706.92 37 13
socfb-Northeastern19.mtx 14k 252.21 34 11
socfb-Northwestern25.mtx 11k 219.91 40 21
socfb-NotreDame57.mtx 12k 291.54 25 12
socfb-Temple83.mtx 14k 332.03 35 10
socfb-Tennessee95.mtx 17k 832.38 57 9
socfb-Texas80.mtx 32k 2835.07 57 12
socfb-Texas84.mtx 36k 4410.97 50 9

Dataset |V | t1.0 ω1.0 ωLB

socfb-Trinity100.mtx 3k 15.25 36 11
socfb-Tufts18.mtx 7k 122.37 34 9
socfb-Tulane29.mtx 8k 172.76 38 16
socfb-UC33.mtx 17k 734.74 42 15
socfb-UC61.mtx 14k 538.35 46 18
socfb-UC64.mtx 7k 80.81 32 13
socfb-UCF52.mtx 15k 593.20 59 14
socfb-UCLA.mtx 20k 1282.03 51 9
socfb-UCLA26.mtx 20k 1284.71 51 9
socfb-UCSB37.mtx 15k 653.25 53 12
socfb-UCSC68.mtx 9k 160.68 30 12
socfb-UCSD34.mtx 15k 592.51 43 12
socfb-UChicago30.mtx 7k 102.23 33 9
socfb-GWU54.mtx 12k 190.39 42 9
socfb-Hamilton46.mtx 2k 5.56 25 15
socfb-Harvard1.mtx 15k 462.97 39 9
socfb-Howard90.mtx 4k 25.98 47 9
socfb-UConn.mtx 17k 404.61 49 9
socfb-UConn91.mtx 17k 405.48 49 9
socfb-UF.mtx 35k 2156.92 55 13
socfb-UF21.mtx 35k 2193.94 55 13
socfb-UGA50.mtx 24k 1153.77 51 12
socfb-UIllinois.mtx 31k 1663.48 56 9
socfb-UIllinois20.mtx 31k 1656.72 56 10
socfb-UMass92.mtx 17k 376.00 35 10
socfb-UNC28.mtx 18k 597.23 46 11
socfb-UPenn7.mtx 15k 447.09 41 10
socfb-USC35.mtx 17k 614.39 60 9
socfb-USF51.mtx 13k 214.36 43 10
socfb-USFCA72.mtx 3k 4.23 28 10
socfb-UVA16.mtx 17k 470.91 42 9
socfb-Vanderbilt48.mtx 8k 109.41 45 9
socfb-Vassar85.mtx 3k 9.47 22 10
socfb-Vermont70.mtx 7k 50.51 38 14
socfb-Villanova62.mtx 8k 87.20 36 9
socfb-Virginia63.mtx 21k 629.39 51 9
socfb-Wake73.mtx 5k 53.47 45 10
socfb-WashU32.mtx 8k 114.94 41 9
socfb-Wellesley22.mtx 3k 7.50 27 10
socfb-Wesleyan43.mtx 4k 14.84 28 19
socfb-William77.mtx 6k 66.31 38 10
socfb-Williams40.mtx 3k 9.44 24 14
socfb-Wisconsin87.mtx 24k 855.08 35 12
socfb-Yale4.mtx 9k 153.50 30 10

Table 2: Results of the TrustCLQ algorithm on Facebook networks. t1.0 denotes the running time of the algorithm
for SCALE = 1.0; ωLB is the known lower bound on the size of the maximum clique; ω1.0 denotes the solution
obtained by the TrustCLQ algorithm for SCALE = 1.0

Table 2 shows that the TrustCLQ algorithm al-
locates maximum cliques of a much larger sizes than
the known lower bounds on the sizes of the maximum
cliques. We also note that the running time of the al-
gorithm is acceptable for solving problems of the ap-
proximate search for the maximum cliques on real so-
cial graphs.

4 Conclusion

In this paper, an heuristic algorithm for solving the
maximum clique search problem is proposed. The al-
gorithm uses both the well-known branch-and-bound
method, as well as new ideas that were not previously
mentioned by researchers. The algorithm uses an it-
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erative approach for solving MCP and the results is
practically independent of the order of vertices. In ad-
dition, it does not use the graph partition into indepen-
dent sets.

The algorithm was tested on both artificial graphs
and real networks. He showed not so high accu-
racy on DIMACS graphs, which are not real graphs,
but are good for testing MCP algorithms. The algo-
rithm showed good results when running on social
networks, for which the obtained solution (i.e. the
size of maximum clique) exceeded the known lower
bound on the size of the maximum clique.

The algorithm was compared with two well-
known algorithms. Each of them is good in individual
cases. We can not say that the proposed algorithm is
completely better in terms of the MCP solution. How-
ever, it works well on some graphs.

The future research may include the compari-
son of the proposed approach with the state-of-the-art
methods described in [12] and [18].
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