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Abstract: - The subject of this article is to present the issues related to the LQR control algorithm used in the 
linear model describing the dynamics of the flying object in terms of tracking its flight trajectory. The use of the 
LQR regulator is also a method of calculating the optimal K-feedback reinforcement, with this type of 
reinforcement used to control the system in the form of a control signal can be determined by tuning the Q  and 
R weight matrix elements in the LQR method. Based on the above, the main research goal of the article is to 
develop an algorithm for the control system implemented on the quadrotor using the LQR method to obtain the 
best K-feedback gain in flight state with unstable motion. To this end, a mathematical model describing the 
essence of linear-quadratic control using the LQR controller is presented in this paper. It should be noted that 
due to the fact that only four states can be controlled at the same time in a quadrotor, hence the flight trajectories 
are determined on the basis of four states, while the three-dimensional position, position of the tested object in 
the coordinate system and rotation along the axis are described as deviation movement. In addition, the work 
also designed on the basis of the created linear model of a linear quadrotor LQR control approach for this model 
due to the fact that the performance of the linear model and non-linear model around a specified nominal point 
is almost identical. The control system based on the LQR algorithm was developed in the Matlab/Simulink 
environment, and the results obtained in the form of graphs for the quantities characterizing the dynamics of the 
tested object were used to assess the effectiveness of the LQR method used. In the final part of the work, 
practical conclusions have been formulated based on the research (analysis, models, simulations) and analysis 
of the results obtained.  
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1 Introduction  

One of the key elements of the unmanned aerial 
vehicle (UAV) design process is its comprehensive 
mass and balance analysis. The term "mass and 
balance" refers to the mass properties of the aircraft 
(object) and the resulting stability or instability.  

In turn, the term "mass properties" usually refers 
to the following quantities: mass, center of gravity 
(center of mass), moment of inertia. The center of 
gravity is the point where the sum of moments 
derived from the mass of the object equals zero.  

Therefore, this point is the point relative to 
which the aircraft is balanced and at which mass and 
gravitational forces are attached. For the needs of 
the work, each element of the aircraft was weighed 
and the center of gravity of each was determined.  

The center of gravity of the entire aircraft was 
determined using a simple geometric sum and 
parallel axis theorem [1], [2].  

The mass of individual aircraft components is 
shown in the table below (Table 1).  

Table 1 Mass of individual elements  

Element  Mass [g]  

Propeller 100 
Radio control electronics 65 

Camera 55 
Batteries 350 

Wires 29 
Fuselage 750 

Sum 1349  

The load capacity (load) of the aircraft was 
placed in such a way as to shift the center of gravity 
to the desired position in front of the aerodynamic 
center [3], [4].  

The exact position of the center of gravity should 
be made when trimming the aircraft to obtain 
longitudinal stability.  

The equations of the moments of inertia are as 
follows (1) - (5) [5], [6]:  
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𝐼𝑦𝑦 =∑𝑚𝑖 {(𝑍𝑖 − 𝑍𝑐𝑔)
2
+ (𝑋𝑖 − 𝑋𝑐𝑔)

2
}

𝑛

𝑖=1

 (1) 

𝐼𝑧𝑧 =∑𝑚𝑖 {(𝑋𝑖 − 𝑋𝑐𝑔)
2
+ (𝑌𝑖 − 𝑌𝑐𝑔)

2
}

𝑛

𝑖=1

 (2) 

𝐼𝑥𝑦 =∑𝑚𝑖 {(𝑋𝑖 − 𝑋𝑐𝑔)
2
(𝑌𝑖 − 𝑌𝑐𝑔)

2
} = 0

𝑛

𝑖=1

 (3) 

𝐼𝑦𝑧 =∑𝑚𝑖 {(𝑌𝑖 − 𝑌𝑐𝑔)
2
(𝑍𝑖 − 𝑍𝑐𝑔)

2
}

𝑛

𝑖=1

= 0 (4) 

𝐼𝑧𝑥 =∑𝑚𝑖 {(𝑍𝑖 − 𝑍𝑐𝑔)
2
+ (𝑋𝑖 − 𝑋𝑐𝑔)

2
}

𝑛

𝑖=1

 (5) 

It should be noted that the design of the flying 
wing does not distinguish between wings and the 
fuselage and there is no vertical and horizontal 
stabilizer. Due to this, this type of solution not only 
increases the lift to resistance ratio, reducing the 
effective reflection surface, but also increases the 
range of the flight and reduces energy consumption.  

However, this type of construction caused many 
problems in the design of the flight control system. 
On the one hand, due to the shape of the aircraft 
(large ratio of width to length) and the lack of a 
horizontal stabilizer, which reduces longitudinal 
static stability and control efficiency.  

On the other hand, the lack of vertical fin causes 
a decrease in transverse lateral attenuation. In this 
case, a new control mechanism should be attached 
to the structure to allow rotation of the aircraft 
around the vertical axis.  

The LQR (Linear Quadratic Regulator) linear-
quadratic regulator technology is widely used in 
many engineering fields, especially in the design of 
unmanned aerial vehicle flight control systems using 
feedback [7], [8], [9].  

This method has many advantages, such as: a 
phase margin greater than 60°, an infinite margin of 
amplitude and high reliability.  

The use of LQR technology has allowed to 
increase the flight stability of unmanned aircraft in a 
classic system, which solves the problem of 
vulnerability associated with air blasts.  

Currently, flying wing control systems mainly 
use classical control theory based on the use of 
square root method and frequency band analysis 
method.  

It should be noted that despite the reliability and 
intuitiveness of this type of approach, a lot of work 

should be done to design a feedback loop using 
classic control methods, and sometimes it is difficult 
to meet the design requirements of a complex flight 
control system with multiple inputs and outputs and 
a strong connection.  

LQR technology is most often used in UAV 
control systems in the classic system and unmanned 
helicopters [10], [11], [12].  

This paper presents the use of the LQR method 
in the UAV control system - flying wing. This 
allowed not only to increase longitudinal static 
stability, but also to improve the dynamic 
characteristics of the object.  

In addition, the amount of feedback has been 
reduced, which contributes to the use of this type of 
method, primarily for its convenience, in practical 
applications.  

The controller has high reliability and a simple 
structure, implements control with zero static error 
of speed and angle of inclination.  

The article uses the Matlab/Simulink 
environment to simulate the control method, while 
the results show that the longitudinal control based 
on LQR technology can make the UAV object 
design  flying wing achieve satisfactory 
longitudinal flight properties.  

 
 

2 Mathematical model of the flying 

wing in the scope of increasing 

longitudinal stability  
Due to the fact that the fuselage of the flying 

wing is short, the efficiency of controlling the 
rudder and elevons is low. In order to increase 
maneuverability, static stability must therefore be 
reduced accordingly.  

In the event that the aircraft moves at subsonic 
speed or at large angles of attack, the aerodynamic 
focus moves backwards, reducing longitudinal static 
stability.  

As a compromise between longitudinal stability 
and maneuverability, the center of gravity of the 
aircraft can be located between the aerodynamic 
focus at high angles of attack and high speeds and 
the aerodynamic focus at low angles of attack and 
low speeds.  

Therefore, static stability can be maintained at 
low speeds and low angles of attack, while 
instability at high speeds and high angles of attack is 
still acceptable.  

In view of the above reasoning, only at high 
speeds and a large angle of attack it is needed to 
strengthen longitudinal stability.  
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2.1 Feedback system (output)  
Despite the fact that by using a traditional linear-

quadratic regulator, it is possible to achieve an 
increase in aircraft stability, however, information 
on all system state variables and large workloads are 
necessary, which is not conducive to using this 
method in practical applications [13], [14], [15].  

In connection with the above, a feedback system 
(output) was used.  

For the needs of mathematical analysis, the 
following three rudders models were adopted:  
Elevator: 𝛿𝑒 =

20

𝑆+20
𝑢𝑒, engine control lever:  

𝛿𝑡 =
20

𝑆+20
𝑢𝑡, rudder at the wing tips: 𝛿𝑑 =

40

𝑆+20
𝑢𝑑.  

The enhanced state equation and the output 
equation can be represented in the following form 
(6):  

{
�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

 (6) 

where: 𝑥 = [∆𝑣 ∆𝛼 ∆𝑞 ∆𝜃 ∆𝛿𝑒 ∆𝛿𝑡  ∆𝛿𝑑  ]𝑇 - is the 
system state vector, 𝑢 = [∆𝑢𝑒 ∆𝑢𝑡 ∆𝑢𝑑]𝑇 - is the 
control vector, while 𝑦 = [∆𝑣 ∆𝛼 ∆𝑞 ∆𝜃]𝑇 - is the 
output signal.  

The output form takes the form (7):  

𝑢 = 𝐾𝑦 (7) 
where: 𝐾 - is a returnable profit matrix with an 
appropriate dimension.  

After substituting equation (7) for equation (6), 
the following closed loop system equation (8) was 
obtained:  

𝑥 = (𝐴 + 𝐵𝐾𝐶)𝑥 = 𝐴∗𝑥̇ 𝑢 = 𝐾𝑦 (8) 
The purpose of developing the principle of 

stability enhancement control is to adjust the state of 
the aircraft in such a way that the initial conditions 
errors are kept at zero, which can ensure the stability 
of the flight of the object.  

Thus, the following function can be minimized 
by selecting the control input signal 𝑢 (9):  

𝐽 =
1

2
∫(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡

∞

0

̇

 (9) 

where: 𝑄 - is a semi-positive symmetrical matrix 
and 𝑅 - a positive symmetrical matrix.  

After substituting equation (7) and (6) with the 
above equation (9), we obtained (10):  

𝐽 =
1

2
∫ 𝑥𝑇(𝑄 + 𝐶𝑇𝐾𝑇𝑅𝐾𝐶)𝑥𝑑𝑡

∞

0

 (10) 

It can be stated that the selection of an 
appropriate 𝐾-feedback matrix will minimize the 
function (10), which changes the problem of 
dynamic optimization into an easily soluble static 
problem.  

It has been assumed that a positively defined 
symmetric matrix 𝑃 can be determined to build the 
Lapunov 𝑥 function [16], [17], [18].  

If the function satisfies Lapunov's theorem on 
stability, the closed-loop system (8) is 
asymptotically stable.  

The Lapunov's function can be defined as (11):  

𝑉(𝑥) = 𝑥𝑇𝑃𝑥 (11) 
Using the formula (8), the derivative V(x) 

expressed in the form (12) was obtained:  

�̇�(𝑥) = 𝑥𝑇(𝐴∗𝑇𝑃 + 𝑃𝐴∗) (12) 
Then, after integrating the function (10) and 

using the properties of the Lapunov V(x) function, 
the following equation (13) was obtained:  

𝑑(𝑥𝑇𝑃𝑥)

𝑑𝑡
= 𝑥𝑇(𝐴∗𝑇𝑃 + 𝑃𝐴∗)𝑥

= −𝑥𝑇(𝑄 + 𝐶𝑇𝐾𝑇𝑅𝐾𝐶)𝑥 (13) 

In turn, since it was assumed that the closed-loop 
system is asymptotically stable, function (10) can be 
written as (14):  

𝐽 =
1

2
𝑥𝑇(0)𝑃𝑥(0) − lim

𝑡→∞

1

2
𝑥𝑇(𝑡)𝑃𝑥(𝑡)

=
1

2
𝑥𝑇(0)𝑃𝑥(0) (14) 

From equation (14) the closed loop system 
function can be calculated provided that the initial 
state 𝑥(0) is known.  

Because equation (13) must meet all initial 
conditions, all trajectories of state 𝑥(0) satisfy the 
following Lapunov equation (15):  

𝑓 = 𝑄 + 𝐶𝑇𝐾𝑇𝑅𝐾𝐶 + 𝐴∗𝑇𝑃 + 𝑃𝐴∗ = 0 (15) 
From equation (15) it can be stated that if 𝑄 and 

𝐾 matrices are given, the auxiliary matrix 𝑃 can be 
determined by the Lapunov function and is 
independent of the state of the system.  

To sum up, when it comes to any 𝐾-feedback 
matrix with a fixed value, if there is a non-
negatively defined symmetric matrix 𝑃 that satisfies 
the Lapunov equation (15) and the closed-loop 
system is stable, the quadratic efficiency factor is 
significant for the initial condition 𝑥(0) and matrix 
𝑃, independent of system states [19], [20].  
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To simplify the feedback solution 𝐾, the 
relationship tr(AB)=tr(BA) was introduced, which 
describes the relationship of matrix traces.  

Therefore, equation (14) can be presented as 
follows (16):  

𝐽 =
1

2
𝑡𝑟[𝑃𝑥(0)𝑥𝑇(0)] (16) 

Under conditions of limiting the equations of 
state (8), the problem that was obtained after 
minimizing the function (10) is transformed into a 
problem that solves the feedback matrix 𝐾 by 
minimizing the equation (16) using equation (15) 
with the auxiliary symmetric matrix 𝑃.  

However, occurring in equation (16), 𝑥(0)𝑥𝑇(0) 
depend on the initial conditions that engineering is 
not known in many practical aspects.  

Therefore, it was assumed that the initial state 
𝑥(0)𝑥𝑇(0) is a unit matrix.  

In this case, the problem of solving performance 
indicators (16) is transformed in solving the 
expectations of performance indicators 𝐸(𝐽), which 
eliminates initial conditions.  

Then, the solution of the 𝐾 matrix and the 𝑃 
matrix was started. To this end, the Lagrange matrix 
factor   𝜆 ∈ 𝑅3𝑥4 was introduced and the Hamilton 
function (17) was written:  

𝐻 = 𝐹 + 𝑡𝑟(𝑓𝜆) (17) 

where: 𝐹 = 𝑡𝑟[𝑃𝑥(0)𝑥𝑇(0)].  
Then differentiation (17) was made after 𝐾, 𝑃, 𝜆 

respectively, and the results were compared to zero 
(18):  

{
 
 

 
 

𝜕𝐻

𝜕𝐾
= 𝑅𝐾𝐶𝜆𝐶𝑇 − 𝐵𝑇𝑃𝜆𝐶𝑇 = 0

𝜕𝐻

𝜕𝑃
= 𝐴∗𝜆 + 𝜆𝐴∗𝑇 + 𝑥(0)𝑥𝑇(0) = 0

𝜕𝐻

𝜕𝜆
= 𝑄 + 𝐶𝑇𝐾𝑇𝑅𝐾𝐶 + 𝐴∗𝑇𝑃 + 𝑃𝐴∗ = 0

 (18) 

The above three equations are the necessary 
conditions for feedback, where 𝑅 is a positively 
determined asymmetrical matrix, so the K-feedback 
matrix can be defined as (19) [21], [22], [23]:  

𝐾 = 𝑅−1𝐵𝑇𝑃𝜆𝐶𝑇(𝐶𝜆𝐶𝑇)−1 (19) 

As a result, the formula for strengthening the 
longitudinal stability of the flying wing was 
obtained (20):  

𝑢 = −𝐾𝑦 = −𝑅−1𝐵𝑇𝑃𝜆𝐶𝑇(𝐶𝜆𝐶𝑇)−1𝐶𝑥 (20) 

A schematic diagram of the longitudinal stability 
strengthening system, designed with the help of 
feedback, is presented above (Fig. 1).  

 
Fig. 1 Block diagram of the longitudinal stability 

strengthening system  
The iterative method was used to solve the 

𝐾-feedback matrix. Below are the individual stages 
(steps) of the method used:  

Step 1: Initialization of parameters  
𝑖 = 0 is taken, and then an asymptotically stable 

matrix 𝐴𝑖 = 𝐴 − 𝐵𝐾𝑖𝐶 is created, selecting the 
initial reinforcement 𝐾𝑖.  

Step 2: Iteration process  
I-th iteration is performed and 𝑃𝑖, 𝜆𝑖 and function 

𝐽𝑖 =
1

2
𝑡𝑟[𝑃𝑖𝑥(0)𝑥

𝑇(0)] are solved using the 
following Lapunov equations (21):  

{
𝑄 + 𝐶𝑇𝐾𝑖

𝑇𝑅𝐾𝑖𝐶 + 𝐴𝑖
∗𝑇𝑃 + 𝑃𝐴𝑖

∗ = 0

𝐴𝑖
∗𝜆𝑖 + 𝜆𝑖𝐴𝑖

∗𝑇 + 𝑥(0)𝑥𝑇(0) = 0
 (21) 

The correction of the value of the feedback 
matrix K was calculated based on the formula  
ΔK = 𝑅−1𝐵𝑇𝑃𝑖𝜆𝑖𝐶

𝑇(𝐶𝜆𝑖𝐶
𝑇)−1 − 𝐾𝑖 and the 

changed matrix has the value 𝐾𝑖+1 = 𝐾𝑖 + 𝜀∆𝐾.  
Then the ε value was chosen so that the matrix  

𝐴𝑖+1 would be asymptotically stable while searching 
for the value 𝐽𝑖+1 ≤ 𝐽𝑖. In case 𝐽𝑖+1 is close to 𝐽𝑖 you 
can proceed to step three. Otherwise, 𝑖 = 𝑖 + 1 is set 
and returns to step two, continuing the calculation.  

Step 3: Estimation  
K = 𝐾 = 𝐾𝑖 and 𝐽 = 𝐽𝑖 are determined.  

 
 
3 Selected simulation tests on the 

example of a single wing flight 

dynamics simulation  
The following parameters were adopted for the 

simulation: height h = 2000 m and flight speed  
Ma = 0.805. The equation of state and the output 
equation take the following form (22) - (24):  

{
�̇�𝑚 = 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢
𝑦 = 𝐶𝑚𝑥𝑚 + 𝐷𝑚𝑢

 (22) 

where:  
𝑥𝑚 = [∆𝑣  ∆𝛼  ∆𝑞 ∆𝜃  ∆𝛿𝑒  ∆𝛿𝑡   ∆𝛿𝑑]

𝑇,  
𝑢𝑚 = [∆𝑢𝑒 ∆𝑢𝑡  ∆𝑢𝑑]

𝑇.  
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𝐴𝑚

=

[
 
 
 
 
 
 
−0.0127 6.2136 0 −9.3718 0.0058 0.111 0.7384
−0.004 −1.9889 1 −0.0411 −0.0032 −0.0002 0
−0.0024 6.3838 −2.4646 0 −0.2437 0 −0.3132

0 0 1 0 0 0 0
0 0 0 0 −20 0 0
0 0 0 0 0 −20 0
0 0 0 0 0 0 −20 ]

 
 
 
 
 
 

 (23) 

𝐴𝑚𝐵𝑚 =

[
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0
0 0 0
20 0 0
0 20 0
0 0 40]

 
 
 
 
 
 

   𝐶𝑚 = [

1 0 0 0 0 0 0
0 57.3 0 0 0 0 0
0 0 57.3 0 0 0 0
0 0 0 57.3 0 0 0

] 

𝐷𝑚 = [

0 0 0
0 0 0
0 0 0
0 0 0

] {
�̇�𝑚 = 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢
𝑦 = 𝐶𝑚𝑥𝑚 + 𝐷𝑚𝑢

 

(24) 

The eigenvalues of the open system according to 
formula (36) are: 𝜆1 = −4.5775, 𝜆2 = 0.4419, 
𝜆3,4 = −0.0665 ± 0.359𝑖, 𝜆5,6,7 = −20,  
where: 𝜆1,2 - define the appropriate elements 
characteristic of the short period, and 𝜆3,4 - are the 
appropriate characteristic elements of the long 
period.  

The above eigenvalues play a decisive role in the 
longitudinal movement of the aircraft [24], [25], 
[26], [27]. In the event that the aircraft is subjected 
to external interference or a given input signal, the 
rule of changing longitudinal parameters over time 
is the superposition of two moves, with 𝜆5,6,7 being 
loops of three rudders.  

System responses to the 1∘ the angle of attack 
disruption are illustrated by subsequent drawings 
(Figs. 2-5).  

 
Fig. 2 Flight speed response curve  

 
Fig. 3 Angle of attack response curve  

 
Fig. 4 Tilt rate response curve  

 
Fig. 5 Tilt angle response curve  

The above drawings show that the disorder is 
getting worse. That is why it is important to 
introduce a longitudinal stability strengthening rule.  

The rule for strengthening the longitudinal 
stability of an aircraft can be determined as 𝑢 = 𝐾𝑦 

by applying the LQR method, where 𝐾 ∈ 𝑅3𝑥4.  
To achieve a satisfactory stability enhancing 

effect, appropriate 𝑄 and 𝑅 matrices should be 
selected before applying LQR technology [28], [29], 
[30], [31].  

In turn, taking into account the fact that 
longitudinal static instability causes disturbance in 
the short term, in the function of cost, the state ∆𝛼2 
and ∆𝑞2 should be weighted by the element 𝑞𝑎 of 
the matrix 𝑄.  

In the long-term mode, with suppression based 
on the characteristic values of 𝜆3,4, it can be seen 
that the state ∆𝑣2 i ∆𝜃2 must be weighted by the 
element 𝑞𝑏 of the matrix 𝑄. Since extended state 
variables are not discussed, it is not necessary to 
give them weight.  

As a result, the weighted matrix 𝑄 can be written 
as 𝑄 = 𝑑𝑖𝑎𝑔{𝑞𝑏 , 𝑞𝑎 , 𝑞𝑎, 𝑞𝑏 , 0,0,0}. However, when 
it comes to the R matrix, the form 𝑅 = 𝜌 × 𝐼 is used 
to prevent excessive input control, where 𝜌 is the 
design parameter and 𝐼 is the unit matrix with the 
corresponding dimension.  
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After repeated selection and checking, it was 
found that the longitudinal stability reinforcement 
will achieve the best result, when  
𝑄 = 𝑑𝑖𝑎𝑔{50,10,10,50,0,0,0,0}, and 𝜌 = 1.  

The optimal 𝐾-feedback matrix was obtained 
using the iterative method described in the paper as 
described in the expression (25). The change of the 
cost function during the iteration process is 
presented in the figure below (Fig. 6).  

𝐾

= [
−1.6073 −22.8329 −23.3958 −26.5004
7.2136 10.1877 0.9967 −14.1970
3.2225 2.4844 −2.4463 −7.6770

] (25) 

 
Fig. 6 Change in the curve of the cost function J  

The eigenvalues of the closed system after 
strengthening the stability are as follows: 
𝜆1,2 = −1.526 ± 0.764𝑖, 𝜆3,4 = −10.437 ± 9.01𝑖, 
𝜆5 = −5.884, 𝜆6 = −14.657, 𝜆7 = −20.  

The responses of the closed system to a 1∘ the 
angle of attack are illustrated in the following 
figures (Figs. 7-10).  

 
Fig. 7 Flight speed response curve  

 
Fig. 8 Angle of attack response curve  

 
Fig. 9 Tilt rate response curve  

 
Fig. 10 Tilt angle response curve  

After achieving stability reinforcement, position 
control was based on it in the longitudinal plane. To 
check the two different position control methods, 
only flight speed and tilt angle were controlled.  

Parameters ∆𝑣 and ∆𝜃 were selected as the 
system output, while 𝑢𝑡 and 𝑢𝑒 - as the control input 
signal.  
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The LQR methods described in the previous 
chapter were used to develop the position control 
rule 𝑢𝑡 and 𝑢𝑒 w ten sposób, aby możliwe było 
osiągnięcie śledzenia poleceń prędkości lotu i kąta 
pochylenia. It was assumed that all system states are 
measurable except the angle of attack, which can be 
estimated by the reducing system.  

W oparciu o powyższe, równanie stanu oraz 
równanie wyjściowe po wzmocnieniu stateczności 
zapisać można jako (26):  

{
�̇�(𝑡) = 𝐴∗𝑥(𝑡) + 𝐵∗𝑢(𝑡)

𝑦(𝑡) = 𝐶∗𝑥(𝑡)
 (26) 

where:  
𝑥 = [∆𝑣 ∆𝛼 ∆𝑞 ∆𝜃 ∆𝛿𝑒 ∆𝛿𝑡]

𝑇,  

𝑢 = [∆𝑢𝑡  ∆𝑢𝑒]
𝑇, 𝑦 = [∆𝑣 ∆𝜃]𝑇.  

Referring to the LQR method supported by 
command tracking, the system of equations (26) can 
receive a new reinforced state equation in the form 
(27) [32], [33], [34]:  

�̇̃� = �̃��̃� + �̃��̃� (27) 

After repeated selection and checking, it was 
found that command tracking would achieve the 
best results when  
𝑅 = 𝑑𝑖𝑎𝑔{1, 1},  

𝑄 = 𝑑𝑖𝑎𝑔{20, 20, 20, 20, 1, 1, 500, 2000}.  

The optimal feedback matrix 𝐾 was obtained as 
follows (28):  

𝐾 = [
𝑘∆�̇�
𝑢𝑡 𝑘∆�̇�

𝑢𝑡 𝑘∆�̇�
𝑢𝑡 𝑘

∆�̇�

𝑢𝑡 𝑘
∆𝛿�̇�

𝑢𝑡 𝑘
∆𝛿�̇�

𝑢𝑡 𝑘∆𝑒𝑣
𝑢𝑡 𝑘∆𝑒𝜃

𝑢𝑡

𝑘∆�̇�
𝑢𝑒 𝑘∆�̇�

𝑢𝑒 𝑘∆�̇�
𝑢𝑒 𝑘

∆�̇�

𝑢𝑒 𝑘
∆𝛿�̇�

𝑢𝑒 𝑘
∆𝛿�̇�

𝑢𝑒 𝑘∆𝑒𝑣
𝑢𝑒 𝑘∆𝑒𝜃

𝑢𝑒
]

= [
−14.59 90.15 90.17 380.32 −4.77 −0.012 7.89 −185.56
−27.22 −62.95 8.57 116.62 −0.018 −3.62 11.75 124.75

] 
(28) 

Finally, the rule for controlling the flight speed 
and inclination angle UAV - a flying wing, 
developed using the LQR method supported by 
command tracking, is as follows (29):  

{
  
 

  
 
𝑢𝑣 = 𝑢𝑡 = 𝑘∆�̇�

𝑢𝑡∆𝑣 + 𝑘∆�̇�
𝑢𝑡∆𝑎 + 𝑘∆�̇�

𝑢𝑡∆𝑞 + 𝑘
∆�̇�

𝑢𝑡∆𝜃 + 𝑘
∆𝛿�̇�

𝑢𝑡 ∆𝛿𝑒 + 𝑘∆𝛿�̇�
𝑢𝑡 ∆𝛿𝑡 +

+𝑘∆𝑒𝑣
𝑢𝑡 ∫∆𝑒𝑣𝑑𝑡 + 𝑘∆𝑒𝜃

𝑢𝑡 ∫∆𝑒𝜃𝑑𝑡

𝑢𝜃 = 𝑢𝑒 = 𝑘∆�̇�
𝑢𝑒∆𝑣 + 𝑘∆�̇�

𝑢𝑒∆𝑎 + 𝑘∆�̇�
𝑢𝑒∆𝑞 + 𝑘

∆�̇�

𝑢𝑒∆𝜃 + 𝑘
∆𝛿�̇�

𝑢𝑒 ∆𝛿𝑒 + 𝑘∆𝛿�̇�
𝑢𝑒 ∆𝛿𝑡 +

+𝑘∆𝑒𝑣
𝑢𝑒 ∫∆𝑒𝑣𝑑𝑡 + 𝑘∆𝑒𝜃

𝑢𝑒 ∫∆𝑒𝜃𝑑𝑡

 (29) 

Using the LQR method supported by apparent 
command tracking and developing a system to 
reduce the state variable ∆𝛼 that cannot be 
measured, the process is identical to the above.  

The observer's output error error matrix takes the 
form �̅�𝑒 = [0.3615  0.3714  0].  

Finally, the rule for controlling the flight speed 
and angle of inclination UAV – a flying wing, 

developed using the LQR method supported by 
apparent command tracking, is as follows (30):  

{
  
 

  
 
𝑢𝑣 = 𝑢𝑡 = 𝑘∆�̇�

𝑢𝑡∆𝑣 + 𝑘∆�̇�
𝑢𝑡∆�̂� + 𝑘∆�̇�

𝑢𝑡∆𝑞 + 𝑘
∆�̇�

𝑢𝑡∆𝜃 + 𝑘
∆𝛿�̇�

𝑢𝑡 ∆𝛿𝑒 + 𝑘∆𝛿𝑡̇
𝑢𝑡 ∆𝛿𝑡 +

+𝑘∆𝑒𝑣
𝑢𝑡 ∫∆𝑒𝑣𝑑𝑡 + 𝑘∆𝑒𝜃

𝑢𝑡 ∫∆𝑒𝜃𝑑𝑡

𝑢𝜃 = 𝑢𝑒 = 𝑘∆�̇�
𝑢𝑒∆𝑣 + 𝑘∆�̇�

𝑢𝑒∆�̂� + 𝑘∆�̇�
𝑢𝑒∆𝑞 + 𝑘

∆�̇�

𝑢𝑒∆𝜃 + 𝑘
∆𝛿�̇�

𝑢𝑒 ∆𝛿𝑒 + 𝑘∆𝛿𝑡̇
𝑢𝑒 ∆𝛿𝑡 +

+𝑘∆𝑒𝑣
𝑢𝑒 ∫∆𝑒𝑣𝑑𝑡 + 𝑘∆𝑒𝜃

𝑢𝑒 ∫∆𝑒𝜃𝑑𝑡 {
  
 

  
 
𝑢𝑣 = 𝑢𝑡 = 𝑘∆�̇�

𝑢𝑡∆𝑣 + 𝑘∆�̇�
𝑢𝑡∆𝑎 + 𝑘∆�̇�

𝑢𝑡∆𝑞+ 𝑘
∆�̇�

𝑢𝑡∆𝜃 + 𝑘
∆𝛿�̇�

𝑢𝑡 ∆𝛿𝑒 + 𝑘∆𝛿𝑡̇
𝑢𝑡 ∆𝛿𝑡 +

+𝑘∆𝑒𝑣
𝑢𝑡 ∫∆𝑒𝑣𝑑𝑡 + 𝑘∆𝑒𝜃

𝑢𝑡 ∫∆𝑒𝜃𝑑𝑡

𝑢𝜃 = 𝑢𝑒 = 𝑘∆�̇�
𝑢𝑒∆𝑣 + 𝑘∆�̇�

𝑢𝑒∆𝑎 + 𝑘∆�̇�
𝑢𝑒∆𝑞 + 𝑘

∆�̇�

𝑢𝑒∆𝜃 + 𝑘
∆𝛿�̇�

𝑢𝑒 ∆𝛿𝑒 + 𝑘∆𝛿𝑡̇
𝑢𝑒 ∆𝛿𝑡 +

+𝑘∆𝑒𝑣
𝑢𝑒 ∫∆𝑒𝑣𝑑𝑡 + 𝑘∆𝑒𝜃

𝑢𝑒 ∫∆𝑒𝜃𝑑𝑡

 (30) 

Both control rules were used to simulate the 
UAV model. Formula (29) was named "controller 
1" and formula (30) - "controller 2".  

The following parameters were adopted: height  
ℎ = 2000 𝑚 and flight speed 𝑀𝑎 = 0.805, and also 
that the initial state of the system is equilibrium.  
At 𝑡 = 1 𝑠, the flight speed changes by 50 𝑚/𝑠, and 
the angle of inclination by 5°. The simulation results 
are illustrated in the figures below (Figures 11-14).  

 
Fig. 11 Flight speed response curve (controller 1)  

 
Fig. 12 Tilt angle response curve (controller 1)  

 
Fig. 13 Flight speed response curve (controller 2)  
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Fig. 14 Tilt angle response curve (controller 2)  

The above figures show that both input signals of 
both controllers can be tracked without a fixed 
system error. In addition, there is high precision, 
short transition and small overshooting of the 
response process.  

In addition, since the controller 2 has a reducing 
system to analyze the effect of following 
commands, a difference was made between the 
figures (Figs. 11-14), after which the output signal 
difference curves were obtained for two different 
methods illustrated in the following figures (Figs. 
15-16).  

 
Fig. 15 Flight speed difference curve  

 
Fig. 16 Tilt angle difference curve  

The below two figures confirm that the varying 
range of input signal difference curves is small 
throughout the entire response process.  

It can therefore be concluded that the 
introduction of a reduction circuit has little effect on 
command tracking, and controller 2 maintains 
almost full performance of controller 1.  
 
 
4 Conclusions  

The aircraft in the system controlled by the LQR 
algorithm is statically stable, but has a very high 
inclination moment factor.  

In addition, the control surfaces in the form of a 
single wing of the mother aircraft are insufficient to 
ensure equilibrium for flight conditions just before 
the separation process.  

These problems were tried to be solved by 
moving the object relative to the mother plane, but 
unfortunately no satisfactory results were achieved.  

The aircraft in the classic configuration has 
sufficiently large control surfaces to ensure 
equilibrium for the conditions just before the 
separation process [35], [36].  

In addition, the volume feature of the tail was 
changed to 0.298, and the rocket plane was wedged 
in relation to the carrier in such a way that in flight 
conditions just before separation it was possible to 
achieve equilibrium without deflecting the control 
surfaces.  

This wedge angle is -4.4 degrees.  
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