
Towards a Safe Development of Reconfigurable Robotic Systems

MOHAMED OUSSAMA BEN SALEM
Team Project IMAGES ESPACE-Dev

UMR 228 Espace Dev IRD UA UM UG UR
University of Perpignan Via Domitia, Perpignan

FRANCE
bensalem.med.oussama@gmail.com

OLFA MOSBAHI
LISI Lab, INSAT

University of Carthage, Tunis
TUNISIA

olfamosbahi@gmail.com

Abstract: Developing reconfigurable robotic systems may be quite challenging. This contribution aims at propos-
ing a new methodology to ensure the safety of such critical systems. It uses new tools and innovative concepts. To
show the relevance of the said methodology, we apply the contribution to a real medical robotic system: BROS.

Key–Words: Design, verification, implementation, re-configurable systems, UML, R-TNCES, robotic systems

1 Introduction

Several approaches have been recently proposed in
our community to develop robotic systems. Two of
them are ORCCAD [1] and 4D/RDC [2] methodolo-
gies which consist in creating several hierarchical lay-
ers from each control architecture. Only a part of
the control is ensured by each layer. This gives thus
a decision-making system to each layer in the robot
controller. However, the reactivity of the robot con-
troller is affected because of such a decomposition. In
fact, the time constraint of the execution of a given
layer increases when the latter is low. The priority of
its reaction becomes higher when the layer is up. Hy-
brid architectures have been proposed then to extend
the hierarchical approach. These new architectures
propose to combine it with a behavioral approach,
improving thus the reactivity [3]. Other works pro-
pose to considerate the control architecture as a set
of sub-systems controlling several specific parts of a
given robotic system. This contribution is illustrated
in IDEA (Intelligent Distributed Execution Architec-
ture) agents architectures [4] and Chimera develop-
ment methodology [5].

These works are relevant, however, they do not
deal with systems with a self-reconfiguration func-
tion like BROS, a robotic system which treats humeral
supracondylar fractures [6]. They do not feature func-
tions to verify the system modeling nor to automat-
ically generate codes. We expose in this work a
new methodology to design, verify and implement
robotic systems in ROS (Robot Operating System).
The relevance of this methodology is proved by ap-
plying it on BROS. This methodology incorporates
three main steps as shown in Figure 1: design, veri-
fication and implementation. The said figure explains

the approach of our methodology: we start by design-
ing the system using R-UML (Reconfigurable UML),
a new UML profile proposed in [7] and which sup-
ports modeling and verification of reconfigurable con-
trol systems. R-UML permits to perform a behavioral
and structural description of the system thanks to, re-
spectively, R-StD (Reconfigurable State Diagram) and
R-ClD (Reconfigurable Class Diagram). We perform
then the verification of the system by extricating R-
TNCES models from R-StD ones. R-TNCES are a
Petri Nets extension proposed in [8]. The R-TNCEs
models are then simulated by ZiZo, a software which
models, simulate and verify reconfigurable control
systems [9]. Mathematical properties are then ap-
plied on the R-TNCES-based models using SESA, a
model-checker. Once the system is designed and ver-
ified, we move to the implementation step where the
R-ClD models are used to generate ROS codes. This
work also introduces BROS, the new robotic platform
which ensures a safe treatment of the SCH (Supra-
condylar Humeral Fracture) for both surgeons and pa-
tients. The methodology is applied on the BROS
system to serve two purposes: certifying the safety
of BROS from a design perspective and proving the
soundness and relevance of the said methodology. The
latter is actually applicable on any other robotic sys-
tem and permits to safely design it from the specifica-
tion to the implementation steps.

In this paper, we follow this plan: the next section
describes works dealing with formalism transforma-
tion and robotic development. Section 3 introduces
several formalism and technologies which we use in
this work. We expose, in Section 4, our case study:
the robotic system BROS. Finally, we explain in de-
tails in Section 5 the different steps of the proposed
methodology.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 359 Volume 14, 2019

Figure 1: Approach of the Methodology.

2 State of the Art

We present, in this section, several works dealing with
formalism transformation and robotic development.

2.1 Formalism Transformation

In our community, many contributions have been re-
cently proposed to extricate performance models from
UML models in an automatic way, such as queue-
ing networks [10, 11], Petri nets [12, 13] and simu-
lation [14]. For example, the authors in [15] propose
a two-step to generate LGSPN (Labeled Generalized
Stochastic Petri Nets) from UML models: First, we
start by independently converting each UML state-
chart which describes the behavior of the software ar-
chitecture into the corresponding LGSPN; secondly,
we join the different obtained LGSPNs according to
the data contained in the UML use case and sequence
diagrams. However, this solution disregards the hard-
ware limits and supposes that we dispose of infinite
resources.

The authors in [16] propose another approach us-
ing LGSPN, which was lately extended in [13]. The
proposition creates an intermediate model from a per-
formance metamodel, named Core Scenario Model
(CSM). The latter uses deployment diagrams to rep-
resent the software architecture structure. UML be-
havioral diagrams (sequence diagrams and/or activity
diagrams) are used to describe the performance speci-
fications related to the software architecture behavior.
They are endowed with special tags and stereotypes.
The CSM can be translated into different types of per-
formance models, like Petri nets, queueing networks
and simulative models.

The work in [17] uses an algorithm based on
XML algebra to extricate XML format files and the
corresponding layered queueing network from UML
models. This work extends the results of [18] which
propose to adopt the layered queueing networks as the
aimed performance model. Two sequential steps are
required to perform the UML transformation: First,
an UML deployment diagram described the top-level

representation of the software architecture is trans-
lated to a layered queueing network structure; sec-
ondly, an UML interaction or activity diagram is cre-
ated using the parameters collected from the first step,
combined with performance information. A similar
and interesting approach is proposed in [11]. It uses
an architectural approach based on MOF (Metaobject
Facility) metamodeling [19]. Deployment and activity
diagrams are, thus, generated.

The work in [14] use case diagrams, annotated
with activity diagrams, to describe the software archi-
tecture behavior. A UML performance is proposed to
transform UML diagrams into a discrete-event simu-
lation model.

2.2 New Trends in Robotic Software Devel-
opment

Many works in our community have recently pro-
posed new concepts to improve maintainability, ro-
bustness, interoperability and reusability in robotics
to face the latter’s growing complexity. They pro-
posed means of model-driven software development
and component-based architectures. Thus, they gave
rise to the creation of robotic frameworks and archi-
tectures such as Orocos [20], SmartSoft [21] and ROS
[22]. Recent activities focus on composition in order
to be able to configure at run-time both parameters and
component’s life-cycle and reuse them as black boxes.

Among the works promoting the component-
based development, we cite the BRICS component
model (BCM) [23] which uses the concept of compo-
sition with components which are grouped together.
They form a new reusable component by using a life-
cycle coordinator. rFSM (Restricted finite state ma-
chines) [24] were lately developed. They are state di-
agrams’ minimal variant and are integrated into ORO-
COS/RTT, a robotic framework. This new concept fo-
cuses on component coordination for robotics. rFSM
and BCM certainly make valuable contributions to
achieve reuse and composition of components. Never-
theless, they cannot handle reconfiguration, an impor-
tant feature in new robotic systems [25]. They control
the component’s life-cycle rather than its skills at task
level.

Many tools and packages released with ROS have
been rapidly developed during the last few years.
For example, ROS developers can now use Mat-
lab’s Simulink [26] using the Robotics System Tool-
box [27]. The latter allows them to model ROS
workspaces, generate executable code, while also tak-
ing advantage of Matlab’s large suite of simulation
and analysis tools. Another infrastructure, OPRoS
[28], couples existing component models and suites

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 360 Volume 14, 2019

with ROS by using model transformations and inte-
gration tools. The developed OPRoS applications can
thus communicate with ROS ones.

As far as we know, no one in our community
proposed a complete methodology to design, verify
and implement in ROS reconfigurable robotic sys-
tems. This is what we aim to do in this paper.

3 Background

We describe in this section several formalisms and
technologies relevant to our work.

3.1 Timed Net Condition/Event System

A TNCES is defined as a tuple as follows:

TNCES = (P, T, F,m0,Ψ, CN,EN,DC) (1)

where:

• P = {p1, p2, ..., pn} is a finite set of places;

• T = {t1, t2, ..., tm} is a finite set of transitions;

• F ⊆ (P × T) ∪ (T × P) is a finite set of flow
arcs linking places and transitions;

• m0 is initial marking;

• CN ⊆ (P × T) is a finite set of condition arcs;

• EN ⊆ (T × T) is a finite set of event arcs.

Ψ is an input/output structure of TNCES module
which is represented by the following tuple:

Ψ = (Cin, Ein, Cout, Eout, Bc,Be,Cs,Dt) (2)

where:

• Cin defines a finite set of TNCES module condi-
tion input signals;

• Ein defines a finite set of TCNES module event
input signals;

• Cout defines a finite set of TNCES module con-
dition output signals;

• Eout defines a finite set of TCNES module event
output signals;

• Bc ⊆ Cin × T is a set of TNCES module input
condition arcs;

• Be ⊆ En × T is a set of TNCES module input
event arcs;

• Cs ⊆ P × Cout is TNCES module output con-
dition arcs;

• Dt ⊆ T×Eout is a set of TNCES module output
event arcs.

We assign time intervals to the pre-transition flow
arcs F ⊆ P × T , which impose temporal constrains
to the firing of the transition:

DC = (DR,DL,D0) (3)

where:

• DR is the set of minimum elapsed times during
which a token remains at particular place before
the transition firing;

• DL represents the final set of limitation time
defining the maximum time during which the
place may keep a token (transition firing’s other
conditions have to be met before);

• D0 denotes the initial set of the clocks which are
associated with the places.

3.2 Reconfigurable Timed Net Condi-
tion/Event System

A Reconfigurable Timed Net Condition/Event System
(R-TNCES) is an extension of the formalism TNCES
with a specific function of self-reconfiguration [8]. It
is defined as a structure RTN =(B, R), where R denotes
the control module composed of a set of reconfigu-
ration functions R ={r1,...,rn} and B is the behavior
module which is a union of multi TNCESs. This is
represented by a tuple:

B = (P, T, F,W,CN,EN,DC, V, Z) (4)

where:

• P (respectively, T) is a superset of places (respec-
tively, transitions);

• F ⊆ (P × T) ∪ (T × P) is a superset of flow
arcs;

• W: (P × T) ∪ (T × P)→ {0, 1} maps a weight
to a flow arc, W (x, y) < 0 if (x, y) ∈ F , and
W(x, y)=0 otherwise, where x, y ∈ P ∪ T ;

• CN ⊆ (P × T) (respectively, EN ⊆ (T × T))
is a superset of condition signals (respectively,
event signals);

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 361 Volume 14, 2019

• DC : F ∩ (P × T) →
{[l1, h1], ..., [l|F∩(P×T)|, h|F∩(P×T)|} is a
superset of time constraints on output arcs,
where i ∈ [1, |F ∩ (P × T)|], li, hi ∈ N , and
li < hi;

• V : T → {∨,∧} maps an event-processing
mode (AND or OR) for every transition;

• Z0 = (M0, D0), where M0 : P → {0, 1} is the
initial marking and D0 : P → {0} is the initial
clock position.

3.3 UML Profiles

Many works in our community have already treated
the idea of verification and validation of UML-based
models in a more or less automatic and systematic
way. Thus, several UML profiles are proposed for
RT (real-time) and embedded systems. The authors
in [29] propose a profile which helps to specify, de-
sign and verify embedded RT systems. It takes ad-
vantage of the advantages of UML, RT UML, co-
design of functional-architecture and design based on
platform. Nevertheless, this profile features imple-
mentation, communication and concurrency issues.
The profile proposed in [30], UML-RT, is a com-
plete language to model complex and event-driven
RT systems. Nonetheless, it does not handle time
constraints modeling [31] and has limited capabili-
ties when it comes to modeling architecture and per-
formance [32]. SPT (UML Profile for Schedulability
Performance and Time) is another UML profile which
permits to model and handle time, performance and
scheduling of embedded RT systems [33]. However,
it is less useful when it comes to express power, flex-
ibility and reconfiguration [34]. SPT was replaced,
then, with MARTE [35]. This new UML profile is
helps tp model and analyze RT and embedded sys-
tems [36]. It permits to cover hardware and soft-
ware resources and the aspects of time, extending thus
UML 2.0. UML MARTE can not be used, however,
to model dynamic or reconfigurable composition as it
only provides static and predefined sets of reconfigu-
ration [37].

3.4 Robot Operating System

Robot Operating System (ROS) is a software develop-
ment framework which is open-source and dedicated
to robots. It provides several services like low-level
device control and hardware abstraction. Besides, it
helps to implement commonly-used functionality and
to handle message-passing between processes. It also
manages packages. Robotic Operating System fea-
tures tools to develop distributed robot applications.

The latter are composed of nodes which are a set of
processes networked using ROS communication in-
frastructure. Robot Operating System OS has become
a standard in robotics which is well-know and exten-
sively used by robot experts and developers. ROS is
known for having a wide repository of software com-
ponents such as sensor drivers, visualization tools,
navigation systems, arm manipulation systems or arti-
ficial vision algorithms [38]. Besides, ROS is actively
promoted and supported by the Open Source Robotics
Foundation [39]. Given what has been said, we select
ROS to be used in the methodology proposed in this
paper.

4 Case Study: BROS

In this section, we introduce the architecture and re-
configuration modes of the EU-funded project, BROS
(Browser and Reconfigurable Orthopedic Surgery).
We expose, thereafter, the constraints which have to
be followed while implementing this robotized plat-
form.

4.1 Architecture of BROS

BROS is a robotic platform which is developed to
treat to the supracondylar fracture of humerus. BROS
can perform different tasks, such as fracture reduc-
tion , arm blocking and fixing the fragments of a frac-
tured elbow bone. This last task is performed by pin-
ning, that is BROS also offers a navigation function
which helps to follow the pins as they progress into
the treated elbow. As shown in Figure 2, BROS is
composed of a control unit (UC), a browser (BW), a
middleware (MW), a pinning robotic arm (P-BROS)
and two blocking and reducing arms (B-BROS1 and
B-BROS2).

The control unit is responsible of the functional
safety and the smooth running of the surgery. It re-
quests from MW the type of the humeral supracondy-
lar fracture. The latter is necessary to help CU com-
pute different coordinates defining the robotic arms’
behaviors when reducing a fracture, blocking a frac-
tured limb or performing pinning. CU also features a
human-machine interface to help surgeon monitor the
intervention progress.

BW is a Medtronics’s product which is called Flu-
oroNav. It combines software for image guidance and
specialized surgical hardware. These features enable
a surgeon to continuously track and update a surgical
instrument’s position. This virtual navigation presents
many advantages over conventional fluoroscopic nav-
igation. It simultaneously offers multiple fluoroscopic
views simultaneously of the member to be treated. It

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 362 Volume 14, 2019

also allows to remove the C-Arm (the medical imag-
ing device which uses X-ray technology) from the op-
erative field during navigation. This significantly re-
duces radiation exposure to the patient and medical
staff.

MW, which is a software installed on BW, acts as
a mediator between the control unit and the browser.
This intelligent component features decision making
and real-time monitoring. The middleware contains
Several modules are encompassed in MW: a con-
troller, an image processing module and a communi-
cation module with the control unit.

Figure 2: Architecture of BROS.

4.2 Reconfiguration Modes

One of the most important feature of BROS is recon-
figuration. The robotic system should actually be able
to run under different reconfiguration modes. For ex-
ample, if BROS fails at performing a given task, such
as reducing a fracture, blocking an arm and pinning,
the surgeon is supposed to be able to decide to manu-
ally perform the said task. Thus, we decide to design
five different operating modes. We detail them here-
after:

• Automatic Mode (AM): The surgeon oversees
the smooth operation running whereas all the dif-
ferent tasks are performed by BROS;

• Semi-Automatic Mode (SAM): BROS performs
the whole surgery, except of the fracture reduc-
tion which is done by the surgeon;

• Degraded Mode for Pinning (DMP): The surgeon
performs the whole surgery, except of the pin-
ning which is done by BROS;

• Degraded Mode for Blocking (DMB): The sur-
geon realizes the whole surgery, except of block-
ing the fractured arm. The latter is performed by
BROS;

• Basic Mode (BM): The surgeon performs the
whole surgery. Nevertheless, BROS assists him
by providing real-time navigation using its mid-
dleware.

4.3 Real-Time Constraints

When AM is triggered, BROS follows the hereafter
steps to treat a fracture:

A) The robotic system is launched when one of the
five operating modes is triggered by the surgeon;

B) The fracture coordinates are requested by CU
from MW;

C) An image of the fracture is requested by MW
from BW;

D) Once the requested image is received, MW uses
image processing techniques to compute the dif-
ferent coordinates of the fracture. This data is
then sent to CU;

E) CU uses the received coordinates to give instruc-
tions to B-BROS1 which blocks the arm at the
humerus;

F) The limb is blocked by B-BROS1;

G) B-BROS2 reduces the fracture at the request of
CU;

H) The fracture is reduced by B-BROS2;

I) MW checks whether the reduction was success-
fully performed at the request of CU;

J) In order to assess the fracture reduction, a new
image is requested by MW from BW. If reduc-
tion is successfully done, step K will be per-
formed. Otherwise, steps from G to I are re-
peated;

K) B-BROS2 blocks the arm at the request of CU;

L) UC orders P-BROS to perform two pinnings;

M) At the request of CU and if pinning is success-
fully performed, B-BROS1 and B-BROS2 un-
block the fractured arm.

5 Contribution: Development
Methodology of Reconfigurable
Robotic Systems

We describe in this section the development method-
ology steps and their application to BROS. It can

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 363 Volume 14, 2019

be applied when designing any reconfigurable robotic
system. BROS is used to prove the relevance of this
methodology. The latter extends and combines many
of our previous work. Figure 3 indicates that three
steps are gone through in this methodology: design,
verication and implementation. The rst step consists
in dening the expectations from the system to design
and express them in a modeling formalism, RUML
in instance. During the verication step, the R-UML
models are translated in R-TNCES ones [8]. The R-
TNCEs models are then reduced and simulated by
ZiZo, a software which models, simulates and veri-
fies reconfigurable control systems [10]. Mathemati-
cal properties are then applied on the R-TNCES mod-
els using the model checker SESA. Once the system is
designed and veried, we move to the implementation
step where we generate ROS codes from the checked
R-UML models.

5.1 Design Using R-UML

The design step is performed within two sub-steps
as illustrated in Figure 3: constraints definition and
modeling. The first sub-stem consists in defining the
expectations from the system to design and the con-
straints set on it. The system is then modeled using
R-UML formalism (detailed in the next subsection).
Comes then the next step, the verification, which starts
by transforming the generated models into R-TNCES
ones (section 3.2). The latter are then simulated and
verified thanks to formal verification. The contribu-
tion is applied on BROS.

In this section, we propose patterns and rules to
set structural and behavioral models of a reconfig-
urable control system. We use R-UML as proposed
in [40].

5.1.1 Structure Modeling

The class diagram provided by UML aims at showing
a system’s logical structure. It highlights the links be-
tween a system’s components or modules by defining
conceptual connections. The distinctive properties of
each module or component are indicated by a class.
UML’s core semantics are extendable. Thus, we use
stereotypes, a mechanism to categorize an element, in
order to express new properties. On the basis of what
has been said, we introduce eight stereotypes to define
a class’s attributes:

• << input >>: a system input;

• << output >>: a system output;

• << in >>: a system module input;

• << out >>: a system module output;

• << eventInput >>: a system module event
input;

• << eventOutput >>: a system module event
output;

• << integer >>: an integer;

• << boolean >>: a boolean (TRUE or FALSE).

The proposed stereotypes distinguish between
system and module. The whole system under con-
trol is denoted by System, whereas module is a part
of it. The stereotypes << in >> and << out >>
specify the internal connections which may exist be-
tween a system’s modules, whereas << input >>
and << output >> specify the connections pro-
vided by a module to the controller. An event is an
action which occurrence may be detected by another
module in the system. It aims at interconnecting two
system modules. An event should not be confused
with an input/output, since the first is just a signal
informing about the occurrence of an action. The
<< eventInput >> and << eventOutput >>
stereotypes respectively represent the event inputs and
outputs of a given module.

Thus, a reconfigurable class diagram (denoted by
R-ClD) is represented by the following tuple:

R− ClD = (C,A,M,S, α, β) (5)

where:

• C = {cl1, c12, ..., cln} denotes a finite set of
classes;

• A = {attr1, attr2, ..., attrn} denotes a finite set
of attributes belonging to the classes;

• M = {setOutput, resetOutput, setlnput, resetInput,
setCeiling} denotes a set of methods belonging
to classes;

• S represents a set of stereotypes / S = {<<
input >>,<< output >>,<< in >>
,<< out >>,<< eventInput >>,<<
eventOutput >>,<< boolean >>,<<
integer >>};

• α : sti → attrj is a function mapping a stereo-
type sti from S to an attribute attrj from A;

• β : attri → clj is a function mapping an at-
tribute attri to a class clj .

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 364 Volume 14, 2019

Figure 3: Methodology steps.

5.1.2 Behavior Modeling

The UML state diagram models the behavior of the
different objects. An object is the implementation of a
particular class. Thus, we define a set of states which
may be taken by a system or its components. We dis-
tinguish each state by its name. Transitions represent
the change from a state to another. They also define
the law causing that change and the consequences of
it. Transitions may be fired by rules which may be
expressed by events or guards which are boolean ex-
pressions firing a transition when evaluated to TRUE.
Three manners exist to fire a given transition: a guard
(when certain properties are assigned with particular
values), an event (when a certain action takes place
somewhere in the system) or combination of both.
Transitions serve to interconnect different states and
determine the cause and the consequences of a transi-
tion to fire. We use time events (after (n) where n is
a positive integer) to specify the number of time units
which should elapse before the transition firing. We
can also specify events by using attributes stereotyped
by << eventInput >> or << eventOutput >>.
Actions may be activated when a transition is fired.
They serve to set the system’s some properties by call-
ing methods (which are defined in the classes) and
modify attributes’ values, such as setOutput, resetOut-
put, setlnput, resetInput and setCeiling.

A state diagram is formally represented by the
following tuple:

StD = (St, Tr, Ev,G,Ac, γ, δ, ε, ζ) (6)

where:

• St = {st1, st2, ..., stn} is a finite set of states in
an StD;

• Tr = {tr1, tr2, ..., trm} is a finite state of tran-
sitions in an StD;

• Ev is a finite set of events in transitions of StD;

• G is a finite set of guards in StD;

• Ac is a final set of actions;

• γ : evi → trj is a function mapping an event evi
of Ev to a transition trj of Tr;

• δ : grk → trj is a function mapping a guard grk
of Gr to a transition trj of Tr;

• ε : actl → trj is a function mapping an action
actl of Ac to a transition trj of Tr;

• ζ : trj → {stb, ste} is a function mapping a
transition trj of Tr to a pair of states stb and ste,
where stb is the state from which the transition is
taken and ste is the next state if trj fires.

In order to model the reconfiguration feature ex-
pected from the system, we define a reconfigurable
state diagram (denoted R-StD) as a structure:

R− StD = (B,R) (7)

where:

• B is the union of multi StD and represents the
behavior module;

• R is a set of reconfiguration functions
R={r1,...,rn} and represents the control module.

Once a reconfiguration scenario is triggered, a re-
configuration function ri applies to the system the re-
quired changes. The function r is defined as follows:

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 365 Volume 14, 2019

r = (η, θ, κ) (8)
where:

• η : ti → {0, 1} is a function controlling tasks,
η(ti) = 1 if the task ti is added to the system,
η(ti) = 0 otherwise;

• θ : resj → {0, 1} is a function controlling re-
sources, θ(resj) = 1 if the resource resi is
added to the system and θ(resj) = 0 otherwise;

• κ : (resj , ti) → {0, 1} is a function where
κ(resj , ti) = 1 if resj is used by ti in this trig-
gered reconfiguration scenario, κ(resj , ti) = 0
otherwise.

5.1.3 Application to BROS

In order to automate and evaluate the pro-
posed transformation from R-UML to R-TNCES,
we decide to develop two new modules in an
R-TNCES editor, simulator and model-checker
named ZiZo [41]. Thus, the latter will be able,
first, to edit R-UML models and, secondly, trans-
late them into R-TNCES ones during the verifi-
cation step. The tool’s different modules as indi-
cated in Figure 4. The user can, lately, simulate
the generated models and apply CTL formulas on
them to check different properties.

In this step, we edit an R-StD diagram describing the
behavior of BROS. The obtained diagram is illustrated
in Figure 5.

Figure 5: R-StD of BROS.

5.2 Verification

In order to perform a formal verification of our sys-
tem, we start by transforming the R-UML diagrams
generated during the design step into R-TNCES mod-
els. The latter are then reduced to optimize and sim-
plify the formal verification. These contributions are
then applied on BROS case study.

5.2.1 Transformation Rules from R-UML to R-
TNCES

Having basic elements of R-UML used for system
modeling defined by the equations 5 and 7, R-UML
project defining a reconfigurable system with adaptive
shared resources model can be represented via 4-tuple
as follows:

R− UMLsystem = (R− ClDs,R− StDs,O,Ω)
(9)

where:

• R − ClDs = {R − ClD1, R − CID2, ..., R −
CIDn} is a finite set of class diagrams, where
each ClDi element is defined by (5);

• R − StDs = {R − StD1, R − StD2, ..., R −
StDl} is a finite set of reconfigurable state dia-
grams, where each R− StDj element is defined
by (7);

• O is a finite set of objects, where each one is an
instance of ClDi and has its corresponding R −
StDj ;

• Ω : R − StDa → clb is a function that maps
the reconfigurable state diagramR−StDa to the
class clb of C (5).

Table 1 represents the correspondence between R-
StD and R-TNCES. The numbers in parentheses de-
note the references to formulas giving details about
the used syntax. Hereafter are the detailed seven trans-
lation rules:

• Rule 1: Each state St from an R-StD is translated
into a place P in an R-TNCES;

• Rule 2: Each transition Tr in an R-StD is trans-
lated to a transition (T) in an R-TNCES;

• Rule 3: A transition tr from an R-StD is mapped
to the pair of states, stb and ste. stb is the state
from which tr is taken and ste is the next state
firing tr. The two places (pout, pto) and the corre-
sponding transition (t) are created using, respec-
tively, Rule 1 and Rule 2. Rule 3 creates 2 flow

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 366 Volume 14, 2019

Figure 4: ZiZo’s different modules.

arcs in the R-TNCES: a flow arc, fa1, linking
pout to t, and a second, fa2, linking t to pto;

• Rule 4: In an R-StD, guards are translated into
some transitions. A guard gr is translated into
a condition arc ca in an R-TNCES. A condition
output signal co is added to the place from which
ca is leaving and a condition input signal ci is
added to the place which is pointed by ca;

• Rule 5: In an R-StD, actions are translated into
some transitions. An action ac is translated into
an event arc, ea, in an R-TNCES. An event out-
put signal eo is added to the place from which ea
is leaving and a event input signal ei is added to
the place which is pointed by ea;

• Rule 6: Each event of the stereotype
<<eventInput>> from an R-StD (denoted
by ev) is translated into an event arc in the
R-TNCES (denoted by ea). We add an event
output signal eo and an event input signal ei to,
respectively, the place from which ea is leaving
and the place which is pointed by ea;

• Rule 7: We may find after(n)-typed events
(where n ∈ NNN∗) in an R-StD. If applicable, we
add n to the set of minimum times during which
a token should remain at a particular place be-
fore the transition fires (denoted by DR). We also
add∞ to the set of limitation time defining max-
imum time during which a place may keep a to-
ken (denoted by DL). This is due to the fact that
the place from which the after(n)-typed event is
leaving may indefinitely hold the token.

Algorithm 1 is a general algorithm for translating
R-UML to R-TNCES. The numbers given in paren-
theses show the reference to the formula that gives
details about the used syntax.

5.2.2 Simulation

Simulation is realized using the ZiZo software. The
latter is an R-TNCES’s editor, simulator and model

checker which was introduced in [42]. Simulation can
be tracked by selection of a token game. Once it is fin-
ished, a report is displayed at the debug window. This
step aims at proving that the system is deadlock-free.
If a deadlock occurs, we go back to the specification
step to treat the deadlock problem.

5.2.3 Reduction of R-TNCES

In this section, we propose a reduction algorithm to
solve the redundancy problem and validate the differ-
ent R-TNCES models.

Petri net reduction is a technique which that trans-
lates Petri nets into simplified and reduced nets. This
procedure naturally preserves some desirable proper-
ties of the original nets. The reachable state space is
reduced thanks to Petri nets reduction. We can conse-
quently get sufficient information from the simplified
nets to understand the original ones. Nevertheless, the
reduced models successfully permit to verify and val-
idate the modeled system [43]. Petri reduction allevi-
ates, then, the state-space explosion problem [44].

Figure 6 presents a set of reduction rules for R-
TNCES. As we can observe, the said rules preserve
properties such as bound of places and liveness. We
hereafter explain the six proposed rules:

• Rule 1: This rule represents a macroplace rule’s
particular case [45].

• Rule 2: It is a transition fusion rule’s particular
case [46].

• Rules 3 and 5: These rules are implicit place
rule’s particular cases [47]. They preserve prop-
erties such as liveness, the bound of places, and
reversibility.

• Rules 4 and 6: They are, respectively, particu-
lar cases of identical and identity transition rules
[46].

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 367 Volume 14, 2019

Table 1: Transoformation Rules from R-StD to R-TNCES.
Rules R-StD R-TNCES
Rule 1 St (6) P (3.2)
Rule 2 Tr (6) T (3.2)
Rule 3 {stb, ste} := ζ(tr) (6) {pout, pto} ⊆ P ; {fa1, fa2} ⊆ F (3.2)
Rule 4 gr := δ−1(tr) (6) ci ∈ Cin (2) ; co ∈ Cout (2) ; ca ∈ CN (1)
Rule 5 ac := ε−1(tr) (6) ei ∈ Ein (2) ; eo ∈ Eout (2) ; ea ∈ EN (1)
Rule 6 ev := ζ−1(tr) (6) AND << eventInput >>:= α−1(ev) (5) ei ∈ Ein (2) ; eo ∈ Eout (2) ; ea ∈ EN (1)
Rule 7 ev := ζ−1(tr) (6) AND ev is an after(n) event n ∈ DR ;∞ ∈ DL (1) (2) (3)

Figure 6: Reduction rules of R-TNCES.

To check the relevance of the said reduction rules,
we propose to compare, first, the number of generated
R-TNCES places from different R-StD diagrams, be-
fore and after the reduction. The results shown in Plot
1 prove the relevance of these rules. Secondly, we
compare the time consumed by the formal verifica-
tion of the CTL formula AG EX TRUE, again before
and after the reduction. The said formula checks the
deadlock freeness of a given R-TNCES. The results
shown in Plot 2 proves that verification time of an R-
TNCES sensitively reduces after its reduction.

0 100 200 300 400

0

100

200

300

400

Number of R-StD states

N
um

be
ro

fR
-T

N
C

E
S

pl
ac

es

Plot 1: Number of Generated R-TNCES Places

Before reduc.
After reduc.

0 100 200 300 400

0

50

100

150

200

250

Number of R-StD states

V
er

ifi
ca

tio
n

tim
e

(s
ec

on
ds

)

Plot 2: Time Consumed by Verification

Before reduc.
After reduc.

5.2.4 Formal Verification

Once the simulation is finished without detecting any
deadlock, we start the formal verification. The latter
consists in defining CTL, eCTL and TCTL formulas,
based on the specification step. These properties are
formally verified using the model checker SESA [48]

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 368 Volume 14, 2019

Algorithm 1 R-UML translation into R-TNCES
Input: R− UMLsystem

Output: R− TNCESsystem

for objj ∈ O (9); j ∈ [0, |O|] do
Initialize R− TNCESk , each element is ∅ (4)
Define class of the object Cl := Ω(objj) (9)
for attrl ∈ Cl(l ∈ [0, |ACl|] do

if α−1(attrl) =<< input >> (5) then
Add condition input ci to Cin of R− TNCESk (2)
Add condition arc ca to CN of R− TNCESk (1)

end if
if α−1(attrl) =<< output >> (5) then

Add condition output co to Cout of R− TNCESk (2)
Add condition arc ca to CN of R− TNCESk (1)

end if
if α−1(attrl) =<< in >> (5) then

Add condition input ci to Cin of R− TNCESk (2)
end if
if α−1(attrl) =<< out >> (5) then

Add condition input co to Cout of R− TNCESk (2)
end if
if α−1(attrl) =<< eventInput >> (5) then

Add event input ei to Ein of R− TNCESk (2)
end if
if α−1(attrl) =<< eventOutput >> (5) then

Add event input eo to Eout of R− TNCESk (2)
end if
if α−1(attrl) =<< integer >> and Attrl == x (5) then

Add x to DR of DC(3)
end if
if α−1(attrl) =<< boolean >> and Attrl == y (5) then

Add y to G of StD (6)
end if

end for
Define a state diagram for each object objj : R − StD :=
Ω−1(Cl) (9)
for tr ∈ Tr of StD (6) do

Add transition t to T of R− TNCESk (4)
Get outgoing stout and incoming stto states for transition:
stout, stto := ζ(tr)
for st ∈ ζ(tr) do

place pout and pto to P of R− TNCESk (4)
place flow arc fa1 to F of R− TNCESk: (pout, t)
place flow arc fa2 to F of R− TNCESk: (t, pto)

end for
Define guard for transition tr:gr := δ−1(tr) (6)
Define action for transition tr:ac := ε−1(tr) (6)
Define event for transition tr:ev := γ−1(tr) (6)
for < operand > (Pguard) ∈ gr do

Add condition input ci to Cin of R− TNCESk (4)
Add condition arc ca to CN of R− TNCESk (1)

end for
for < action > (Paction) ∈ ac do

Add event input ei to Ein of R− TNCESk (4)
Add event arc ea to EN of R− TNCESk (1)

end for
if ev is of << eventInput >> stereotype then

Add event input ei to E
in

of R− TNCESk (4)
Add event arc ea to EN of R− TNCESk (1)

end if
if ev is after(n) event then

Add n to DR of DC for fa1 (3)
Add∞ to DL of DC for fa1 (3)

end if
end for

end for

which takes as input a .pnt file exported from ZiZo. If
all the checked formulas meet the users’ expectations,
we obtain verified models as output. Otherwise, we
go back to the specification step.

5.2.5 Application to BROS

This step consists in translating the R-UML model
into an R-TNCES one. The latter is shown in Fig-
ure 7. Upon definition of the model, we simulate it
using ZiZo. The obtained report displayed in Figure 8
proves that, after exploring 3057 places by ZiZo, our
system is deadlock-free.

Figure 7: R-TNCES of BROS.

Figure 8: BROS’s simulation report.

After proving, by simulation, the non-existence
of problems related to concurrent access on BROS’s
reconfigurable shared resources, we do an exhaus-
tive CTL-based verification to check the potential
existence of several problems that may be faced
at BROS’s runtime. Thus, we apply several CTL
formulas on the model of the whole BROS system,
built using ZiZo and then exported to SESA.

Simultaneous Blocking and Pinning: Pinning
in the patient’s arm while moving it by unblocking it
may lead to dramatic consequences. We check, then,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 369 Volume 14, 2019

whether this two actions may be simultaneously per-
formed by applying the following formula to BROS’s
model:

EF p23 AND p43 (10)

where: (i) p23 translates unblocking the arm, (ii) p43
pinning it. The formula is found to be false.

Timeout Issue: We check that the whole surgical
intervention does not last more than a given definite
time. We apply, then, formula 11 as follows:

EF [0, 301] p23 (11)

This formula is also proven to be false.

Intervention Sequence: We have to be sure that
BROS complies with the specified logic by perform-
ing in order the following actions: reduction, block-
ing, pinning 1, pinning 2 and unblocking. We apply,
therefore, the following CTL formula:

AGA t18 X AFE t25 X AFE t40 X AFE t74 X AFE

t111 X TRUE

(12)

where t18, t25, t40, t74 and t111 are respectively the
transitions leading to the places translating reduction,
blocking, pinning 1, pinning 2 and unblocking. The
formula is proved to be true.

5.3 Implementation: R-UML translation
into ROS

In this section, we propose a technique to automati-
cally generate ROS code from R-UML diagrams.

5.3.1 Dynamic reconfigure Package

The dynamic reconfigure ROS package is an exten-
sion of ROS parameter server. It permits easy adjust-
ment of filtering parameters on-the-fly (during exe-
cution). We can dynamically change the parameters
of ROS nodes using this tool. A hierarchical struc-
ture in the server is used to store the different pa-
rameters. Nevertheless, some relevant parameters are
locally copied in each of the nodes for performance
reasons. When a parameter is changed on the server,
service calls are used to notify the appropriate nodes.
The entire parameter hierarchy are loaded and saved
thanks to an existing and appropriate functionality. In
each robot, a well-defined configuration file is used
to get the default parameter values on system start-
up [49]. This feature is very relevant to our contribu-
tion, since configuration parameters are dynamically
changed.

5.3.2 R-UML Translation into ROS Configura-
tion File

The paper introduces Table 2 which highlights the
correspondence between R-UML class diagrams (For-
mula 5) and ROS configuration file. The three trans-
lation rules are summarized in Table 2 and explained
hereafter:

• Rule 1: Each object from the R-ClD is translated
into a node in ROS;

• Rule 2: The different attributes belonging to
an object are equivalent to parameters in ROS
nodes;

• Rule 3: Some attributes of a given class may
not be of a predefined type. Therefor, we cre-
ate stereotypes and enumerated types in, respec-
tively, R-ClD and ROS.

Table 2: Correspondence table for R-UML translation
into ROS configuration file.

Rules R-ClD ROS
Rule 1 Object Node
Rule 2 Attribute Parameter
Rule 3 Stereotype Enumerated type

5.3.3 Configuration File

We explain in this section how to create a ba-
sic configuration file which will be used by
dynamic reconfigure package.

This first lines aims at initializing ROS and creat-
ing a generator using the command gen = Parameter-
Generator(). The different parameters can be defined
once a generator is created. A given parameter can
be added to the list using the add function. The latter
needs the following arguments:

• name - a string specifying the parameter’s name;

• type - it defines the stored parameter’s type. It
can be whether a int t, a double t, a str t or a
bool t;

• level - This is a bitmask which will be used
later when calling a dynamic reconfigure back.
When this happens, an OR function is applied
to the level values of parameters that have been
changed. The value resulting from this operation
is passed to the callback;

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 370 Volume 14, 2019

• description - this argument describes the param-
eter;

• default - this argument defines the parameter’s
default value;

• min - This an optional argument which specifies
the minimal value of the parameter. It is not used
when defining strings and boolean parameters;

• max - This an optional argument which specifies
the maximal value of the parameter. It is also not
used when defining strings and boolean parame-
ters.

5.3.4 Application to BROS

We start by generating a configuration file for each
component of BROS as illustrated in Figure 2. Af-
ter several discussions with our medical and industrial
partners, we decided to use ABB’s IRB 120 manipula-
tors. The latter’s features, such as payload (3 Kg), ac-
curacy (+−0.01 mm) and freedom degree (6°), meet
our expectations from BROS robotic arms [50]. Icing
on the cake, ROS features packages to handle com-
munication with ABB industrial robot controllers and
manipulators [51]. The generated files are then sim-
ulated using ABB RobotStudio [52]. Figures 9 and
10 show the simulation of BROS when performing,
respectively, the reduction of fracture and the pinning.

Figure 9: Reduction of fracture.

Figure 10: Pinning.

6 Conclusion

The research work presents a new methodology to de-
velop reconfigurable robotic systems and insure their
safety from design to implementation. This method-
ology is original since it uses new technologies like
the R-TNCES, R-UML and a new tool, ZiZo. The
methodology is applied to a medical robotic system,
but it can besides be used with systems belonging to
other fields and presenting issues of reconfiguration
scenarios and concurrent access to shared resources.
Thanks to this methodology, we are able to guarantee
the safety of the medical project BROS. The results of
the experiments performed on real SCH fracture ra-
diographies were quite satisfactory. Clinical experi-
ments can then be performed after deploying the sys-
tem on real hardware. This is going to be our future
work’s subject.

References:

[1] J.-J. Borrelly, É. Coste-Maniere, B. Espiau,
K. Kapellos, R. Pissard-Gibollet, D. Simon, and
N. Turro, “The orccad architecture,” The Inter-
national Journal of Robotics Research, vol. 17,
no. 4, pp. 338–359, 1998.

[2] J. Albus, H.-M. Huang, A. Lacaze, M. Schneier,
M. Juberts, H. Scott, S. Balakirsky, P. W. Shack-
leford, T. Hong, J. Michaloski et al., “4d/rcs: A
reference model architecture for unmanned ve-
hicle systems version 2.0,” 2002.

[3] R. C. Arkin and T. Balch, “Aura: Principles and
practice in review,” Journal of Experimental &
Theoretical Artificial Intelligence, vol. 9, no. 2-
3, pp. 175–189, 1997.

[4] N. Muscettola, G. A. Dorais, C. Fry, R. Levin-
son, and C. Plaunt, “Idea: Planning at the core
of autonomous reactive agents,” 2002.

[5] D. B. Stewart and P. K. Khosla, “The chimera
methodology: Designing dynamically recon-
figurable and reusable real-time software us-
ing port-based objects,” International Journal of
Software Engineering and Knowledge Engineer-
ing, vol. 6, no. 02, pp. 249–277, 1996.

[6] M. O. B. Salem, O. Mosbahi, M. Khalgui, and
G. Frey, “Bros-a new robotic platform for the
treatment of supracondylar humerus fracture.” in
HEALTHINF, 2015, pp. 151–163.

[7] ——, “Transformation from r-uml to r-tnces:
New formal solution for verification of flexible

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 371 Volume 14, 2019

control systems,” in Software Technologies (IC-
SOFT), 2015 10th International Joint Confer-
ence on, vol. 2. IEEE, 2015, pp. 1–12.

[8] J. Zhang, M. Khalgui, Z. Li, O. Mosbahi, and
A. M. Al-Ahmari, “R-tnces: a novel formal-
ism for reconfigurable discrete event control sys-
tems,” Systems, Man, and Cybernetics: Systems,
IEEE Transactions on, vol. 43, no. 4, pp. 757–
772, 2013.

[9] M. O. B. Salem, O. Mosbahi, M. Khalgui, and
G. Frey, “Zizo: Modeling, simulation and verifi-
cation of reconfigurable real-time control tasks
sharing adaptive resources-application to the
medical project bros.” in HEALTHINF, 2015,
pp. 20–31.

[10] C. U. Smith, C. M. Lladó, V. Cortellessa, A. D.
Marco, and L. G. Williams, “From uml models
to software performance results: an spe process
based on xml interchange formats,” in Proceed-
ings of the 5th international workshop on Soft-
ware and performance. ACM, 2005, pp. 87–98.

[11] A. D’Ambrogio, “A model transformation
framework for the automated building of perfor-
mance models from uml models,” in Proceed-
ings of the 5th international workshop on Soft-
ware and performance. ACM, 2005, pp. 75–86.

[12] S. Bernardi and J. Merseguer, “Performance
evaluation of uml design with stochastic well-
formed nets,” Journal of Systems and Software,
vol. 80, no. 11, pp. 1843–1865, 2007.

[13] D. B. Petriu and M. Woodside, “An intermediate
metamodel with scenarios and resources for gen-
erating performance models from uml designs,”
Software & Systems Modeling, vol. 6, no. 2, pp.
163–184, 2007.

[14] M. Marzolla and S. Balsamo, “Uml-psi: the uml
performance simulator,” in Quantitative Evalua-
tion of Systems, 2004. QEST 2004. Proceedings.
First International Conference on the. IEEE,
2004, pp. 340–341.

[15] J. Merseguer, J. Campos, S. Bernardi, and S. Do-
natelli, “A compositional semantics for UML
state machines aimed at performance evalua-
tion,” in Discrete Event Systems, 2002. Proceed-
ings. Sixth International Workshop on. IEEE,
2002, pp. 295–302.

[16] M. Woodside, D. C. Petriu, D. B. Petriu,
H. Shen, T. Israr, and J. Merseguer, “Perfor-
mance by unified model analysis (puma),” in

Proceedings of the 5th international workshop
on Software and performance. ACM, 2005, pp.
1–12.

[17] G. P. Gu and D. C. Petriu, “From uml to lqn
by xml algebra-based model transformations,” in
Proceedings of the 5th international workshop
on Software and performance. ACM, 2005, pp.
99–110.

[18] D. C. Petriu and H. Shen, “Applying the uml per-
formance profile: Graph grammar-based deriva-
tion of lqn models from uml specifications,” in
Computer Performance Evaluation: Modelling
Techniques and Tools. Springer, 2002, pp. 159–
177.

[19] ISO, “Iso/iec 19502:2005 information tech-
nology—meta object facility (mof),” 2005.
[Online]. Available: http://www.iso.org

[20] H. Bruyninckx, “Open robot control software:
the orocos project,” in Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE Interna-
tional Conference on, vol. 3. IEEE, 2001, pp.
2523–2528.

[21] C. Schlegel, “Navigation and execution for mo-
bile robots in dynamic environments: an inte-
grated approach.” Ph.D. dissertation, University
of Ulm, 2004.

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust,
T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“Ros: an open-source robot operating system,”
in ICRA workshop on open source software,
vol. 3, no. 3.2, 2009, p. 5.

[23] H. Bruyninckx, M. Klotzbücher,
N. Hochgeschwender, G. Kraetzschmar,
L. Gherardi, and D. Brugali, “The brics com-
ponent model: a model-based development
paradigm for complex robotics software sys-
tems,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing. ACM,
2013, pp. 1758–1764.

[24] M. Klotzbücher and H. Bruyninckx, “Coordinat-
ing robotic tasks and systems with rfsm state-
charts,” JOSER: Journal of Software Engineer-
ing for Robotics, vol. 3, no. 1, pp. 28–56, 2012.

[25] S. Murata, E. Yoshida, A. Kamimura,
H. Kurokawa, K. Tomita, and S. Kokaji,
“M-tran: Self-reconfigurable modular robotic
system,” IEEE/ASME transactions on mecha-
tronics, vol. 7, no. 4, pp. 431–441, 2002.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 372 Volume 14, 2019

[26] “Simulink.” [Online]. Available: http://www.
mathworks.com/products/simulink/

[27] “Robotics system toolbox.” [Online]. Avail-
able: http://www.mathworks.com/help/robotics/
index.html

[28] C. Jang, B. Song, S. Jung, and S. Kim, “A het-
erogeneous coupling scheme of opros compo-
nent framework with ros,” in 2012 9th Inter-
national Conference on Ubiquitous Robots and
Ambient Intelligence (URAI), 2012.

[29] G. Martin, L. Lavagno, and J. Louis-Guerin,
“Embedded uml: a merger of real-time uml and
co-design,” in Proceedings of the ninth interna-
tional symposium on Hardware/software code-
sign. ACM, 2001, pp. 23–28.

[30] B. Selic, “Using uml for modeling complex real-
time systems,” in Languages, Compilers, and
Tools for Embedded Systems. Springer, 1998,
pp. 250–260.

[31] A. Gherbi and F. Khendek, “Uml profiles for
real-time systems and their applications.” Jour-
nal of Object Technology, vol. 5, no. 4, pp. 149–
169, 2006.

[32] A. S. Staines, “A comparison of software analy-
sis and design methods for real time systems,” in
Proceedings of World Academy of Science, En-
gineering and Technology, vol. 21. Citeseer,
2007.

[33] O. Group et al., “Uml profile for schedulability,
perfomance and time specification,” Version 1.1,
formal/05-01, vol. 2, 2005.

[34] S. Gérard, H. Espinoza, F. Terrier, and B. Selic,
“6 modeling languages for real-time and embed-
ded systems,” in Model-Based Engineering of
Embedded Real-Time Systems. Springer, 2010,
pp. 129–154.

[35] M. Shousha, L. Briand, and Y. Labiche, “A um-
l/marte model analysis method for uncovering
scenarios leading to starvation and deadlocks
in concurrent systems,” Software Engineering,
IEEE Transactions on, vol. 38, no. 2, pp. 354–
374, 2012.

[36] F. Mallet and C. André, “On the seman-
tics of uml/marte clock constraints,” in
Object/Component/Service-Oriented Real-
Time Distributed Computing, 2009. ISORC’09.
IEEE International Symposium on. IEEE,
2009, pp. 305–312.

[37] B. Hamid and F. Krichen, “Model-based engi-
neering for dynamic reconfiguration in drtes,” in
Proceedings of the Fourth European Conference
on Software Architecture: Companion Volume.
ACM, 2010, pp. 269–276.

[38] A. Koubâa, Robot Operating System (ROS): The
Complete Reference. Springer, 2016, vol. 1.

[39] “The Open Source Robotics Foundation,” http://
www.osrfoundation.org/, accessed: 2016-09-14.

[40] M. O. B. Salem, O. Mosbahi, M. Khalgui, and
G. Frey, “R-uml: An uml profile for verifi-
cation of flexible control systems,” in Inter-
national Conference on Software Technologies.
Springer, 2015, pp. 118–136.

[41] ——, “ZiZo: Modeling, simulation and verifi-
cation of reconfigurable real-time control tasks
sharing adaptive resources. application to the
medical project BROS,” in HEALTHINF 2015
- Proceedings of the International Conference
on Health Informatics, Lisbon, Portugal, 12-15
February, 2015, 2015, pp. 20–31.

[42] M. O. Ben Salem, O. Mosbahi, M. Khalgui,
Z. Jlalia, G. Frey, and M. Smida, “Brometh:
Methodology to design safe reconfigurable med-
ical robotic systems,” The International Jour-
nal of Medical Robotics and Computer Assisted
Surgery, 2016.

[43] M. H. T. Hack, “Analysis of production
schemata by petri nets,” DTIC Document, Tech.
Rep., 1972.

[44] A. Valmari, “Stubborn sets for reduced state
space generation,” in International Confer-
ence on Application and Theory of Petri Nets.
Springer, 1989, pp. 491–515.

[45] M. Silva, “Sur le concept de macroplace et son
utilisation pour l’analyse des reseaux de petri,”
RAIRO-Systems Analysis and Control, vol. 15,
no. 4, pp. 57–67, 1981.

[46] G. Berthelot, “Transformations and decomposi-
tions of nets,” in Petri Nets: Central models and
their properties. Springer, 1987, pp. 359–376.

[47] M. Silva and J. M. Colom, “On the computation
of structural synchronic invariants in p/t nets,” in
European Workshop on Applications and Theory
in Petri Nets. Springer, 1987, pp. 386–417.

[48] P. H. Starke and S. Roch, Analysing signal-net
systems. Professoren des Inst. für Informatik,
2002.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 373 Volume 14, 2019

[49] “Dynamic reconfigure,” http://wiki.ros.org/
dynamic\ reconfigure/, accessed: 2018-06-16.

[50] P. Mikaelsson and M. Curtis, “Portrait-robot
d’un petit prodige: Abb présente son nouveau
robot irb 120 et son armoire de commande irc5
compact,” Revue ABB, no. 4, pp. 39–41, 2009.

[51] “Ros-industrial support for abb manipula-
tors (metapackage).” http://wiki.ros.org/abb, ac-
cessed: 2017-02-10.

[52] C. Connolly, “Technology and applications of
abb robotstudio,” Industrial Robot: An Interna-
tional Journal, vol. 36, no. 6, pp. 540–545, 2009.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohamed Oussama Ben Salem, Olfa Mosbahi

E-ISSN: 2224-2856 374 Volume 14, 2019

