
On the Error Terms of Chebyshev Functions for SL4
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Abstract: Our object of research are certain higher order counting functions of Chebyshev type, associated to the
compact symmetric space SL4. In particular, we consider the function ψ1 (x) resp. ψ3 (x), of order 1 resp. 3.
As it is well known, any such function can be represented as a sum of some explicit part, and the corresponding
error term. The explicit part is usually indexed over singularities of the attached Selberg zeta functions, while
the error term depends on the dimension of the underlying symmetric space. Thus, these functions generalize
the classical yes function π (x) counting prime geodesics of appropriate length. More precisely, the Chebyshev
functions divided by adequate power of x, represent quite natural approximations for the function π (x). In this
research, we are particularly interested in the error terms of ψ1 (x) /x and ψ3 (x) /x3.
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1 Introduction
Recently, we proved that in the case of compact sym-
metric spaces obtained as quotients of the Lie group
SL4 (R), the corresponding length spectrum π (x) is
given as the sum of the explicit part 2 li (x), and the
remainderO

(
x1− 1

2D (log x)−1
)

during the process x
→ +∞, where π (x) is a yes function counting prime
geodesics of the length not larger than log x, li (x) =
x∫
2

dt
log t is the integral logarithm, andD is the degree of

the polynomial that appears in the functional equation
of the corresponding Selberg zeta function.

It is well known that the length spectrum stated
above easily follows from the corresponding equation
for the function ψk (x), k ∈ N ∪ {0} (these functions
are defined below). Such reasoning can be found in
[23], as well as in [2]-[4], [12], [14]-[16], [25], [28],
etc.

Wa also refer to [5], [17]-[19], [21], [26], [6].
Thus, for example, the length spectrum stated

above follows from the fact that ψ0 (x) is the sum of
2x and O

(
x1− 1

2D

)
, as x→ +∞.

In other words, the knowledge about π (x) is
equivalent to the knowledge about ψ0 (x).

Note that ψ1 (x) =
x∫
2

ψ0 (t) dt. This means that,

in some sense, the knowledge about ψ0 (x) (and hence
about π (x)) can be compared to the knowledge about

ψ1(x)
x .

However, any estimate for the function ψ1(x)
x

(or more generally for the function ψk(x)
xk

) is known
in literature as a generalized length spectrum (or a
weighted prime geodesic theorem).

Our goal is to prove the generalized length spec-
trum, i.e., that ψ1(x)

x can be written as the sum of the

explicit part
∑
I

and the error term O
(
x

1
2
− 1

2D

)
, as x

→ +∞, where the sum
∑
I

is indexed over singulari-

ties of the corresponding Selberg zeta functions inside(
1
2 −

1
2D ,

3
4

]
.

The generalized length spectrum can be also
found in [1], [13], etc., and not necessarily for the
same underlying symmetric space.

For the background on the representation theory
of semi-simple groups, we refer to [20] (see also,
[27]).

For the Selberg trace formula in this setting, see
[29].

2 Notation
Let k ∈ Z, and Ik = {0,−1, ...,−k}.

Put Iq, q ∈ {0, 1, ..., 4} to be the set of all j ∈ Ik
such that j is a singularity of the Selberg zeta function
ZP,

∧q n̄ (s+ q
4

)
, and I

′
q = Ik \ Iq.
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The set of the remaining singularities sq of
ZP,

∧q n̄ (s+ q
4

)
will be denoted by Sq.

Note that by Theorem 3.2.1 in [8], the function
ZP,

∧q n̄ (s) extends to a meromorphic function on the
whole of C, and its singularities lie in R ∪

(
1
2 + iR

)
(see also, [7]).

Precise locations and the orders of the singulari-
ties of ZP,∧q n̄ (s) are described by Proposition 3.4.3
in [8] and the discussion afterwards.

Thus, ZP,1 (s) has a double zero at s = 1, and,
apart from that, all poles and zeros of ZP,1 (s) lie in
the strip 0 ≤ Re (s) ≤ 3

4 .
We also put SqR = Sq ∩ R, and Sq1

2
− q

4

= Sq \ SqR.

n̄ is the complexified Lie algebra of N̄ (see, [24]).
P = MAN is a parabolic subgroup of G with

Levi component MA and the unipotent radical N .
We point out that in this paper the underlying

symmetric space XΓ is given by XΓ = Γ \ G / K,
where G = SL4 (R), K is the maximal compact sub-
group of G (thus, K = SO (4)), and Γ is a discrete,
co-compact subgroup of G.

By [24, p. 63, (3.7)], ψk (x) is the sum of the
residues cα (q, k)’s at α’s over q ∈ {0, 1, ..., 4} and the
set of poles Sk,q of the function in the case at hand.

It is not so hard to find the residues cα (q, k)’s de-
pending on whether α’s are the elements of Sq, Iq,
and I

′
q.

We denote by oqz the order of the singularity z of
ZP,

∧q n̄ (s+ q
4

)
, and by aqi,z’s the coefficients in the

expansion of the logarithmic derivative
Z
′
P,

∧q n̄(s+
q
4)

ZP,
∧q n̄(s+

q
4)

around z.
We note that the counting function ψk (x) is de-

fined by ψj (x) =
x∫
0

ψj−1 (t) dt, j ∈ N, where ψ0 (x)

is given by
∑

[γ]∈EP (Γ)

χ1 (Γγ) lγ0 .

Here, EP (Γ) is the set of all Γ-conjugacy classes
[γ], such that the element γ ∈ Γ is conjugate inG to an
element aγbγ ∈ A−B, where A− is the negative Weyl
chamber in A with respect to the root system given
by the choice of parabolic, and B is a compact Cartan
subgroup of M .

If γ is a conjugate to aγbγ , we define the length
lγ of γ to be lγ = b (log aγ , log bγ)

1
2 , where b is an in-

variant bilinear form on the complexified Lie algebra
g = sl4 (C) of G.

Furthermore, χ1 (Γγ) is the first higher Euler
characteristics of the symmetric space XΓγ = Γγ \
Gγ / Kγ , where Gγ and Γγ are the centralizers of γ
in G and Γ, respectively, and Kγ = K ∩ Gγ .

In this research, we apply the known differential
operator ∆+

k (see, e.g., [24]).

Furthermore, we make use of the fact that the
number N (t) of the vertical singularities is bounded
by O

(
tD
)
.

3 Results
The following theorem represents the main result of
our research.

Theorem 1. Let XΓ be as above. Then,

ψ1 (x)

x

=x+
2∑
q=0

(−1)q
∑
sq∈SqR

1
2
− 1

2D
<sq≤ 3

4

oqsq (sq)−1×

× (sq + 1)−1 xs
q

+O
(
x

1
2
− 1

2D

)
as x→ +∞.

Proof. We shall denote by h the constant which will
be fixed later.

For now, we shall assume that this constant is
dominated by x.

Let z ∈ Sq1
2
− q

4

.

We obtain, h−(k−1)∆+
k−1cz (q, k) is

O
(
h−(k−1) |z|−k−1 x

1
2

+k
)

(this estimate follows
from the very definition of the differential operator
∆+
k−1).

On the other side, the integral representation
of the operator yields that h−(k−1)∆+

k−1cz (q, k) is

O
(
|z|−2 x

3
2

)
as well.

First, we estimate the sums over complex singu-
larities.

As it is usual, the complex singularities z ∈ Sq1
2
− q

4

are divided into two classes, those whose modulus is
not smaller that M , and the remaining ones, where M
is a constant.

Hence, taking into account the
number of the complex singularities, we obtain
that the sum of h−(mD−1)∆+

mD−1cz (q,mD)
over q ∈ {0, 1, ..., 4} and z ∈
Sq1

2
− q

4

is bounded by the sum of O
(
x

3
2MD−2

)
and

O
(
h−(mD−1)x

1
2

+mDMD−mD−1
)

, where k is taken
to be some mD for some even m.

Since h−(k−1) ∆+
k−1 c1 (0, k) is x̃2 for

some x̃ ∈ [x, x+ (k − 1)h], it follows that
h−(k−1)∆+

k−1c1 (0, k) is O
(
x2
)
.
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Having in mind the fact that
h−(k−1)∆+

k−1c1 (0, k) is

2h−(k−1) 1

(k + 1)!

k−1∑
i=0

(−1)i
(
k − 1

i

)
×

×
1+k∑
j=0

(
1 + k

j

)
x1+k−j ((k − 1− i)h)j ,

we may write

h−(k−1)∆+
k−1c1 (0, k) = Px2 +Qx+R

for some P , Q and R.
Thus, P is

2
1

(mD + 1)!

(
mD + 1

mD − 1

)
×

×
mD−1∑
i=0

(−1)i
(
mD − 1

i

)
(mD − 1− i)mD−1 ,

i.e., P is 1. Furthermore, Q is

2h
1

(mD + 1)!

(
mD + 1

mD

)
×

×
mD−1∑
i=0

(−1)i
(
mD − 1

i

)
(mD − 1− i)mD ,

i.e., Q is (mD − 1)h. And, finally, R is given by

2h2 1

(mD + 1)!
×

×
mD−1∑
i=0

(−1)i
(
mD − 1

i

)
(mD − 1− i)mD+1 .

Consequently, h−(mD−1)∆+
mD−1c1 (0,mD) is

the sum of x2, O (hx) and O
(
h2
)
.

Now, we compare each of the error terms O (hx),
O
(
h2
)

with O
(
x

3
2MD−2

)
and

O
(
h−(mD−1)x

1
2

+mDMD−mD−1
)

.

First, we compare O
(
h2
)

with O
(
x

3
2MD−2

)
and O

(
h−(mD−1)x

1
2

+mDMD−mD−1
)

.

If h is xα andM is xβ , we establish the equalities

h2 = x
3
2MD−2 = h−(mD−1)x

1
2

+mDMD−mD−1.

Thus, we solve the system

2α =
3

2
+ βD − 2β

=− αmD + α+
1

2
+mD + βD − βmD − β,

i.e., the system

3

2
+ βD − 2β

=−
(

3

4
+

1

2
βD − β

)
mD +

3

4
+

1

2
βD − β +

1

2
+mD + βD − βmD − β.

We obtain, β = 1
2D , and α = 3

4 + 1
2βD − β = 1

2

− 1
2D , i.e., h = x

1
2
− 1

2D , and M = x
1

2D .
Since h is dominated by x, it follows that our pre-

vious calculations are valid.
In this case, the dominant error term is O (hx),

i.e., O
(
x

3
2
− 1

2D

)
.

Second, we compare O (hx) and O
(
x

3
2MD−2

)
,

O
(
h−(mD−1)x

1
2

+mDMD−mD−1
)

.
Hence,

hx = x
3
2MD−2 = h−(mD−1)x

1
2

+mDMD−mD−1,

i.e.,

α+ 1 =
3

2
+ βD − 2β

=− αmD + α+
1

2
+mD+

βD − βmD − β,

i.e.,

3

2
+ βD − 2β

=−
(

1

2
+ βD − 2β

)
mD +

1

2
+ βD − 2β+

1

2
+mD + βD − βmD − β.
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It follows that β = 1
2D−2 , α = 1

2 + βD − 2β =

1
2 + D

2D−2 −
1

D−1 , i.e., h = x
1
2

+ D−2
2D−2 , M = x

1
2D−2 .

In this case, the dominant error term O (hx) is
O
(
x

3
2

+ D−2
2D−2

)
.

Obviously, the first scenario gives a better result.
Thus, we are interested in the error term

O
(
x

3
2
− 1

2D

)
achieved for the choice h = x

1
2
− 1

2D , M

= x
1

2D .
The sum of the elements h−(k−1)∆+

k−1csq (q, k)

along q ∈ {0, 1, ..., 4} and sq ∈ SqR, 0 < sq ≤ 3
4 is

3∑
q=0

(−1)q
∑
sq∈SqR

0<sq≤ 3
4

oqsq (sq)−1 (sq + 1)−1 xs
q+1

+O
(
x

3
4h
)
.

Here, we applied the fact that

+∞∑
j=1

(
sq + 1

j

)
= 2s

q+1 −
(
sq + 1

0

)
= 2s

q+1 − 1.

Since h−(k−1)∆+
k−1c−j (q, k) is 0 for −j ∈

{−2,−3, ...,−k}, it follows that the corresponding
sum over q ∈ {0, 1, ..., 4} and−j ∈ {−2,−3, ...,−k}
is equal to 0.

Furthermore, we estimate

3∑
q=0

(−1)q h−(k−1)∆+
k−1c−1 (q, k)

+ h−(k−1)∆+
k−1c−1 (4, k) .

Reasoning as above, we conclude that

h−(k−1)∆+
k−1c−1 (q, k) is −

Z
′
P,

∧q n̄(−1+ q
4)

ZP,
∧q n̄(−1+ q

4)
for q

∈ {0, 1, ..., 3}.
If −1 ∈ I ′4, then h−(k−1)∆+

k−1c−1 (4, k) is

−
Z
′
P,

∧4 n̄
(0)

Z
P,

∧4 n̄
(0) .

Furthermore, if −1 ∈ I4, then
h−(k−1)∆+

k−1c−1 (4, k) is O (log x).
Thus, the corresponding sum is O (log x).
Similarly,

4∑
q=0

(−1)q h−(k−1)∆+
k−1c0 (q, k) = O (x log x) .

Since h−(k−1)∆+
k−1csq (q, k) is

oqsq (sq)−1 (sq + 1)−1 x̃s
q+1
sq ,q,k for q ∈ {0, 1, ..., 4}, sq ∈

SqR, −1 < sq < 0, where x̃sq ,q,k ∈ [x, x+ (k − 1)h],
it follows that the corresponding sum is O (x).

Now, taking h = x
1
2
− 1

2D , M = x
1

2D , and com-
bining the estimates derived above with the fact that
ψ1 (x) is not larger than h−(k−1) ∆+

k−1 ψk (x), we ob-
tain that ψ1 (x) is not larger than

x2 +

3∑
q=0

(−1)q
∑
sq∈SqR

0<sq≤ 3
4

oqsq (sq)−1 (sq + 1)−1 xs
q+1

+O
(
x

3
2
− 1

2D

)
.

Similarly, one concludes that the last sum is not
larger than ψ1 (x).

This completes the proof.

4 Additional results
In this section we shall consider the function ψ3 (x) in
detail.

We may assume that h is a constant such that |h| is
not larger thanCx, whereC is some positive constant.

First, suppose that z ∈ Sq1
2
− q

4

.

In this case, h−(k−3)∆+
k−3cz (q, k) can be esti-

mated by

O
(
h−(k−3) |z|−k−1 x

1
2

+k
)

and

O
(
|z|−4 x

7
2

)
.

For a constant M , we shall consider the elements
z ∈ Sq1

2
− q

4

, such that
∣∣1

2 −
q
4

∣∣ < |z| ≤ M , and |z| >
M .

In the first resp. the second case, we shall apply
the second resp. the first bound given above.

Having in mind the fact that N (t) is
estimated by O

(
tD
)
, it easily follows that the sum
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of h−(k−3)∆+
k−3cz (q, k) (along 0 ≤ q ≤ 4 and z ∈

Sq1
2
− q

4

) is

O
(
x

7
2MD−4

)
+O

(
h−(k−3)x

1
2

+kMD−k−1
)
.

Reasoning as earlier, we conclude that
h−(k−3)∆+

k−3c1 (0, k) is 1
12 (x+ ε)4, where ε ∈

[0, (k − 3)h].
Hence, h−(k−3)∆+

k−3c1 (0, k) is

1

12
x4

+O
(
x3h
)

+O
(
x2h2

)
+O

(
xh3
)

+O
(
h4
)

=
1

12
x4 +O

(
x3h
)
.

Although we applied the fact that the error
terms O

(
x2h2

)
, O

(
xh3
)

and O
(
h4
)

are contained
in O

(
x3h
)
, we shall compare each of them with

previously obtained error terms O
(
x

7
2MD−4

)
and

O
(
h−(k−3)x

1
2

+kMD−k−1
)

.

The first case: O
(
x3h
)
, O
(
x

7
2MD−4

)
and

O
(
h−(k−3)x

1
2

+kMD−k−1
)

.
We have,

3 + α =
7

2
+ β (D − 4)

=α (−k + 3) +
1

2
+ k + β (D − k − 1) .

Hence, α = 1 and β = 1
2(D−4) .

The largest error term in this case isO
(
x3h
)
, i.e.,

O
(
x4
)
.

The second case: O
(
x2h2

)
, O
(
x

7
2MD−4

)
and

O
(
h−(k−3)x

1
2

+kMD−k−1
)

Now,

2α+ 2 =
7

2
+ β (D − 4)

=α (−k + 3) +
1

2
+ k + β (D − k − 1) .

Therefore, α = 3
4 + D−4

4(D−2) and β = 1
2D−4 .

The dominant error term is O
(
x3h
)
, i.e.,

O
(
x

15
4

+ 1
4
D−4
D−2

)
.

The third case: O
(
xh3
)
, O
(
x

7
2MD−4

)
and

O
(
h−(k−3)x

1
2

+kMD−k−1
)

We obtain,

3α+ 1 =
7

2
+ β (D − 4)

=α (−k + 3) +
1

2
+ k + β (D − k − 1) .

Thus, α = 5
6 + D−4

6(D−1) and β = 1
2D−2 .

Once again, the largest error term isO
(
x3h
)
, i.e.,

O
(
x

23
6

+ 1
6
D−4
D−1

)
.

The fourth case: O
(
h4
)
, O
(
x

7
2MD−4

)
and

O
(
h−(k−3)x

1
2

+kMD−k−1
)

In this case,

4α =
7

2
+ β (D − 4)

=α (−k + 3) +
1

2
+ k + β (D − k − 1) .

It follows that, α = 7
8 + D−4

8D and β = 1
2D .

The largest error term is O
(
x3h
)
, i.e.,

O
(
x

31
8

+ 1
8
D−4
D

)
.

It is easily verified that the optimal error term is

O
(
x

15
4

+ 1
4
D−4
D−2

)
, and is achieved for h = x

3
4

+ D−4
4(D−2) ,

M = x
1

2D−4 .
The sum of h−(k−3)∆+

k−3csq (q, k), where q runs
over {0, 1, ..., 4}, and sq runs over SqR, 0 < sq ≤ 3

4 , is

3∑
q=0

(−1)q
∑
sq∈SqR

0<sq≤ 3
4

oqsq (sq)−1 (sq + 1)−1×

× (sq + 2)−1 (sq + 3)−1 xs
q+3+

O
(
x

11
4 h
)
.

Namely, 2s
q+3 is

+∞∑
j=0

(
sq+3
j

)
.

Reasoning as in the previous section, we conclude
that the corresponding sum over q ∈ {0, 1, ..., 4} and
−j ∈ {−4,−5, ...,−k} is 0.
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Furthermore, the sum of h−(k−3)∆+
k−3c−3 (q, k),

where q runs over {0, 1, ..., 4}, is

−1

6

4∑
q=0

(−1)q
Z
′

P,
∧q n̄ (−3 + q

4

)
ZP,

∧q n̄ (−3 + q
4

) .
Moreover,

4∑
q=0

(−1)q h−(k−3)∆+
k−3c−2 (q, k) = O (x) ,

4∑
q=0

(−1)q h−(k−3)∆+
k−3c−1 (q, k) = O

(
x2 log x

)
,

4∑
q=0

(−1)q h−(k−3)∆+
k−3c0 (q, k) = O

(
x3 log x

)
.

Note that h−(k−3)∆+
k−3csq (q, k) is

oqsq (sq)−1 (sq + 1)−1 (sq + 2)−1 (sq + 3)−1 x̃s
q+3
sq ,q,k,

when q runs along {0, 1, ..., 4}, and sq runs along
SqR, −1 < sq < 0, where x̃sq ,q,k belongs to
[x, x+ (k − 3)h].

Thus, the corresponding sum is O
(
x3
)
.

Put h = x
3
4

+ 1
4
D−4
D−2 , M = x

1
2

1
D−2 .

Having in mind the results derived above, we con-
clude that ψ3 (x) is equal to

1

12
x4 +

3∑
q=0

(−1)q
∑
sq∈SqR

0<sq≤ 3
4

oqsq (sq)−1 (sq + 1)−1×

× (sq + 2)−1 (sq + 3)−1 xs
q+3 +O

(
x

15
4

+ 1
4
D−4
D−2

)
.

Thus, we have proved the following result:

Theorem 2. Let XΓ be as above. Then, ψ3(x)
x3 is

1

12
x+O

(
x

3
4

+ 1
4
D−4
D−2

)
as x→ +∞.

5 Final remarks
Some important ideas related to this research are
found in: [9], [10], [11] and [22].

The error term O
(
x

1
2
− 1

2D

)
, obtained in the gen-

eralized sense, is obviously better than the classical
one O

(
x1− 1

2D

)
.
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