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Abstract: The relationships of the individuals in social networks give rise to interesting and important features in 

various fields, such as graph mining and communication networks. Among those useful features are clique 

structures which represent fully connected relations between members, and the maximum cliques which identify 

the highest-connected subgroups.  In this work, we propose the modified differential evolution algorithm (moDE) 

for finding a maximum clique in social networks. The moDE solves the constrained continuous optimization 

problem which is transformed from the discrete maximum clique problem. It uses a new mutation strategy to 

generate and adjust mutant vectors, mixes two important crossover rates in crossover, and incorporates the 

extracting and extending clique procedure to increase the performance of clique finding. The algorithm is tested 

on several social network problems and compared with the previously developed method. The results show that 

moDE is effective for finding a maximum clique and outperforms the compared method. 

 

Key-Words: Maximum clique problem,  social network, differential evolution algorithm, constrained continuous 

optimization problem 

 

1 Introduction 
       Let ( , )G V E=  be an undirected graph where V

and E are the vertex set and edge set, respectively. 

The maximum clique problem (MCP) is to find a 

largest complete subgraph of G . This subgraph is 

called a  maximum clique and its cardinality is called 

a  clique number denoted by ( )G .  The MCP arises 

in many applications, such as telecommunications 

[1], bioinformatics [2], and social network analysis  

[3]. Finding the maximum clique in an arbitrary 

graph is difficult since it is an NP-hard problem [4]. 

Thus, the use of heuristic or metaheuristic methods is 

necessary. Various local methods, for instance, 

branch and bound algorithm [5], tabu search [6], 

sequential greedy algorithm [7], and variable 

neighborhood search [8] have been proposed for 

solving MCP. There are also population-based 

methods, such as genetic algorithm (GA) [9] and ant 

colony optimization (ACO) [10] designed for MCP. 

 Due to the discrete nature of the problem, all 

those population-based methods for MCP are discrete 

optimization methods. In contrast to this,  the 

differential evolution algorithm (DE), an efficient 

population-based methods for continuous 

optimization problems  [11-12], is aimed in this 

research to solve the  MCP  which is equivalently 

transformed to the continuous problem using the 

following  theoretical result of  Motzkin and Straus 

[13]: 
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The optimal solution *x  of (1) forms  a maximum 

clique S  of G of size k  where 
*

1

1 2 ( )
k

f x
=

−
  and  

*x  can be attained by setting * 1/x k=  if the vertex 

i S  and * 0x =  otherwise. 

        Recently, MCP has been applied to social 

network analysis for identifying the highly-

connected subgroups of members.  Soleimani-pouri 

et al. presented the ACO-PSO algorithm, a hybrid  of 

ant colony optimization and particle swarm 

optimization,  for finding a maximum clique in social 

networks [3]. The performances of ACO-PSO are 

compared to those of standard ACO by testing on 

social network problems. The results show that ACO-

PSO outperforms ACO.  In this work, we propose the 

modified differential evolution algorithm called 

moDE for solving MCP. The moDE solves the  
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constrained continuous MCP (1)  by integrating 

several improvements to the basic DE. The algorithm 

is tested on several social network problems and 

compared with the ACO-PSO. 

      The remainder of the paper is organized as 

follows. The next Section 2 summarizes the basic DE 

algorithm  and describes in detail the modified DE 

(moDE) algorithm for solving the transformed 

continuous MCP. Section 3 explains the 

experimental design and lists all the test problems. In 

Section 4, the results of applying the moDE are 

presented and compared with those of the ACO-PSO 

method [3]. Then, the conclusion is given in the last 

section.  

 

 2  Algorithm description 

 

2.1 Basic differential evolution algorithm 

      DE algorithm is a simple and robust  population-

based optimization method proposed by Storn and 

Price in 1997 [12].  For more than two decades, it has 

been shown to be one of the most efficient methods 

for continuous optimization problems [14-16]. DE 

algorithm consists of three basic population 

operations: mutation, crossover and selection. The 

pseudocode of a basic DE is illustrated in Table 1. 

The main distinguished features of DE are the self-

referential mutation to generate mutant vectors using 

the scaled difference of two vectors to adjust the other 

one, and the combined binomial crossover to each 

target vector to obtain a trial vector for the selection. 

First, the initial population of real vectors are 

generated uniformly in the feasible region.  For each 

generation and each target vector  ix , a mutant vector 

1 2 3
( )i r r rv x F x x= + −  is constructed from three 

different random population vectors 
1 2
,r rx x  and 

3r
x  

which are also different from ix  where F  is a scaling 

factor. Then the  components of iv  are exchanged 

with  those of ix  according to the crossover rate C to 

construct a trial vector iu  and the vector iu  will 

replace ix  in selection if iu is fitter. DE population 

vectors will evolve iteratively and move toward an 

optimal solution. It is well recognized that DE’s 

performances depend on the control parameters  

,np F and C [17-18]. 

 

2.2 Modified differential evolution algorithm 

       Since the transformed continuous MCP (1) has 

one equality constraint, the moDE needs to modify 

and improve a basic  unconstrained  DE  in  order  to   

 

Table 1. Pseudocode of the basic DE algorithm. 

 

 

The DE algorithm:  

1. Input: The objective function f  to be 

maximized, dimension n  (of the domain 

of f ), and population size np . 

2. Initialization: Randomly generate the 

population of np vectors of dimension n  

in the domain of f . Evaluate all 

population vectors and find the best vector 
xbest  and its best value fbest . 

3. Mutation: Generate a mutant vector iv  

for each target (population) vector ix  by 

1 2 3
( )i r r rv x F x x= + −  

where 
1 2
,r rx x  and 

3r
x are different random 

population vectors which are also different 

from ix  , and F  is a scaling factor. 

4. Crossover: Construct a trial vector iu by 

replacing some of components of ix  with 

the corresponding components of  iv  

using the crossover rate C and one 

randomly fixed index to guarantee a 

change of at least one component as 

follows. 

     
;

;

ij j

ij

ij

v q C or j IC
u

x otherwise

 =
= 


 

where 1,2,...,j n= ; IC is a random 

integer in the set {1,2,..., }n  and jq  is a 

random number generated for each j  in 

range of (0,1). 

5. Selection: Replace the target vector ix  

with the trial vector iu  if ( )if u  is greater 

than ( )if x . Also update the xbest  vector 

if ( )if u  is greater than fbest . 

6. Repeat all the steps 3-5 until reaching the 

stopping condition. Then report the 

obtained best solution. 

 

 
 

handle the constrained problem. All population 

vectors are normalized in initialization, mutation and 

crossover processes. The new mutation strategy, the 

special bound adjustment, and the mix of two 

important crossover rates are introduced. The 

extracting & extending clique procedure is also 
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incorporated to increase the performance of clique 

finding. The flowchart of moDE is shown in Fig. 1 

and its algorithm is described as follows. 

1. Initialization : Initialize the population of real 

vectors [ ]iX x=  by randomly generating 

1 2[ , ,..., ]i i i inx x x x=  with 0 1ijx   where 

1,2,..., ; 1,2,...,i np j n= = ; np  is the population 

size and n  is the number of vertices. Then, 

normalize each ix  to satisfy the constraint 

1

1.
n

ij

j

x
=

=  Calculate the fitness for each 

population vector and record the best vector 
xbest  and the best value fbest . 

2. Mutation:  Random mp  between 0 and 1 to 

select one of two mutation equations to generate 

the mutant vector iv  for each i  according to mp  

       as follows:  

 

1 2 3 4 5

1 2 3

1 2

1 2

( ) ( ); 0.7

( ) ( );

r r r r r m

i

r best r best r

x F x x F x x p
v

x F x x F x x otherwise

+ − + − 
= 

+ − + −

 

 

where 1 2 3 4, , ,r r r r  and 5r  are randomly chosen in 

the set {1,2,..., }np  such that 1r i , bestx  is the 

current best solution; and 1F  and 2F  are the 

scaling factors. If 0ijv   or 1ijv  , then adjust 

each component ijv  of iv  by  

 

11
max{ ( )}ij j r

k n
v p x k

 
=   

 

where 1,2,...,j n=  and jp  is  a random number 

generated for each j  in range of (0,1). Then 

normalize iv  by  

1

:
ij

ij n

ij

j

v
v

v
=

=


.   

 

3. Crossover:   Random cp  between 0 and 1 to 

select a crossover rate iC  for each i  by  

 

0.1; 0.5

0.9;

c

i

p
C

otherwise


= 


. 

 

Then construct the trial vector iu  by exchanging 

the components of ix  and iv  as follows: 

 

;

;

ij j i

ij

ij

v q C or j IC
u

x otherwise

 =
= 


 

 

where 1,2,...,j n= ; IC is a random integer in the 

set {1,2,..., }n  and jq  is a random number 

generated for each j  in range of (0,1). Then 

normalize iu  by  

1

:
ij

ij n

ij

j

u
u

u
=

=


. 

 

4. Selection : Apply the greedy selection by 

comparing the function values of iu  and ix . 

Retain or update ix  for the next generation as 

follows:  

 

; ( ) ( )

;

i i i

i

i

u f u f x
x

x otherwise


= 


. 

 

Update the best current solution bestx  and its 

best value bestf .  

 

5. Extracting & extending clique procedure: 
Apply the procedure every nm  generations. Let 

g  be the current generation. If 

modulo( , ) 0g nm = then extract a set S  of  

components of bestx , as large as possible, such 

that the induced graph by S is a clique. The 

extracting procedure varies the values  

0.1,0.2,...,1h =  to find the smallest h  such that 

1
{ | max{ ( )}}i best

k n
S i x h x k

 
=    induces a clique. 

Then the extending procedure extends S   (when 

possible) using a random permutation Q  of all 

vertices with each of the following three 

strategies: 

(E1) Extend S  by iteratively adding each vertex 

of Q S− to S  based on the order of  Q  to form 

the larger clique as possible. 

(E2) Randomly select a proper subset T of S  and 

extend T in the same manner as in E1. 

(E3) Randomly select the vertex xs  outside of S  

and extend  { }xs as in E1. 

Update the current largest clique. 

6. Repeat steps 2-5 until the maximum number of 

generations ( ng ) is reached. Then report the 

largest clique obtained. 
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3 Experimental design 
    To evaluate the performance of the moDE 

algorithm, two experiments are performed on 20 

social network problems taken from the Network 

Repository [19]. The problems are also divided into 

2 groups for the first and the second experiments, 

respectively. The first group contains 10 problems 

(A1-A10) which are used in [3] to test the 

performance of ACO-PSO. Thus, they are used in the 

first experiment to compare the performances of 

moDE with those of ACO-PSO. The second group of 

another 10 problems (B1-B10) are chosen to further 

verify the performances of the proposed algorithm in 

the second experiment.  

      The experiments are carried out on an Intel® core 

i5 processor 2.0 GHz and 4 GB RAM. The moDE 

algorithm is coded in Scilab version 6.0.2, an open 

source software available at http://www.scilab.org/. 

3.1 Social network benchmark problems 
      The test problems for the two experiments are 

listed in Table 2 and Table 3, respectively. For each 

social network problem, the data set name, numbers 

of vertices and edges, and the lower bound of the size 

of the maximum clique (as report in [19]) are 

described. The example graphs of 6 problems of the 

first groups (A1-A6) are illustrated in Fig. 2 by using 

Social Network Visualizer Software [20].  

3.2 Experiment 1: Performance comparison 

of the proposed moDE and ACO-PSO 
       The first experiment compares the performances 

of the moDE with those of ACO-PSO using the 

problems A1-A10. The following parameters are set 

as in [3]: the population size 30np = , the maximum 

number of generations 1000ng = , and 10 

independent runs for each problem. In addition, the 

other parameters of moDE are set as follows: the 

scaling factors 1 0.5F =  and 2 0.5F = , and the period 

of generations to apply the extracting & extending 

clique procedure 10nm = . For each problem, the 

values  “Best”, “Mean”  and  “SD” of the sizes of the 

largest cliques found by each method are reported. 

 

3.3 Experiment 2: Additional performance 

test of the moDE 
      The second experiment further verifies the 

performances of the moDE using the problems B1-

B10. The settings of moDE are the same as in the first 

experiment. the values  “Best”, “Mean”  and  “SD” 

of the sizes of the largest cliques found by moDE are 

reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flowchart of the proposed moDE method. 
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Table 2. The first group of test problems [3,19]. 

 

Problem Data set | |V  | |E  ( )G  

A1 
Zachary’s 

karate club 
34 78 5  

A2 

Common 

adjective and 

nouns in 

“David 

Copperfield” 

112 425 5  

A3 

Social 

network of 

dolphins, 

Doubtful 

Sound, New 

Zealand 

62 159 5  

A4 

Pajek 

network: 

Erdos 

collaboration 

network 971 

472 1314 7  

A5 

Pajek 

network: 

Erdos 

collaboration 

network 991 

492 1417 7  

A6 

Pajek 

network: 

World 

Soccer, Paris 

1998 

35 295 
6  

 

A7 

Pajek 

network: 

graph and 

digraph 

glossary 

72 118 4  

A8 

Pajek 

network: 

Slovenian 

journals 

1999-2000 

124 823168 65  

A9 

Pajek 

network: 

SmaGri 

Citation 

network 

1059 4919 8  

A10 

Email 

interchange 

network, 

Univ. Rovira 

i Virgili, 

Tarragona 

1133 5451 12  

 

Table 3. The second group of test problems [19]. 

 

Problem Data set | |V  | |E  ( )G  

B1 

Les Miserables 

Co-appearance 

network 

77 254 10  

B2 

American 

football games 

between Div 

IA colleges,  

Fall 2000 

115 613 9  

B3 

Pajek  

network:  

US Air 

332 2126 22  

B4 

Pajek  

network: 

Erdos 

collaboration 

network 981 

485 1381 7  

B5 
Wildbird 

network 
202 4574 45  

B6 

Collaboration 

network 

between  

Jazz musicians 

198 2742 
9  

 

B7 

Co-authorship  

of scientists 

in network 

theory & 

experiments 

379 914 9  

B8 

Co-authorship  

of scientists  

in network 

theory & 

experiments 

1589 2742 9  

B9 
Facebook 

networks 
769 16656 12  

B10 

Wikipedia 

who-votes- 

on-whom 

network 

889 2914 6  

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Jutamard Wongpen, 

Jeerayut Wetweerapong, Pikul Puphasuk

E-ISSN: 2224-2856 337 Volume 14, 2019



 

 

 

 
 

                                       (a) 

 

  
 

                                     (c) 

 

 
                

                                   (e) 

 

 

 

 

 

 
 

                                  (b) 

 

 

 
 

                                  (d) 

 

 
   

                                   (f) 

 

 

 

 

 

 

 

Fig. 2. Graphs of some test problems: (a) Problem A1, (b) Problem A2, (c) Problem A3, (d) Problem 

A4, (e) Problem A5, (f) Problem A6. 
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4 Results and discussion 
     The experimental results of experments 1 and 2 

are shown in Table 4 and Table 5, respectively. In 

each table, the best values of Best, Mean, SD are 

indicated in bold. Moreover, we present the largest 

cliques obtained by moDE of the first and second 

groups of test problems in Table 6 and Table 7 where 

the vertex numbers are the same as in the reference. 
 

4.1 Performance comparison of  moDE and 

ACO-PSO 
     The performance comparison of moDE and ACO-

PSO on problems A1-A10 is presented in Table 4. 

The results show that moDE can find the cliques with 

the maximum sizes as reported in the reference for all 

test problems whereas ACO-PSO can find 8 out of 10 

cases.  

 

 

 

 

     The moDE gives the better Mean values and also 

gives the stable results with SD=0.0 for all cases. 

Moreover, it finds a larger clique than that reported 

in the reference for problem A8. This clearly shows 

that moDE outperforms ACO-PSO. 

4.2 Performance of moDE on additional test 

problems 
       For the additional problems B1-B10, the 

performances of moDE are presented in Table 5. It 

shows the same trend of the performances of moDE. 

The proposed algorithm can find the cliques with the 

maximum sizes larger or equal to those reported in 

the reference for all test problems. The larger cliques 

are found for problems B5, B6 and B8.  This indicates 

the effectiveness of moDE.  

 

 

 

Table 4. Performance comparison of moDE and ACO-PSO on the first group of test problems. 

 
Problem ( )G  ACO-PSO[3] moDE 

Best Mean SD Best Mean SD 

A1 5  5 4.995 0.070 5 5 0.0 

A2 5  5 4.783 0.412 5 5 0.0 

A3 5  5 4.998 0.044 5 5 0.0 

A4 7  7 5.848 0.667 7 7 0.0 

A5 7  7 6.011 0.819 7 7 0.0 

A6 6  5 4.118 0.322 6 6 0.0 

A7 4  4 3.985 0.121 4 4 0.0 

A8 65  4 3.185 0.299 66 66 0.0 

A9 8  8 6.409 0.765 8 8 0.0 

A10 12  12 7.997 2.241 12 12 0.0 

 

Table 5. Performance of moDE on the second group of test problems. 

 
Problem ( )G  moDE 

Best Mean SD 

B1 10  10 10 0.0 

B2 9  9 9 0.0 

B3 22  22 22 0.0 

B4 7  7 7 0.0 

B5 45  46 46 0.0 

B6 9  30 30 0.0 

B7 9  9 9 0.0 

B8 9  20 20 0.0 

B9 12  12 12 0.0 

B10 6  6 6 0.0 
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Table 6. The largest cliques obtained by moDE 

algorithm for the first group of test problems. 

 
Problem The largest cliques represented  

 by sets of vertices 

A1 {1, 2, 3, 4, 8}, {1, 2, 3, 4, 14} 

A2 
{3, 18, 22, 51, 52},  

{3, 18, 35, 52, 55} 

A3 

{7, 10, 14, 18, 58}, 

{19, 22, 30, 46, 52},  

{19, 25, 30, 46, 52} 

A4 {51, 117, 152, 165, 214, 356, 370} 

A5 

{58, 126, 161, 174, 223, 370, 386}, 

{71, 126, 161, 174, 223, 269, 386}, 

{71, 161, 174, 223, 269, 386, 479} 

A6 {10, 12, 18, 24, 25, 35} 

A7 
{18, 28, 30, 41}, {18, 30, 41, 71}, 

{22, 39, 52, 71}, {26, 30, 41, 71} 

A8 

{1, 2, 3, 4, 5, 6, 8,9,10, 11, 12, 14,  

16, 17, 21,22, 24, 26, 27, 29, 30,  

32, 34, 35, 36, 37, 38, 39, 40, 42,  

56, 57, 62, 66, 68, 71, 74, 77, 78,  

79, 80, 85, 86, 87, 88, 90, 92, 99,  

102, 103, 104, 106, 107, 109, 111, 

112, 113, 114, 115, 116, 118,119, 

120, 121, 122, 123},  

{1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14,  

16, 18, 21, 22, 24, 26, 27, 29, 30,  

32, 34, 35, 36, 37, 38, 39, 40, 42,  

56, 57, 62, 66, 68, 71, 72, 73, 74,  

77, 78, 79, 80, 81, 85, 86, 87, 88,   

92, 97, 102, 103, 104, 106, 107,  

109, 111, 112, 113, 114, 116, 118,  

119, 120, 121, 122, 123}, 

{1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12,  

14, 16, 17, 21, 22, 24, 26, 27, 29,   

30, 32, 34, 35, 36, 37, 38, 39, 40,   

42, 56, 57, 62, 66, 68, 71,72, 74,   

77, 78, 79, 80, 85, 86, 87, 88, 92,   

99, 102, 103, 104, 106, 107, 109,  

111, 112, 113, 114, 115, 116, 118, 

119, 120, 121,122,123} 

A9 {1, 10, 11, 176, 177, 260, 379, 470} 

A10 
{299, 389, 434, 552, 571, 726,  

756, 788, 885, 886, 887, 888} 

 

 
 
Table 7. The largest cliques obtained by moDE 
algorithm for the second group of test problems. 

 
Problem The largest cliques represented  

 by sets of vertices 

B1 
{49, 56, 58, 59, 60, 62, 63, 64, 65, 66}, 

{49, 59, 60, 61, 62, 63, 64, 65, 66, 67} 

B2 
{2, 26, 34, 38, 46, 90, 104, 106, 110}, 

{47, 50, 54, 68, 74, 84, 89, 111, 115} 

B3 

{67, 109, 112,118, 131, 147, 150, 152, 

162, 166, 167, 174, 176, 182, 201, 

219,230, 248, 255, 258, 261, 299},  

{67,112,118,131,147, 152, 162, 166, 

167,172,174,176, 182, 201, 217, 219,  

230, 248, 255, 258,  261,  299} 

B4 
{56, 124, 159, 172, 221, 366, 381}, 

{69,124,159, 172, 221, 366, 381} 

B5 

{2, 6, 7, 9, 10, 11, 12, 15, 22, 23, 25,  

26, 27, 35,  41, 55, 56, 58, 59, 60, 61,  

64, 73, 74, 77, 79, 80,  82, 86, 87, 89, 

90,  91, 92, 97,  132,  133, 136,  142, 

153, 155, 157, 164,  166, 172,  173}, 

{2, 6, 9, 10, 11, 12, 15, 22, 23, 25, 26, 

27, 35,  41,  55,  56,  58, 59,  60, 61, 64, 

73, 74, 77, 79, 80, 82, 86, 87, 89, 90,  

91, 92, 97,  99,  132, 133, 136, 142,153, 

155, 157, 164,166,172,173 }, 

{6, 9, 10, 11, 12, 15, 22, 23, 25, 26,   27, 

35, 41, 55, 56, 58, 59,   60,  61,   73, 74, 

76, 77, 79, 80,  82, 84, 86, 87,  89,  90, 

91, 92, 97, 99, 132, 133,136,  142, 153, 

155, 157,164, 166,172, 173} 

B6 

{4, 7, 12, 13, 14, 15, 18, 19, 20, 21, 23, 

101, 121, 128, 133, 137, 149, 150,  152, 

164,  165, 166, 167, 168, 169, 170,  

171, 172, 173, 174 } 

B7 {4, 5,15,16,45,46, 47,176,177} 

B8 

{646, 1430, 1431, 1432,1433,1434, 

1435, 1436,1437, 1438, 1439, 1440, 

1441, 1442, 1443, 1444, 1445, 1446, 

1447, 1448} 

B9 
{90,132,154,249,276,279,377, 433, 

455, 582, 615,669} 

B10 

{132, 204, 273, 399, 416, 536}, 

{204, 273, 399, 416, 431, 448}, 

{399, 416, 431, 466, 504, 536}, 

{416, 448, 482, 504, 523, 584}, 

{536,538, 562, 568, 575, 619} 
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5 Conclusion 
      In this research, a modified DE algorithm called 

moDE is presented for finding a maximum clique in 

social networks.  It solves the constrained continuous 

optimization problem which is transformed from the 

discrete maximum clique problem by integrating 

several improvements to the basic DE: a new 

mutation strategy to generate and adjust mutant 

vectors, the mix of two important crossover rates in 

crossover, and the extracting and extending clique 

procedure. The experimental results show that the 

moDE algorithm is efficient for finding maximum 

cliques for all test problems and outperforms the 

compared method. Moreover, it can find the larger 

cliques than those reported in the reference for 4 test 

problems. This indicates that the proposed algorithm 

is effective for finding a maximum clique in social 

networks. 

      This research work also presents a promising 

approach of modifying and applying the efficient DE 

algorithm for continuous optimization problems to 

solve graph and network problems which are discrete 

(combinatorial) optimization problems. It is done 

through the equivalent continuous versions of the 

discrete problems. Future research can investigate the 

possibility of solving other graph problems such as 

graph coloring problems and the maximum 

independent set problems using the same approach.  
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