
Optical Control of Initialization of a Quantum Dot in the Voigt
Geometry near a Graphene Layer

DIONISIS STEFANATOS, VASILIOS KARANIKOLAS, NIKOS ILIOPOULOS, EMMANUEL PASPALAKIS
University of Patras

Department of Materials Science
265 04 Rio Patras

GREECE
dionisis@post.harvard.edu, karanikv@tcd.ie, n.iliopoulos@windowslive.com, paspalak@upatras.gr

Abstract: We propose and analyze fast spin initialization for a quantum dot in the Voigt geometry by placing it
near a graphene layer. We show that high levels of fidelity, significantly larger than in the case of the quantum
dot without the layer, can be quickly obtained due to the anisotropy of the enhanced spontaneous decay rates of
the quantum dot near the graphene layer. We initially obtain these results by using a continuous wave optical field
with constant control amplitude. We also use state of the art numerical optimal control to find the time-dependent
electric field which maximizes the final fidelity for the same short duration as in the previous case. A better fidelity
is obtained with this method.
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1 Introduction
Semiconductor quantum dots (QDs) are among the
most promising candidates for solid state quantum in-
formation processing and for quantum technologies
in general since they allow for engineered energies
and wavefunctions and can be efficiently manipu-
lated by electric, magnetic and optical fields [1, 2].
They can also be integrated with microphotonic and
nanophotonic structures, such as microcavities and
nanocavities, photonic crystals, and plasmonic nanos-
tructures, allowing for extra control in both the weak
and strong light-matter coupling regimes. Spin states
in negatively and positively charged QDs are espe-
cially useful for quantum information technologies,
with the important problems being the spin initial-
ization, coherent manipulation, and readout. A QD
structure that has been studied in detail both theoret-
ically and experimentally is based on the spin states
in the Voigt configuration, where a magnetic field is
applied perpendicular to the growth axis of the QD
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The level structure for the QD in the Voigt ge-
ometry is shown in Fig. 1(a). The natural initial state
of the QD is an incoherent mixture with equal popu-
lations in the two electron spin states, states |1〉 and
|2〉. A basic process in quantum information proto-
cols is the initialization [11], where in this system
a specific electron spin state is created. The most
common method for initialization relies on the opti-

cal pumping process [3]. Let’s assume that we wish
to create state |2〉. We apply an optical field with a
x−polarized electric field which couples spin state |1〉
to the trion state |4〉. Then, by spontaneous decay the
population is pumped into spin state |2〉 after a few de-
cay times. In an isotropic photonic environment, for
example in free-space vacuum, the decay rates from
state |4〉 to states |1〉 and |2〉 are the same. By using an
anisotropic photonic environment the decay rate from
state |4〉 to state |2〉 increases in comparison to the de-
cay rate from state |4〉 to state |1〉 and this leads to
preferential deexcitation towards state |2〉 in shorter
times. This idea has been explored by embedding the
QD in a micropillar [5], placing it in photonic crys-
tal nanocavities [6], next to a metallic nanoparticle
[7], a metal-dielectric interface [8], and even a bowtie
nanoantenna [9].

Here, we explore a different nanostructure for ac-
celerating the optical pumping process in a QD in
the Voigt geometry. We place the QD next to a sin-
gle graphene layer, see Fig. 1(b). Graphene strongly
modifies the spontaneous decay rates of nearby quan-
tum emitters [12, 13, 14, 15]. It can also create
anisotropic spontaneous decay rates for nearby quan-
tum emitters for dipoles parallel and perpendicular
to the graphene sheet [12, 14, 15]. In the present
work we investigate the dynamics of spin initializa-
tion for the composite system using optical pumping
with two different types of optical pulses, using typ-
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Figure 1: (a) Energy level diagram for a QD in the

Voigt geometry. The magnetic field induces the Zee-

man splitting in the upper and lower levels. The op-

tical field resonant with the |1〉 ↔ |4〉 transition is

x-polarized. (b) The QD is placed a distance z = R
above a graphene layer, which lies on the x− y plane

at z = 0. The growth axis of the QD is y while the

magnetic field is applied along the x-axis.

ical values of energies for the QD. First, we use a
continuous wave electromagnetic field with constant
Rabi frequency, and show that, in the presence of the
graphene layer, higher fidelity levels can be achieved
in short times compared to the case without graphene.
Next, we use state of the art numerical optimal control
to find the time-dependent electric field, leading to a
time-dependent Rabi frequency profile, which maxi-
mizes the final fidelity for the same short duration as
in the previous case. A better fidelity is obtained with
this method.

2 Dynamics equations for a quantum
dot in the Voigt geometry near a
graphene monolayer

For the studied system, we consider a singly-charged
self-assembled QD grown along the y-axis. By apply-
ing an external magnetic field in the Voigt geometry,

along the x-axis, lifts the degeneracy of electron/hole
levels by Zeeman splitting. Then, the ground spin lev-
els are |1〉 = | ↓x〉 and |2〉 = | ↑x〉 and the two excited
trion states are |3〉 = | ↓x↑x⇑x〉 and |4〉 = | ↓x↑x⇓x〉.
Here, ⇑ (⇓) and ↑ (↓) denote heavy hole and elec-
tron spins, respectively. For the level scheme, see Fig.
1(a). Here, the vertical transitions (|1〉 ↔ |4〉 and
|2〉 ↔ |3〉) give x-polarized dipole matrix elements
and the cross transitions (|1〉 ↔ |3〉 and |2〉 ↔ |4〉)
give z-polarized dipole matrix elements. In this work,
we aim to create state |2〉. Thus, we take the QD to
interact with a x-polarized laser field applied at exact
resonance with the |1〉 ↔ |4〉 transition, exploring the
method of optical pumping.

In order to study the dynamics of spin initializa-
tion, we derive the density matrix equations of the
system. The Hamiltonian describing the interaction
between the optical field and the QD system, in the
dipole and rotating wave approximations, is

H =
4∑

n=1

h̄ωn|n〉〈n|

− h̄
[
Ω(t)e−iω0t|4〉〈1|+Ω(t)e−iω0t|3〉〈2|

]
+ H.c. (1)

where h̄ωn, n = 1, 2, 3, 4, is the energy of state |n〉
and Ω(t) is the generally time-dependent Rabi fre-
quency of the applied field. The field is resonant with
the |1〉 ↔ |4〉 transition, thus ω0 = ω4 − ω1 = ω41.
Here we use the value h̄ω0 = 1.31 eV. This is a typical
value for InAs self-assembled QDs used in relevant
studies [3, 4, 9], and it is also adopted here. We note
that although we did not calculate the electronic struc-
ture of the QD numerically here, one can calculate its
electronic structure using several methods, like the ef-
fective mass approximation and k · p method [16],
empirical tight binding models [17], empirical pseu-
dopotential based approaches [18], and others [19].

Using the unitary operator U(t) = e−i
∑4

n=1
an|n〉〈n|t,

with a1 = ω1, a2 = ω0 + ω1, a3 = ω3 + ω0 − ω41,
a4 = ω0 + ω1, Hamiltonian (1) is transformed to the
interaction Hamiltonian

Heff = −h̄(ω0 − ω21)|2〉〈2| − h̄(ω0 − ω41)|3〉〈3|
−h̄(ω0 − ω41)|4〉〈4| − h̄

[
Ω(t)|4〉〈1|

+Ω(t)e−i(ω0+ω43)t|3〉〈2|+ H.c.

]
, (2)

where ωnm = ωn − ωm. Note that h̄ω21, h̄ω43

are the Zeeman splittings of the single-electron spin
states and the heavy-hole spin trion states, respec-
tively. Throughout this article we use the values
h̄ω21 = 0.124 meV, h̄ω43 = 0.078 meV [4].
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Using the above Hamiltonian we can easily ob-
tain the equations of motion for the density matrix ele-
ments of the QD. In the case where the laser frequency
is at exact resonance with the transition |1〉 ↔ |4〉,
these are

ρ̇11 = γ41ρ44 + γ31ρ33 − 2ΩρI41, (3)

ρ̇22 = γ32ρ33 + γ42ρ44 + 2Ωρ̃I23, (4)

ρ̇33 = −(γ31 + γ32)ρ33 − 2Ωρ̃I23, (5)

ρ̇44 = −(γ41 + γ42)ρ44 + 2ΩρI41, (6)

ρ̇I41 = −γ41 + γ42
2

ρI41 +Ω(ρ11 − ρ44), (7)

˙̃ρ
R
23 = −γ31 + γ32

2
ρ̃R23 + (ω21 + ω43)ρ̃

I
23, (8)

˙̃ρ
I
23 = −γ31 + γ32

2
ρ̃I23 − (ω21 + ω43)ρ̃

R
23

+Ω(ρ33 − ρ22), (9)

where ρ̃23 = ρ23e
−i(ω41+ω43)t and the superscripts

R, I denote real and imaginary parts, respectively.
Note that in the above equations we have also incor-
porated the spontaneous emission from the upper to
the lower energy levels, with

γ41 = γ32 = γx = Fxγ, γ42 = γ31 = γz = Fzγ
(10)

being the radiative decay rates of the corresponding
QD transitions modified by the coupling between the
QD and the graphene layer.

3 Fast initialization with optical con-
trol

As we have already mentioned above, the natural ini-
tial state of the system is an equal incoherent mixture
of states |1〉 and |2〉, thus ρ11(0) = ρ22(0) = 1/2
while the populations of the rest levels and the coher-
ence terms are all zero. Starting from this initial state,
the goal is to apply the appropriate optical field in or-
der to quickly prepare the spin state |2〉 with high fi-
delity. In the following we separately investigate how
this can be efficiently achieved with constant control
Ω and with time-dependent control Ω(t).

3.1 Constant Rabi frequency
We consider a specific case where the QD is placed a
distance R = 5 nm above the graphene layer, while
the chemical potential of the layer is set to the value
μ = 1 eV. We also consider that the layer is placed in
a dielectric environment with ε1 = ε2 = 4. Note that
dielectric environments with permittivity value 4 have
been considered in other works that study the sponta-
neous decay of quantum emitters near graphene layers

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1

Ω/γ

ρ 22
(T

)

(a)

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1

Ω/γ

ρ 22
(T

)

(b)

Figure 2: Final population of level |2〉, ρ22(T ), ver-

sus the constant control Ω for four durations T =
1/γ, 2/γ, 3/γ, 4/γ (from bottom to top) and: (a) in

the presence of a graphene layer placed a distance

R = 5 nm from the QD with chemical potential μ = 1
eV, (b) in the absence of the graphene layer. A realistic

dielectric environment with ε1 = ε2 = 4 is considered

in both cases.

[13], as they model very well the permittivity values
of several materials that are used as hosts to graphene,
like hBN, GaN and SiO2. With the above parame-
ter values one can calculate the corresponding Pur-
cell factors using electromagnetic theory, and specifi-
cally the method of scattering superposition, see Ref.
[14] for the details of the method. The resulting val-
ues are Fx = 3.99307 and Fz = 6.00242. Using
these values we solve numerically Eqs. (3)-(9) and
simulate the response of the quantum dot system. In
Fig. 2(a) we plot the final population of level |2〉,
ρ22(T ), versus the constant control Ω for four dura-
tions T = 1/γ, 2/γ, 3/γ, 4/γ (from bottom to top).
For comparison, in Fig. 2(b) we plot the final pop-
ulations obtained in the absence of graphene, where
Fx = Fz = 2, for the same durations (again with in-

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Dionisis Stefanatos, Vasilios Karanikolas, 

Nikos Iliopoulos, Emmanuel Paspalakis

 
E-ISSN: 2224-2856 

 
302

 
Volume 14, 2019



0 1 2 3 4
0.5

0.6

0.7

0.8

0.9

1

γ t

ρ 22
(t)

Figure 3: Time evolution of state |2〉 population ρ22(t)
when a constant Rabi frequency Ω = 5γ is applied,

for a realistic dielectric environment with ε1 = ε2 = 4
and (a) in the presence of a graphene layer of chemi-

cal potential μ = 1 eV placed a distance R = 5 nm

from the QD (red solid line), (b) in the absence of a

graphene layer (blue dashed line). Observe that the

fidelity obtained with the layer is larger than the one

without it.

creasing duration from bottom to top). Obviously, the
anisotropy in the Purcell factors induced by the pres-
ence of the graphene layer results in higher initializa-
tion fidelities which are obtained at earlier times. This
is further illustrated in Fig. 3, where we display the
time evolution of the population ρ22(t) in the presence
(red solid line) and in the absence (blue dashed line) of
graphene, for a constant control Ω = 5γ (a value close
to optimal as shown in Fig. 2) and duration T = 4/γ.
For example, at t = 3/γ the value ρ22(3/γ) = 0.9962
is obtained with graphene, while the corresponding
value without graphene is just 0.9691. This kind of
improvement is quite important for quantum informa-
tion processing applications, where large values of fi-
delity close to unity are necessary.

3.2 Time-dependent Rabi frequency
Here we recourse to numerical optimization to obtain
time-dependent controls Ω(t) which are zero at the
initial and final times

Ω(0) = Ω(T ) = 0, (11)

while maximize the final population of level |2〉. This
kind of controls are more appropriate for experimental
implementation, since they avoid the initial and final
jumps of the square pulse.

In order to find Ω(t), we use the freely avail-
able optimal control solver BOCOP [20], which can
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Figure 4: For a realistic dielectric environment with

ε1 = ε2 = 4, a graphene layer with chemical poten-

tial μ = 1 eV placed a distance R = 5 nm from the

QD, and duration T = 3/γ: (a) Optimal control Ω(t)
using a polynomial of order p = 6 in Eq. (12), (b) cor-

responding ρ22(t). The final value ρ22(T ) = 0.9979
is larger than the value 0.9962 obtained with constant

control and for the same duration in Fig. 3.

easily incorporate boundary conditions like (11). We
also exploit a feature provided by this program, which
allows to express the control as a polynomial func-
tion of time. Specifically, we consider Ω as an extra
state variable, on which we impose boundary condi-
tions (11), while we place the polynomial control in
its derivative. The corresponding equation in normal-
ized time τ = γt is

d

dτ

(
Ω

γ

)
=

p∑
k=0

akτ
k, (12)

where we have used a p-th order polynomial for the
derivative, so Ω is of order p+1, and ak are the dimen-
sionless unknown coefficients to be determined by the
optimization procedure. We additionally impose the
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Table 1: Optimal coefficients ak, k = 0, 1, . . . p, for

the polynomial control (14) with p = 6, when μ = 1
eV, R = 5 nm, ε1 = ε2 = 4, and the duration is set to

T = 3/γ.

ak, p = 6

146.2137

-907.9316

1812.3362

-1688.2531

806.7791

-191.4565

17.8462

constraint
0 ≤ Ω(t)/γ ≤ 20, (13)

in order to restrict the field amplitude within experi-
mentally feasible values. Now we can state the op-
timal control problem. For system equations (3)-(9),
which can easily be expressed using normalized time
and dimensionless variables, augmented by Eq. (12)
for Ω, we would like to find the coefficients ak which
maximize the final value ρ22(T ) for a specific dura-
tion T , while satisfy the boundary condition (11) and
the constraint (13). Having found ak we can integrate
Eq. (12) and obtain the field

Ω(t)

γ
=

p+1∑
m=1

am−1

m
(γt)m (14)

expressed in the original time t.
As in the case with constant control, we consider

a specific example with μ = 1 eV, R = 5 nm, ε1 =
ε2 = 4, while the duration is set to T = 3/γ. The
optimal coefficients found using BOCOP for polyno-
mial of order p = 6 in Eq. (12) are listed in Table 1.
The resulting control field Ω(t) and the correspond-
ing evolution ρ22(t) are displayed in Fig. 4. The final
value ρ22(T ) is 0.9979, larger than the value 0.9962
obtained with constant control Ω = 5γ for the same
duration in Fig. 3, as expected from an optimization
procedure. Note that if we increase the polynomial or-
der in the control, for example to p = 7, a marginal
improvement in the fidelity at the fifth decimal digit is
observed, and this is why we use the value p = 6 in
Eq. (12).

The suggested methodology is advantageous
compared to other recent works where control fields
polynomial in time with coefficients optimized with
respect to an objective are used, see for example Refs.
[21, 22, 23]. In these studies, some of the coefficient
are fixed in order to satisfy the boundary conditions at
initial and final times. For each value of the remaining

free coefficients, the system equations are simulated
and the resulting objective value is recorded. The op-
timal coefficients are those optimizing the objective.
Usually, one or two free coefficients are employed,
since the number of simulations and thus the compu-
tational time grows exponentially with the number of
free parameters. With the optimal control solver BO-
COP that we exploit here, we can use a large num-
ber of coefficients in the optimization, as we did for
p = 6, while the optimal solution is obtained much
faster than with the above described practice. Finally,
note that instead of polynomial control functions we
could have used trigonometric functions, as did for a
different problem in a recent publication [24].

4 Conclusion
We studied the problem of fast spin initialization for
a QD in the Voigt geometry placed near a graphene
layer. We showed that high levels of fidelity, signif-
icantly larger than in the case of the QD without the
layer, can be quickly obtained due to the anisotropy
of the enhanced spontaneous decay rates of the QD
near the graphene layer. We obtained this improvent
by first using a continuous wave electromagnetic field
with constant control amplitude. Next, we used state
of the art numerical optimal control to find the time-
dependent electric field which maximized the final fi-
delity for the same short duration as in the previous
case. A better fidelity was obtained with this method.
Closing, we would like to point out that a full para-
metric study of the initialization dynamics for various
distances between the QD and the graphene layer, the
constant Rabi frequency and the chemical potential of
the graphene is needed and we have started working
on it.
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