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Abstract: A basic system with important potential applications in quantum technologies is a quantum dot in the
Voigt geometry. The spin states of the quantum dot in the Voigt geometry can act as a prototype qubit which
can be manipulated by applied optical fields in order to produce the necessary quantum gates. The basic method
for spin initialization in a quantum dot in the Voigt geometry is optical pumping. Here, we propose and analyze
a new method for the coherent preparation of the quantum dot spin states based on adiabatic control methods.
Specifically, we show that the application of two mutually delayed and partially overlapping optical pulses, similar
to those used in stimulated Raman adiabatic passage, can lead to initialization of one of the spin states with high
fidelity. We also demonstrate that the fidelity of the method may be increased by integrating the quantum dot with
a micropillar cavity. Specifically, we show that a preferential Purcell-enhanced decay rate towards the target spin
state, in certain cases, increases the fidelity of spin initialization of the adiabatic method. Our results are based on
the numerical solution of the relevant density matrix equations for the quantum dot system, either in an isotropic
photonic environment or in a micropillar cavity. The calculations presented in this paper are not limited to quantum
dots in micropillar cavities. Similar effects can be obtained by other photonic structures as well, as for example,
for quantum dots in photonic crystal cavities.

Key–Words: Quantum dot, Optical fields, Voigt geometry, Spin initialization, Adiabatic passage, Purcell effect,
Delayed optical pulses

1 Introduction
Electron and hole spin states in semiconductor quan-
tum dots are among the most promising candidates
for solid state quantum technologies [1]. Their ma-
nipulation can be efficiently achieved by application
of optical pulses. This has been verified, for more
than a decade, by a series of important experiments
for the coherent manipulation, measurement, readout
and entanglement of individual spins in quantum dots
[2]. Quantum dots can also be efficiently coupled with
photonic structures, like microcavities, nanocavities
and plasmonic nanostructures, allowing for additional
control. An important system that has attracted signif-
icant attention in this research area is based on the spin
states of a quantum dot in the Voigt geometry (see Fig.
1). A basic problem for the quantum dot electron spin
states in the Voigt geometry is the initialization, i.e.,
the preparation of one of the two electron spin states
starting from an equal incoherent mixture, which is
the natural initial state of the system. Here, we present
and analyze a new method to implement the problem
of spin initialization based on adiabatic passage and

explore an idea to increase its fidelity.

The basic method for spin initialization in a quan-
tum dot in the Voigt geometry is optical pumping. A
resonant optical field couples one of the lower spin
states, say state |1⟩, to one of the upper trion states,
say state |4⟩. Then, after the excitation to the trion
state the population may return to either the coupled
spin state |1⟩ and re-excited by the optical field or de-
cay towards state |2⟩ and remain there [3]. If this pro-
cess lasts several decay times of the trion state, then
the population is eventually transferred to state |2⟩ and
a single spin state is created from the initial incoher-
ent mixture. The optical pumping process can be ac-
celerated by using a preferential Purcell-accelerated
decay rate towards the spin state we desire to create
(from state |4⟩ to state |2⟩ in our example). This can
be achieved by integration of the quantum dot with
micropillar cavities [4, 5], photonic crystal nanocavi-
ties [6], metallic nanostructures [7, 8], and even two-
dimensional materials [9].

An alternative method for spin initialization has
been recently proposed by Paspalakis et al. [10],
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which has similar and, in some parameters regimes
larger, fidelities than optical pumping. This method
uses two mutually delayed and partially overlapping
optical pulses, similar to those used in stimulated Ra-
man adiabatic passage (STIRAP) [11, 12, 13], for ef-
ficient spin initialization in a quantum dot in the Voigt
geometry. The duration of this method is fixed by the
duration of the applied optical pulses. However, for a
fixed pulse duration the fidelity of the method can be
altered by different approaches. Here, we show that a
preferential Purcell-enhanced decay rate towards the
target spin state, in certain cases, increases the fidelity
of spin initialization of the adiabatic method. We im-
plement this idea by integrating the quantum dot with
a micropillar cavity.

The paper is organized as follows. In the next sec-
tion, we present the density matrix equations for the
time evolution of a quantum dot in the Voigt geometry
under the application of two optical pulses. In section
3, we solve numerically the density matrix equations
in an isotropic photonic environment and show that ef-
ficient spin initialization occurs under the interaction
of the quantum dot system with two mutually delayed
and partially overlapping optical pulses. The resulted
time evolution is explained by a combination of op-
tical pumping in early stages and adiabatic following
in the later stages of the dynamics. Then, in section 4
we explore if we can influence the fidelity of the adia-
batic spin initialization method presented in section 3
by using enhanced spontaneous decay, via the Purcell
effect, towards the target spin state. This is succeeded
by placing the quantum dot in an anisotropic photonic
environment. Specifically, the quantum dot is placed
in a micropillar cavity that enhances the spontaneous
decay rate for a specific electric dipole moment di-
rection and does influence the spontaneous decay for
electric dipole moments with perpendicular directions
[4, 5]. Finally, section 5 concludes our work.

2 Equations for the dynamics of a
quantum dot in the Voigt geometry
under the application of two opti-
cal pulses

We consider a singly-charged self-assembled quan-
tum dot grown along the z-axis. By applying an ex-
ternal magnetic field in the Voigt geometry, along the
x-axis, lifts the degeneracy of electron/hole levels by
Zeeman splitting. Then, the ground single spin levels
are |1⟩ = | ↓x⟩ and |2⟩ = | ↑x⟩ and the two excited
trion states are |3⟩ = | ↓x↑x⇑x⟩ and |4⟩ = | ↓x↑x⇓x⟩.
Here, ⇑ (⇓) and ↑ (↓) denote heavy hole and elec-
tron spins, respectively. For the level scheme, see

Figure 1: Energy level diagram for a quantum dot in
the Voigt geometry. The magnetic field induces the
Zeeman splitting in the upper and lower levels.

Fig. 1. Here, the vertical transitions (|1⟩ ↔ |4⟩ and
|2⟩ ↔ |3⟩) give x-polarized electric dipole moments
and the cross transitions (|1⟩ ↔ |3⟩ and |2⟩ ↔ |4⟩)
give y-polarized electric dipole moments. We take
that the quantum dot interacts with two linearly polar-
ized pulsed laser fields with orthogonal polarizations;
the field with frequency ωa (ωb) has a x-polarized (y-
polarized) electric field.

The Hamiltonian that describes the interaction of
the optical fields with the quantum dot system, in the
dipole and rotating wave approximations, is given by

H =
4∑

n=1

h̄ωn|n⟩⟨n| − h̄

[
Ωa(t)e

−iωat|4⟩⟨1|

+ Ωa(t)e
−iωat|3⟩⟨2|+Ωb(t)e

−iωbt|3⟩⟨1|

+ Ωb(t)e
−iωbt|4⟩⟨2|+H.c.

]
. (1)

Here, h̄ωn with n = 1 − 4, is the energy of state |n⟩.
Also, Ωa(t), Ωb(t) are the time-dependent Rabi fre-
quencies defined as Ωa(t) = Ωfa(t), Ωb(t) = Ωfb(t),
which are assumed real for simplify, where fa(t),
fb(t) are the dimensionless envelopes of the pulses
with frequencies ωa, ωb, respectively, and Ω is the
maximum value of the Rabi frequencies (taken the
same for simplicity for the two pulses). The Hamil-
tonian of Eq. (1), after a transformation, using the
unitary operator U(t) = e−i

∑4

n=1
αn|n⟩⟨n|t, where

α1 = ω1, α2 = ωa − ωb + ω1, α3 = ω3 + ωa − ω41,
and α4 = ωa + ω1, gives the interaction Hamiltonian

Heff = −h̄(ωa − ωb − ω21)|2⟩⟨2|
− h̄(ωa − ω41)|3⟩⟨3| − h̄(ωa − ω41)|4⟩⟨4|
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− h̄

[
Ωa(t)|4⟩⟨1|+Ωb(t)|4⟩⟨2|

+ Ωa(t)e
−i(ωa−ωb+ω43)t|3⟩⟨2|

+ Ωb(t)e
i(ωa−ωb−ω43)t|3⟩⟨1|+H.c.

]
, (2)

with ωnm = ωn −ωm. Also, ω21 (ω43) is the Zeeman
splitting of the single-electron spin states (heavy-hole
spin trion states).

Using the Hamiltonian of Eq. (2) we obtain the
equations for the density matrix elements of the sys-
tem:

ρ̇11(t) = γ41ρ44(t) + γ31ρ33(t)

+ iΩa(t)ρ41(t)− iΩa(t)ρ14(t)

+ iΩb(t)ρ31(t)e
−i(ωa−ωb−ω43)t

− iΩb(t)ρ13(t)e
i(ωa−ωb−ω43)t , (3)

ρ̇22(t) = γ32ρ33(t) + γ42ρ44(t)

+ iΩa(t)ρ32(t)e
i(ωa−ωb+ω43)t

− iΩa(t)ρ23(t)e
−i(ωa−ωb+ω43)t

+ iΩb(t)ρ42(t)− iΩb(t)ρ24(t) , (4)
ρ̇33(t) = −(γ31 + γ32)ρ33(t)

+ iΩa(t)ρ23(t)e
−i(ωa−ωb+ω43)t

− iΩa(t)ρ32(t)e
i(ωa−ωb+ω43)t

+ iΩb(t)ρ13(t)e
i(ωa−ωb−ω43)t

− iΩb(t)ρ31(t)e
−i(ωa−ωb−ω43)t , (5)

ρ̇44(t) = −(γ41 + γ42)ρ44(t)

+ iΩa(t)ρ14(t)− iΩa(t)ρ41(t)

+ iΩb(t)ρ24(t)− iΩb(t)ρ42(t) , (6)
ρ̇14(t) = − [i(ωa − ω41) + Γ14] ρ14(t)

+ iΩa(t) [ρ44(t)− ρ11(t)]

+ iΩb(t)ρ34(t)e
−i(ωa−ωb−ω43)t

− iΩb(t)ρ12(t) , (7)
ρ̇13(t) = − [i(ωa − ω41) + Γ13] ρ13(t)

+ iΩb(t) [ρ33(t)− ρ11(t)] e
−i(ωa−ωb−ω43)t

+ iΩa(t)ρ43(t)

− iΩa(t)ρ12(t)e
i(ωa−ωb+ω43)t , (8)

ρ̇12(t) = − [i(ωa − ωb − ω21) + Γ12] ρ12(t)

+ iΩa(t)ρ42(t)

+ iΩb(t)ρ32(t)e
−i(ωa−ωb−ω43)t

− iΩa(t)ρ13(t)e
−i(ωa−ωb+ω43)t

− iΩb(t)ρ14(t) , (9)
ρ̇34(t) = −Γ34ρ34(t)

+ iΩa(t)ρ24(t)e
−i(ωa−ωb+ω43)t

+ iΩb(t)ρ14(t)e
i(ωa−ωb−ω43)t

− iΩa(t)ρ31(t)− iΩb(t)ρ32(t) , (10)
ρ̇24(t) = − [i(ωb − ω42) + Γ24] ρ24(t)

+ iΩa(t)ρ34(t)e
i(ωa−ωb+ω43)t

+ iΩb(t) [ρ44(t)− ρ22(t)]

− iΩa(t)ρ21(t) , (11)
ρ̇23(t) = − [i(ωb − ω42) + Γ23] ρ23(t)

+ iΩa(t) [ρ33(t)− ρ22(t)] e
i(ωa−ωb+ω43)t

+ iΩb(t)ρ43(t)

− iΩb(t)ρ21(t)e
−i(ωa−ωb−ω43)t , (12)

with
∑

n ρnn(t) = 1, ρnm(t) = ρ∗mn(t). Here, γnm
are the population decay rates and Γnm = Γmn the
coherence decay rates, which are given by Γ14 =
Γ24 = (γ41 + γ42)/2, Γ13 = Γ23 = (γ31 + γ32)/2,
Γ34 = (γ31 + γ32 + γ41 + γ42)/2, and Γ12 = 0.

Here, we will assume that the two laser pulses are
at single photon resonance with specific transitions,
such as ωa = ω41 and ωb = ω42. The dimensionless
pulse envelopes are taken

fa(t) = e−(t−tf/2−η)2/t2p , (13)

fb(t) = e−(t−tf/2+η)2/t2p , (14)

where η is the pulse delay, tf/2 determines the center
of the laser pulses for η = 0, and tp determines the
width of the pulses.

3 The idea of adiabatic spin initial-
ization with delayed optical pulses

In Fig. 2 we present calculations for the evolution of
the population of the four quantum states under the
application of the optical fields. Initially, we assume
that the quantum dot is in an isotropic environment
(e.g. free space or a homogeneous dielectric) such
that the excited trion states decay to the ground spin
states with the same population decay rate Γ. There-
fore, in accordance to previous work [3, 10, 14], we
take γ31 = γ32 = γ41 = γ42 = Γ. For this figure, and
for the rest of the article the parameters of the quan-
tum dot are taken h̄Γ = 1.2 µeV, h̄ω21 = 0.124 meV,
h̄ω43 = 0.078 meV (the Zeeman splittings correspond
to magnetic field ∼ 8 T), typical for InAs quantum
dots [3, 14]. The parameters for the laser fields are
taken Ω = 2π ns−1, tp = tf/6 ns, η = tf/8, un-
less stated otherwise. In all the calculations in this
work the quantum dot system starts from an initial in-
coherent mixture of the two electron-spin states, so
ρ11(0) = 1/2, ρ22(0) = 1/2, ρ33(0) = ρ44(0) = 0,
and ρnm(0) = 0 with n ≠ m.

In Fig. 2 we present the time evolution of the pop-
ulation in the different states for the system interact-
ing with Gaussian pulses of Eqs. (13) and (14). In the
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Figure 2: (a) The pulse envelopes from Eqs. (13) and
(14) with frequency ωa (solid curve) and with fre-
quency ωb (dashed curve). (b) The time evolution of
the population, ρnn(t) with n = 1 − 4, of states |1⟩
(solid curve), |2⟩ (dashed curve), |3⟩ (dotted curve)
and |4⟩ (dash-dotted curve) for Gaussian pulses of
Eqs. (13) and (14) with tf = 10 ns.

presented case the pulse with frequency ωb precedes
that with frequency ωa in both switch on and switch
off, see Fig. 2(a). The dynamics of the population in
Fig. 2(b) shows that the population is partially trans-
ferred for short times to state |1⟩, but at later times
it is efficiently, almost completely, transferred to state
|2⟩. The final population of spin state |2⟩ is 0.995211.
We note that if we reverse the time order of the two
pulses, then the spin state |1⟩ will be created. Also,
if we change the time-dependent Rabi frequencies so
that the two optical pulses are switched on in the same
manner as in Fig. 2(a) and switched off simultane-
ously, any coherent superposition of the spin states |1⟩
and |2⟩ may be created [10].

Let us explain the behavior of the system. As the
two pulses are applied at single-photon resonance and
ω21 ± ω43 > Ω we can assume that the terms with
e±i(ωa−ωb±ω43)t can be omitted from the Hamiltonian
of Eq. (2), so effectively we get a three-level Λ-type
system for states |1⟩, |2⟩ and |4⟩, while state |3⟩ is
practically not coupled to the optical pulses. Then, the
effective Hamiltonian for this reduced Λ-type system

is

HΛ = −h̄(ωa − ω41)|3⟩⟨3| − h̄(ωa − ω41)|4⟩⟨4|

− h̄

[
Ωfa(t)|4⟩⟨1|

+ Ωfb(t)|4⟩⟨2|+H.c.

]
. (15)

An important property of Eq. (15) is the existence
of an eigenstate with a zero eigenvalue, the so-called
dark state, which has the form:

|ψDark(t)⟩ =
fb(t)√

f2a (t) + f2b (t)
|1⟩

− fa(t)√
f2a (t) + f2b (t)

|2⟩ . (16)

The evolution of the quantum dot spin presented
above can be understood by splitting the dynamics in
two parts. As the initial state of the system is an inco-
herent mixture of the two spin states, the population is
initially divided between the two lower states |1⟩ and
|2⟩ and no initial coherence exists. At early times only
one laser pulse is applied (in our case the pulse with
frequency ωb). Then, at this time period, the uncou-
pled lower state, state |1⟩, gains population via optical
pumping [3]. Then, the second field is switched on,
and the system can be described by the Hamiltonian
of Eq. (15) and, if the interaction is adiabatic, the sys-
tem follows the evolution of the dark state, Eq. (16).
In that time period the population can be completely
transferred to state |2⟩. The later part of the dynamics,
i.e., after the second field is switched on, is similar to
STIRAP [11, 12, 13].

4 Increasing the fidelity of spin ini-
tialization using the Purcell effect

We will now explore if we can influence the fidelity
of the adiabatic spin initialization method with de-
layed optical pulses by using enhanced spontaneous
decay, via the Purcell effect. To this end we assume
that the quantum dot is placed in a micropillar cavity,
see Fig. 3, that enhances the spontaneous decay rate
for a y-polarized electric dipole moment but does in-
fluence the spontaneous decay for a x-polarized elec-
tric dipole moment [4, 5]. In this case spontaneous
emission rates are given by

γ41 = γ32 = Γ, γ42 = γ31 = FpΓ , (17)

where Fp is the Purcell factor for the enhancement
of the spontaneous emission by the micropillar cav-
ity, with Fp > 1.
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Figure 3: A quantum dot in the Voigt geometry placed
in a micropillar cavity.

In Fig. 4 we present the time evolution of the pop-
ulation in the different states for the system interacting
with Gaussian pulses of Eqs. (13) and (14) in the case
that the quantum dot system in placed in a micropil-
lar cavity for three different cases of the Purcell factor
Fp, Fp = 3, 6, 9 for (a), (b), (c), respectively. The
dynamics of the population in Fig. 4 is similar to that
of Fig. 2. However, in every case, the final popula-
tion of spin state |2⟩ increases in comparison to the
result of Fig. 2 and becomes 0.999632 for Fp = 3,
0.999373 for Fp = 6 and 0.998793 for Fp = 9, so in
every case presented in Fig. 4 the fidelity of spin ini-
tialization is larger than in the case of the quantum dot
without the cavity [compare with the results shown
in Fig. 2(b)]. The increase of the fidelity is impor-
tant for quantum technologies applications, as there
almost unity fidelity is desired.

Performing additional calculations, we have
found that larger initialization fidelities are obtained
up to Purcell factors Fp ≈ 17.5 for the quantum dot
with the microrpillar cavity than without the cavity,
for the used parameters. For larger values of Fp the
fidelities for the quantum dot with the micropillar cav-
ity are smaller than without the micropillar cavity and
also the fidelities gradually decrease with the increase
of the Purcell factor. This is shown in Fig. 5, where
the final population of the target state |2⟩ is shown as
a function of Fp for different values of Ω. The same
behavior occurs for different Ω, as it can be seen from
Fig. 5. In every case the maxima of the fidelities are
obtained for 3.2 < Fp < 3.7. Also, the maximum
value of Fp that gives larger initialization fidelities
for the quantum dot with the microrpillar cavity than
without the cavity varies with the actual value of Ω.
Note that the Purcell factors needed for the enhance-

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Time HnsL

Po
pu

la
tio

n

HaL

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Time HnsL

Po
pu

la
tio

n

HbL

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Time HnsL

Po
pu

la
tio

n

HcL

Figure 4: The time evolution of the population, ρnn(t)
with n = 1−4, of states |1⟩ (solid curve), |2⟩ (dashed
curve), |3⟩ (dotted curve) and |4⟩ (dash-dotted curve)
for Gaussian pulses of Eqs. (13) and (14) with tf = 10
ns for the quantum dot in the micropillar cavity. In (a)
Fp = 3, in (b) Fp = 6, and in (c) Fp = 9.

ment of fidelity are within current experimental capa-
bilities [15].

5 Conclusion
In this work, we presented an alternative method to
optical pumping for spin initialization in a quantum
dot in the Voigt geometry. The method uses two mutu-
ally delayed and partially overlapping optical pulses,
which lead to an adiabatic evolution of the quantum
system, for the efficient spin initialization in a quan-
tum dot in the Voigt geometry. We also analyzed
the potential of increasing the fidelity of the method
by a preferential Purcell-enhanced decay rate towards
the target spin state. We showed that the fidelity of
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Figure 5: The population of state |2⟩ at t = tf ,
ρ22(tf ), as a function of Fp for different values of Ω,
namely Ω = 2π ns−1 (solid curve), Ω = 4π ns−1

(dashed curve), and Ω = 6π ns−1 (dotted curve) with
tf = 10 ns for the quantum dot in the micropillar cav-
ity. The horizontal lines indicate the value of ρ22(tf )
without the micropillar cavity for the different values
of Ω.

spin initialization of the quantum dot may increase by
integrating the quantum dot with a micropillar cav-
ity. Before closing, we note that the calculations pre-
sented above are not limited to quantum dots in mi-
cropillar cavities. Similar effects can be obtained by
other photonic structures as well, as for example, for
quantum dots in photonic crystal cavities [16]. The
methods presented in this work are particularly impor-
tant in quantum technologies applications, namely in
the preparation of qubits, and in nanophotonics. For
future research, we intend to combine the presented
methodologies with shortcuts to adiabaticity methods
[17], as well as, optimal control methods [18] for in-
creasing the fidelity of the initialization process for
shorter electromagnetic pulses.
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