

Novel Branch Prediction Strategy based on Adaptive History Length
for High-Performance Microprocessor

SANG HOON LEE1, JONGSU PARK2*

School of Electrical and Electronic Engineering
Yonsei University

Shinchon-dong, Seodaemun-gu, 03722, Seoul
SOUTH KOREA

sanghoon0.lee@lge.com1, jspark@yonsei.ac.kr2*

Abstract: - The demands for high-performance microprocessors have recently increased. Accurate branch
prediction is one of the most important factors for high-performance processors. In order to predict branch
outcomes, instruction program counter bits and the history of recently executed branch outcomes are used.
Among the executed branch outcomes, some histories are useful while others are useless. In addition, these
useful/useless histories vary among branch instructions. Numerous studies have shown a method that identifies
optimal history. However, little research has been done regarding the treatment of useless history. In this paper,
a new method called Instruction Address alloyed History Length Modification branch predictor is proposed to
handle the useless history bits. When PHT entries are 4,096, IAaHLM has a prediction accuracy of 93.22% and
Gshare has a prediction accuracy of 91.84%.

Key-Words: - branch prediction, branch predictor, dynamic branch history control, microprocessor

1 Introduction
From smartphones to smart pads, the importance of
high-performance microprocessors, which have a
significant relationship with device performances,
has increased. In order to implement high-
performance microprocessors, instructions per clock
(IPC) should be increased. There are two ways to
increase the IPC. The first method is to use a
superscalar structure, which fetches and executes
multiple instructions concurrently based on
instruction-level parallelism (ILP). However,
inadequate instruction parallelism in a basic block
requires faithful branch prediction for accurate code
scheduling which will eventually increase ILP. The
second method for increasing ILP is the use of a
deep pipeline. A deep pipeline increases the stages
of the pipeline and decreases the number of logic
gate levels in each pipeline stage. The major
advantage of a deep pipeline is the ability to
decrease machine cycle time and hence increase
clocking frequency. As a pipeline is deeper, the
penalty of pipeline stall from incorrect branch
predictions is increased. Therefore, an accurate
branch prediction technique is highly important and
is required for high-performance microprocessors
that use not only a superscalar structure but also a
deep pipeline.

The first branch predictor, proposed by Smith [1],
was the Smith predictor, which is the basic of

modern branch predictors. The predictor consists of
a saturating two-bit counter, and prediction is
determined by the most significant bit (MSB) of the
counter. As the predictor has only one counter,
totally different branch instructions use and update
the same counter for branch prediction. In addition,
the counter is not able to apply previously executed
branch instruction outcomes to new branch
predictions. Therefore, the predictor has low
prediction accuracy. In order to overcome these
shortcomings, Yeh et al. [2] proposed a typical two-
level branch predictor. This predictor contains a
table, called a pattern history table (PHT), whose
entries are filled with two-bit saturating counters,
and a branch history register (BHR) to store certain
numbers of previously executed branch outcomes.
In order to predict branch outcomes, n bits from the
BHR and same n bits from the instruction’s program
counter are used as an input to hash function and the
outcome is used to index PHT. The two- bit
saturating counter, contained in the indexed entry of
the PHT, predicts whether the branch is taken.
When the branch outcome is available, the counter
is updated based on the prediction and the outcome.
In addition, the BHR is also updated to contain the
outcome. There are two different ways to contain
the recent branch outcomes[3, 4]. While the first
method causes branch instructions to save their
outcomes to separate registers, the second method

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Sang Hoon Lee, Jongsu Park

E-ISSN: 2224-2856 343 Volume 14, 2019

does not separate branch instructions, leading to the
outcomes being stored in same register. The second
method predicts branch instructions more accurately
than the first method for the following reason: since
most branches are related to previous executed
branch outcomes, accurate branch prediction is
available when this relationship is used. Therefore,
the technique storing the executed branches to
different registers is not able to use the relationships
between branch instructions, preventing the
predictor from making accurate branch predictions.
In contrast, saving different branch instruction
outcomes into the same register makes the predictor
use the relationship and have high accuracy in
branch predictions. In summary, to use branch
correlation, branch predictors with single register
for branch outcomes have a high chance of making
accurate branch predictions [5].

Since branch prediction accuracy is related to the
BHR, the predictor might increase its accuracy
when BHR length is increased. However, increasing
BHR length also increases the training duration
needed for accurate prediction and the predictor is
not able to have the most accurate predictions
during the training period. Evers et al. [6] mentioned
that the amount of correlation varies between branch
instructions. In other words, BHR length should be
adjusted for branch instructions that have different
correlations with other branches.

Elastic history buffers [7] and regions of limited
branch correlation [8] predictors dynamically adjust
BHR length after prior program profiling. However,
as these predictors dynamically control the BHR
with prior profiling, these predictors are not able to
be implemented in hardware. In order to overcome
this weakness, predictors that dynamically control
the BHR without prior profiling are proposed.
Dynamic history length fitting [9] dynamically
adjusts BHR length for accurate branch prediction.
Although this predictor does not require prior
profiling, the predictor adjusts BHR length by trial
and error during the execution of a program. Branch
prediction, grounds for trial and error, hypothesizes
that the current and future branch instructions will
follow a certain pattern from previous branch
instructions. However, there is no guarantee that
post-branch instructions will follow the pattern. As
these branch predictors have some weaknesses, such
as pattern requirements and prior-profiling, it is hard
to say that these predictors are effective.

The Dynamic per Branch History Length
Adjustment (DpBHLA) [10] branch predictor

controls BHR length dynamically based on a logical
basis. The branch predictor keeps track of basic
block executions that are a straight-line code
sequence, such as register update instructions (load,
add) or branch instructions. While tracking the
block, the predictor records the sequence of the
register update instructions and the information is
stored in the Branch Register Dependency Table
(BRDT), shown in Fig. 1, whose entry amount is
same as the number of registers. When predicting
branch instructions, the indexed entry is determined
based on the source register of the branch
instruction. For example, when the branch
instruction tests the content of register eight, the
indexed entry is the eighth entry. Since a history of
register updating instructions is stored in each
BRDT entry, data dependency with a prior basic
block is detected by indexing the entry. Therefore,
using register updating information, we are able to
indicate data dependency with other branches, and
this knowledge, which helps the branch predictor
distinguish useful information between BHR bits,
increases prediction accuracy. In order to adjust
BHR bits, the DpBHLA predictor resets
unnecessary bits (unrelated history bits) to zero
while leaving the rest of the bits (necessary bits)
unchanged. However, Porter [8] mentioned that
setting some BHR bits to zero would decrease PHT
usage since the predictor would be biased to some
parts of certain PHT regions and ineffective PHT
treatment would decrease branch prediction
accuracy. Therefore, in order to overcome this
weakness, this study proposes a structure called
Instruction Address alloyed History Length
Modification (IAaHLM), which changes
unnecessary bits in the BHR to useful bits, instead
of resetting them to zero, to increase prediction
accuracy.

Fig. 1. Branch Register Dependency Table (BRDT)

R0_Entry

R1_Entry

Rn_Entry

R30_Entry

R31_Entry

The Most Recent Branch

BHR Length

1 1 . . . 0 1 0

BRDT Entry

BRDT

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Sang Hoon Lee, Jongsu Park

E-ISSN: 2224-2856 344 Volume 14, 2019

This paper is organized in four parts. Section two
introduces limits of dynamic history length control
and describes the proposed structure. Section three
shows experiments background and analyzes the
experimental results by comparing them with
previously proposed structures. Section four offers
conclusion.

2 Instruction Address Alloyed History
Length Modification

In this section, the IAaHLM branch predictor is
proposed. The IAaHLM branch predictor is based
on the DpBHLA branch predictor. The DpBHLA
stores the histories of executed basic block at BRDT
as shown in Fig. 1 and the basic blocks are consists
of a sequence of code lines, including branch
instructions and register update instructions such as
load/arithmetic instructions. Therefore, by indexing
the BRDT entry that corresponds to the source
register of the branch instruction, data dependency
in the indexed entry is easily detected. As a branch
outcome is decided based on the content of the
branch instruction source register, knowing the
register update history allows the predictor to make
a more accurate prediction.

2.1 Limits of Dynamic branch history
control
Based on the content of the BRDT, the basic block,
whose instruction updates the register, can be
identified. This knowledge determines how many
pre-executed branch instructions are related to the
current executing branch instruction. While the
related previous branch outcomes are useful in the
current branch prediction, unrelated previous branch
outcomes are unnecessary. Therefore, after
searching the useful branch outcomes, the DpBHLA
branch predictor selects the useful BHR bits. While

selecting the useful BHR bits, the DpBHLA branch
predictor resets the non-selected BHR bits to zero.
Fig. 2 shows the modification of some BHR bits
based on the BRDT content, and the modified BHR
bits are exclusive-or with the instruction program
counter bits to access the PHT.

The modified BHR bits which reset some BHR
bits to zero and the instruction program counter bits
are used as an input to exclusive-or arithmetic.
Exclusive-or arithmetic has a property in which the
output is always same as the other when one of the
inputs is zero. For example, when exclusive-or
arithmetic is performed between zero and A, the
output is always equal to A, regardless of A’s
condition. As shown in Fig. 3, some of the output
bits that correspond to zero bits at the BHR bits are
exactly same as that of the instruction program
counter bits. The shaded parts of the PHT index bits
in Fig. 3 are equal to the some program counter bits,
while the rest part is an outcome of exclusive-or
arithmetic between the program counter bits and the
modified history.

Fig. 3. Branch instruction program counter bits at
PHT index bits

Fig. 2. Exclusive-or arithmetic between modified history and branch instruction program counter

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Sang Hoon Lee, Jongsu Park

E-ISSN: 2224-2856 345 Volume 14, 2019

As mentioned previously, resetting the BHR bits
to zero will result in decreased predictor accuracy
and inefficient PHT usage since predictors would be
biased to certain regions of the PHT. Figs. 4-(a) and
(b) show different branches which access to same
PHT entry. In Fig. 4, the shaded parts of the PHT
index bits are from the corresponding program
counter bits, while the rest of the parts are the
outcomes of exclusive-or arithmetic between
program counter bits and filtered history. In other
words, when different branch instructions, whose
program counter bits correspond to some BHR bits,
which are reset to zero, are the same, these two
different branch instructions have a high possibility
of accessing the same PHT entry and making a
prediction based on the same two-bit counter of the
PHT entry. In addition, resetting the useless BHR
bits to zero would decrease the number of exclusive-
or arithmetic outputs since the input length of
exclusive-or arithmetic, which is the program
counter bits and useful BHR bits, is decreased.
Therefore, decreased exclusive-or arithmetic outputs
will use limited entries of the PHT, and therefore,
would increase the aliasing of the occurrence rate,
which is crucial to accurate branch prediction.

Therefore, in order to overcome these
weaknesses and to increase prediction accuracy, the
IAaHLM branch predictor, which utilizes the
difference of the program counter bits instead of
resetting the useless BHR bits to zero, is proposed.

2.2 Methodology

If the branch instructions are said to be different,
then their program counter should be different. Even
if the program counter bits corresponding to the
whole BHR bits are the same, the remaining bits
should be different; the proposed structure, the
IAaHLM branch predictor, utilizes this aspect. The
IAaHLM branch predictor inserts an appropriate
length of unused program counter bits to the useless
BHR bits, as shown in Fig. 5. Figs. 5-(a) and (b)
show different PHT accessing bits by using the
same branch instructions but different methods; Fig.
5-(a) uses the DpBHLA method, while Fig. 5-(b)
uses the IAaHLM method. While the shaded parts
of the PHT index bits in the previous structure (Fig.
5-(a)) are equal to the program counter bits, the
shaded part in the proposed structure (Fig. 5-(b)) is
different from the program counter bits.

Selecting program counter bits, which will be
utilized to substitute the reset BHR bits (useless
BHR bits), is very important. This study uses the
instruction program counter bits to substitute the
useless BHR bits. Starting bits position at program
counter corresponds to the MSB of the BHR bits. In
addition, the length of the used program counter bits
is same as the length of useless BHR bits and these
bits normally indicate page numbers as shown in Fig.
6. The main advantage for inserting some program
counter bits that stand for page numbers is as
follows. The previous structure used the modified
BHR bits and instruction program counter bits
which are page offset bits as an input to exclusive-or
arithmetic. In addition, instructions on same page
are separated by the page offset bits while

Fig. 4. Same PHT index bit between different branch instructions: (a) Insturction_1, (b) Instruction_2

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Sang Hoon Lee, Jongsu Park

E-ISSN: 2224-2856 346 Volume 14, 2019

instructions on different page are separated by page
number bits. Since instruction program counter bits
which, are used as an input to exclusive-or
arithmetic in previous structure, are mostly
composed of page offset bits, instructions in
different page may have same exclusive-or
arithmetic input and this same input will cause
aliasing in the PHT. Therefore, the IAaHLM branch
predictor is proposed to overcome this weakness.
Instead of leaving useless bits in the BHR to zero,
the proposed structure change the useless bits in the
BHR to page numbers which in result decrease

aliasing in the PHT and increase prediction accuracy.
Figs. 7-(a) and (b) show different branch
instructions accessing different PHT entries using
the IAaHLM branch predictor.

Fig. 6. 32bit program counter description

Fig. 5. Different PHT output between DpBHLA and IAaHLM: (a) DpBHLA method (b) IAaHLM method

Fig. 7. Different PHT index bits by utilizing Page number bits: (a) Insturction_1 (b) Instruction_2

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Sang Hoon Lee, Jongsu Park

E-ISSN: 2224-2856 347 Volume 14, 2019

3 Experimental Results
In order to measure the proposed structure,
IAaHLM, SimpleScalar [11], an event-driven
simulator, is used. SimpleScalar is an effective
simulation tool that allows for not only an
instruction level, but also a cycle level. For
benchmark programs, the SPEC2000 [12]
application suites are used; used benchmarks are
shown in Table 1.

Prediction accuracy, instruction per clock (IPC),
and aliasing rate is compared among IAaHLM,
DpBHLA, and Gshare, which is the standard branch
predictor in state of art processors. The aliasing rate
is calculated as equation (1).

Aliasing	rate ൌ
୭୲ୟ୪	୳୫ୠୣ୰	୭	ୟ୰୧ୱୣୢ୪୧ୟୱ୧୬

ୗ୧ୣ୭	ୌ
	 (1)

The simulation environment is shown in Table 2.

The evaluation is performed by varying the PHT
entries from 1,024 to 8,196.

Table 1. Benchmark programs description

Benchmark Lang. Description
175.vpr C FPGA circuit P&R
176.gcc C C programming compiler

197.parser C Word processing
252.eon C++ Computer visualization

253.perlbmk C Perl programming language
255.vortex C Object-oriented database
256.bzip2 C Compression
300.twolf C Place and route simulator

Table 2. Simulation system environment

Benchmark Description
Fetch queue 4 entry

Fetch, decode width 4 instructions
RUU entries 16 entry

LSQ 8 entry
Funct. (integer) 4 ALUS, 1 Mult/Div

Funct. (floating point) 4 ALUS, 1 Mult/Div
Instruction TLB 64 entry/4k page/30-cyc. .miss

Data TLB 128 entry/4k page/30-cyc. miss
BTB entries 2048 entry
RAS entries 8 entry

Branch misp. penalty 3 cycles
L1 I-Cache 16KB/direct map/32Bline/1cyc,
L1 D-Cache 16KB/ 4-way/32Bline/1 cycle

L2 Cache (unified) 256KB/4-way/64B line/6 cyc.
Memory Latency First_chunk=18cyc./inter=2cyc.

Memory bus Width 8 byte

While adjusting the BHR bits for accurate branch
prediction, the unrelated BHR bits require treatment
rather than being reset to zero. If they are reset to
zero, aliasing in the PHT will be increased and
prediction accuracy will be decreased. Therefore,
the IAaHLM branch predictor changes these
unrelated BHR bits to some program counter bits
which are page number bits. By using page number
bits, aliasing will be decreased and therefore branch
prediction accuracy will be increased. In addition,
increased branch prediction accuracy will finally
increase IPC which is the main factor to boost
processor performance.

1000

10000

100000

1000000

Bzip2 Eon Gcc PARSER Perl Twolf Vortex Vpr Average

1024 PHT Entries

1000

10000

100000

1000000

Bzip2 Eon Gcc PARSER Perl Twolf Vortex Vpr Average

2048 PHT Entries

100

1000

10000

100000

Bzip2 Eon Gcc PARSER Perl Twolf Vortex Vpr Average

8192 PHT Entries

1000

10000

100000

1000000

Bzip2 Eon Gcc PARSER Perl Twolf Vortex Vpr Average

4096 PHT Entries

Figure 8. Comparison of aliasing in Gshare, DpBHLA, and IAaHLM

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Sang Hoon Lee, Jongsu Park

E-ISSN: 2224-2856 348 Volume 14, 2019

The rate of aliasing when varying PHT size is
shown in Fig. 8. As in the figure, aliasing happened
least in IAaHLM, regardless of the PHT entries. In
addition, when the PHT entries were 1,024 and
2,048, aliasing happened most often in Gshare,
while DpBHLA has most occurrences of aliasing for
the rest the PHT entries. Breen et al. [13] mentioned
that the more PHT entries there are, the less aliasing
exists, as shown in Fig. 8. This phenomenon is the
reason why IAaHLM performance varied by
increasing PHT entries.

Fig. 9 shows the prediction accuracy of IAaHLM,
DpBHLA, and Gshare. Since IAaHLM had the
smallest number of aliasing occurrences, regardless
of PHT entries, it predicted the branch outcome
more accurately than other branch predictors for
most programs, regardless of PHT entries. On
average, when the PHT entries were 8,192,
IAaHLM prediction accuracy was 93.64%, while
the prediction accuracy of DpBHLA was 92.84%
and Gshare was 92.89%; further, the smaller the
PHT entries were, the more performance differences
occurred. This is because, as shown at Fig. 8,
aliasing mostly occurred when the PHT was 1,024.
In other words, the smaller the PHT entries are, the

more aliasing occurs and the more the performance
improves.

Fig. 10 shows IPC comparisons of IAaHLM,
DpBHLA, and Gshare. Regardless of PHT entries
IAaHLM had the greatest IPC, because branch
prediction highly affects IPC. On average, when the
PHT entries were 8,192, IAaHLM had an IPC of
1.54, DpBHLA had an IPC of 1.52, and Gshare had
an IPC of 1.53; the performance difference between
IAaHLM and the others increased when PHT entries
were smaller than 8,192.

In conclusion, IAaHLM is an efficient branch
predictor since it has less aliasing than do DpBHLA
and Gshare. In addition, this results in increased
branch prediction accuracy and increased IPC.

4 Conclusions
Branch prediction is performed by utilizing branch
instruction program counter bits and branch
outcome histories. In these histories, some bits are
useless in branch prediction, while the others are
useful. Using the useful histories is very important.
However, the useless histories require careful
treatment rather than simply being reset to zero.

` Gshare DpBHLA IAaHLM

78.00%
80.00%
82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

100.00%
1024 PHT Enties

78.00%
80.00%
82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

100.00%
4096 PHT Entries

78.00%
80.00%
82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

100.00%
8192 PHT Entries

78.00%
80.00%
82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

100.00%
2048 PHT Entries

Fig. 9. Branch prediction accuracy in Gshare, DpBHLA, and IAaHLM

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Sang Hoon Lee, Jongsu Park

E-ISSN: 2224-2856 349 Volume 14, 2019

This paper proposes an IAaHLM branch predictor to
treat these useless histories. To substitute the useless
histories, page numbers at the branch instruction
program counter were used. When PHT entries were
8,192, IAaHLM had only 4,302 aliasing occurrences
per entry on average, while Gshare had 4,991 and
DpBHLA had 10,193. In addition, when the PHT
entries were decreased, the aliasing occurrence
reduction increased. Due to the reduction of aliasing,
branch prediction accuracy was increased. IPC also
increased, regardless of PHT entries. When the PHT
entries were 4,096, IAaHLM had a branch
prediction accuracy of 93.22%, whereas Gshare’s
was 91.84%. IAaHLM had an IPC of 1.53, while
Gshare had an IPC of 1.51 IPC.

References:
[1] J. E. Smith, A study of branch prediction

strategies, in Proceedings of the 8th annual
symposium on Computer Architecture,
Minneapolis, Minnesota, USA, pp. 135-148,
1981.

[2] T.-Y. Yeh and Y. N. Patt, Two-level adaptive
training branch prediction, in Proceedings of
the 24th annual international symposium on
Microarchitecture, New Mexico, Puerto Rico,
pp. 51-61, 1991.

[3] T.-Y. Yeh and Y. N. Patt, A comparison of
dynamic branch predictors that use two levels

of branch history, in Proceedings of the 20th
annual international symposium on computer
architecture, San Diego, California, USA, pp.
257-266, 1993.

[4] T.-Y. Yeh and Y. N. Patt, Alternative
implementations of two-level adaptive branch
prediction, in Proceedings of the 19th annual
international symposium on Computer
architecture 1992, Queensland, Australia. p.
124-134, 1992.

[5] S.-T. Pan, K. So and J. T. Rahmeh, Improving
the accuracy of dynamic branch prediction
using branch correlation, in Proceedings of the
fifth international conference on Architectural
support for programming languages and
operating systems, Boston, Massachusetts,
USA, pp. 76-84, 1992.

[6] M. Evers, S. J. Patel, R. S. Chappell and Y. N.
Patt, An analysis of correlation and
predictability: what makes two-level branch
predictors work, The 25th Annual International
Symposium on Computer Architecture,
Barcelona, Spain, pp. 52-61, 1998.

[7] M. D. Tarlescu, K. B. Theobald and G. R. Gao,
Elastic history buffer: a low-cost method to
improve branch prediction accuracy. IEEE
International Conference on Computer Design:
VLSI in Computers and Processors, Austin, TX,
USA, pp. 82-87, 1997.

[8] L. Porter and D. M. Tullsen, Creating artificial
global history to improve branch prediction

1.2

1.4

1.6

1.8

2

Bzip2 Eon Gcc PARSER Perl Twolf Vortex Vpr Average

8192 PHT Entries

1.2

1.4

1.6

1.8

2

Bzip2 Eon Gcc PARSER Perl Twolf Vortex Vpr Average

2048 PHT Entries

1.2

1.4

1.6

1.8

2

Bzip2 Eon Gcc PARSER Perl Twolf Vortex Vpr Average

1024 PHT Entries

1.2

1.4

1.6

1.8

2

Bzip2 Eon Gcc PARSER Perl Twolf Vortex Vpr Average

4096 PHT Entries

Fig. 10. Comparison of IPC in Gshare, DpBHLA, and IAaHLM

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Sang Hoon Lee, Jongsu Park

E-ISSN: 2224-2856 350 Volume 14, 2019

accuracy, in Proceedings of the 23rd
international conference on Supercomputing,
Yorktown Heights, NY, USA. p. 266-275,
2009.

[9] T. Juan, S. Sanjeevan and J. J. Navarro,
Dynamic history-length fitting: a third level of
adaptivity for branch prediction. The 25th
Annual International Symposium on Computer
Architecture, Barcelona, Spain, pp. 155-166,
1998.

[10] J. W. Kwak and C. S. Jhon, Dynamic per-
branch history length adjustment to improve
branch prediction accuracy. Microprocess.
Microsyst., vol. 31, pp. 63-76, 2007.

[11] D. Burger, T.M.A. and S. Bennett, Evaluating
future micro-processors: the SimpleScalar tool
set, 1997.

[12] J. L. Henning, SPEC CPU2000: measuring
CPU performance in the New Millennium,
Computer, vol. 33, pp. 28-35, 2000.

[13] K. C. Breen and D. G. Elliott, Aliasing and
anti-aliasing in branch history table prediction
SIGARCH Computer Architecture News, vol.
31, pp. 1-4, 2003.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Sang Hoon Lee, Jongsu Park

E-ISSN: 2224-2856 351 Volume 14, 2019

