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Abstract: Controlling unstable behaviour of many nonlinear dynamical systems is one of the recent interesting
topics for researchers. Many methods are proposed to stabilize chaotic discrete time systems. In this paper, a
comparison between different control methods is performed for distinguishing their efficiency. The used control
methods are Ott-Grebogi-Yorke (OGY), Predictive Feedback Control (PFC), Time Delay Auto Synchronization
(TDAS) and its extended (ETDAS), control methods based on self-organizing migrating algorithm (SOMA) and
differential evolution (DE). They are briefly introduced and then applied to most popular discrete nonlinear systems
100 times. The controlled orbits of period-1 characteristics are evaluated, presenting the robust of each method
according to autocorrelation, the number of required iterations, number of successfully controlled orbits, and max
absolute value of the control input. TDAS and PFC methods are the most convenient to stabilize the chaotic
attractor of the system.
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1 Introduction
The chaotic behaviour of many dynamical systems
under certain conditions is one of recent attractive
studies for scientists. The most two famous prop-
erties of chaos are the highly sensitivity to the ini-
tial condition and the parameter value. In the last
decades, many researchers concerned with how to
control chaotic phenomena depending on these two
properties. The aim is to bring a trajectory close
enough to a desired location in the chaotic attractor by
using a very small perturbation. Numerous researches
are focusing on stabilizing special chaotic map or sys-
tem describing their study case such as [7, 11, 24].
Few others, we are concerning with them, those are
focusing to stabilize chaos generally. In 1990, E. Ott
was the first publisher who concerned with stabiliz-
ing chaos. This method introduced to control discrete
data, so continuous time systems should first be dis-
cretized by Poincaré map. This control method is
called ”the Ott-Grebogi-Yorke (OGY) method” [14],
it suggests firstly linearizing the nonlinear chaotic sys-
tem about the desired fixed point and the nominal pa-
rameter. It was followed by many other publications

improving his method or introducing new methods
(see for example [8] and [9], see also survey [2]). In
[16, 17], they represent the delayed feedback control
(DFC) to stabilize the unstable periodic orbits (UPO).
The control input is set to be the multiplication of a
gain by the difference between current system state
and a state with the time delay as it is discussed in
[5]. DFC method was firstly proposed for continuous
systems and then extended to the discrete such as in
[22]. Many applications, such as in [4, 12], were con-
trolled by using DFC method. Also, many develop-
ments for DFC method were performed, see [10, 13].
One of the recent surveys on DFC is presented in [18].
Ushio [23] introduced the idea of predicting control in
his paper and it was extended in [3] to stabilize con-
tinuous time systems using predictive-based control
method. Predictive Feedback Control (PFC) [15] is
an easily implemented method to stabilize unknown
UPOs in discrete time dynamical systems. In PFC,
the control input was given as the multiplication of a
gain with the difference between two predicted future
system states. PFC depends on applying small con-
trols that completely change the nature of system’s
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behaviour and devotes its attention to the most im-
portant problem of stabilizing or controlling chaos.
In [21], PFC method has been extended to stabilize
continuous time dynamical system. Detailed survey
on existing approaches and methods for chaos con-
trol can be found in the Handbook of Chaos Control
[19]. The extended time delay auto synchronization
(ETDAS) method is a control law that was based on
the previous states feedback method [17]. The control
law is based on the the idea of time delay auto syn-
chronization (TDAS) [16]. Senkerik method is only
specified in stabilizing Hénon map by explaining the
application of Analytic programming (AP)[20]. AP
is a superstructure of evolutionary algorithms and is
used for constructing an analytic solution according
to the required behaviour. The AP dataset had to be
expanded to cover a longer system output history (the
states xn to xn−9), which imitates the inspiring con-
trol method for the successful control law for stabi-
lization of higher periodic orbits.

In this paper, we focus on the methods ability to
stabilize discrete chaotic systems and compare their
efficiency. These methods are briefly represented and
used to stabilize UPOs. 100 random initial conditions
are generated for Logistic and Hénon maps, then the
proposed control inputs of each method are inserted
to stabilize their attractors. The 100 resulted orbits are
examined due to the controllability achievement per-
cent, minimum number of required iterations, max-
imum autocorrelation and the inserted control value
(which is recommended to be small enough to be neg-
ligible). Finally, TDAS and PFC are the methods
those are theoretically constructed to change any un-
stable behaviour to stable for discrete time systems
generally. So that they have the capability to stabilize
the system for any initial point in its domain, and PFC
method showed highest accuracy by inserting mini-
mum control values to the system to achieve stability.

In Section 2, the chaos-control methods are in-
troduced briefly. Their inserted control laws to the
system are represented to stabilize the chaotic attrac-
tor. Section 3 presents the comparison between the
methods applied to 100 unstable orbits of Logistic and
Hénon maps.

2 Chaos-Control methods
Let us in this section introduce the idea of control-
ling unstable cycles. Nonlinear discrete systems can
be written in state space notation

xi+1 = f(xi) (1)

where f : RN → RN is a differentiable map, x is
N × 1 state of the system. Let F be the controlled

function or the perturbation such that the system has
the form

F (xi, ui) = f(xi) + g(ui) = xi+1 (2)

where g(u) is M ×1 (M ≤ N ) input which is needed
to stabilize the system.

2.1 OGY method
Now suppose system (1) has a fixed point x∗, for
which holds that F (x∗, u) = 0 or x∗i+1 = x∗i . Then
around x∗ system (2) is linearized to be in the form

xi+1 = Axi +Bui (3)

where A =


∂f1
∂x1

. . . ∂f1
∂xN

...
. . .

...
∂fN
∂x1

. . . ∂fN
∂xN

 , B =


∂f1
∂u1

. . . ∂f1
∂uN

...
. . .

...
∂fN
∂u1

. . . ∂fN
∂uN

. Then around this equilib-

rium point we can approximate system (2) by using
(3). For the discrete maps, let the value u(j) close
to u0 and in the neighborhood of the unstable fixed
point x∗ for some state j, the linear map can be
approximated in the form

x(j + 1)− x∗ = A(x(j)− x∗) +B(u(j)− u0) (4)

. To calculate the time dependent parameter perturba-
tion (u(j)−u0), we assume that it is a linear function
of x

u(i)− u0 = −KT (x(i)− x∗) (5)

where the matrix KT is 1 × N matrix, require to be
determined so that the fixed point x∗ becomes stable.
Substituting Eq. (6) into Eq. (5), we obtain

x(j + 1)− x∗ = (A−BKT )[x(j)− x∗] (6)

which shows that the fixed point will be stable if the
matrix (A − BKT ) is asymptotically stable; that is,
all its eigenvalues have modulus smaller than unity.
The solution to the problem of determining KT , such
that the eigenvalues of the matrix (A − BKT ) have
specified values, is known from control systems the-
ory as the ”pole placement technique” [1].
Finding an appropriate control law u = −Kx is the
essential consideration to get stable. For linear sys-
tems the control law will control any point x ∈ R,
whereas for nonlinear systems the control law will
only work for x sufficiently close to x∗, since the lin-
earization (5) is only valid in the vicinity of the equi-
librium point.
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2.2 TDAS and ETDAS methods
The simpler TDAS control method for the i− 1 state,
in its discrete form, is given as

F (xi) = K[xi−m − xi] (7)

where m is the period of the m-periodic orbit to be
stabilized. For the purpose of stabilizing higher peri-
odic orbits, the ETDAS method was used. The origi-
nal control method, ETDAS in the discrete form suit-
able for the two-dimensional Hénon map, has this
form

xi+1 = a–x2i + byi + Fi,

Fi = K(1−R)[Si−m − xi], (8)

Si = xi +RSi−m

where K and R are adjustable constants and S is
given by a delay equation utilizing previous states of
the system.

2.3 PFC method
A great effort by author in [15] to introduce a general-
ized PFC method, which is capable of stabilizing pe-
riodic orbits with an arbitrary small perturbation. We
will introduce some important notations at first about
PFC. The periodicity of an orbit can be represented
in the form of the composition of itself, i.e. if f is
periodic function of period p, then

fp = fofof . . . f︸ ︷︷ ︸
p−times

,

and there exist a s-cycle has the number
µ = f ′(xs

∗) × · · · × f ′(x1
∗) is the multiplica-

tor of the cycle. In this paper, we concerns with
s = 1, so µ = f ′(x∗). The periodicity of the function
is also used as the predictive term of the control
methods due to its future indication for the function
after p iterations.

Let the x∗ under consideration be unstable and
| µ |> 1, and if a control term is added to stabi-
lize the system, then the resulting closed-loop system
takes the form

xi+1 = F (xi), F (x) = f(x)−ε(fp+1(x)−fp(x))
(9)

where,

|ε−ε∗|
|ε∗| < 1

|µ| , ε∗ = 1
µp(µ−1)

where p is a nonnegative integer. It is important to
note that the quantity ε∗ arbitrarily small for suffi-
ciently large values of p, so that the control parameter
will be a small value add to the original function. The
choice of p and µ is clearly discussed in [15].
For higher dimension function f , the stability condi-
tion depends on the eigenvalues λi of the jacobian ma-
trix J(f) and the choice of µ will be taken to be the
value of λ greater than 1.

2.4 Methods based on SOMA-DE
In [20], they proosed methods to stabilize Hénon
map. They used two evolutionary algorithms, self-
organizing migrating algorithm (SOMA) and differ-
ential evolution (DE) (for more details, see [6]). They
represented best control laws based on SOMA and DE
for the i − 1 orbit stabilization. Their coast functions
Fi are

CL1 : F (xi) = xixi−1

xi−1(2xi−xi−1)−(xi+0.035)/(xi−1−xi)

CL2 : F (xi) =
1.111(xi−1 − xi)(0.0112xi − xi−1xi)

xi
(10)

CL3 : F (xi) = (−xi−1+xi−0.497)(xi−xi−1)
x2i−1

In the next section, the control methods are ap-
plied to the most popular chaotic systems, Logistic
map and Hénon map. And some statistical tests are
used to analysis the difference between the chaotic se-
quences before control and after control.

3 Comparison between control
methods

The Comparison between control methods is evalu-
ated for controlling the orbits of two of the most popu-
lar chaotic maps, Logistic and Hénon, to be of period-
1. Logistic map is the simplest 1D nonlinear map,
given by

xi+1 = axi(1− xi) (11)

where a is parameter. For system (11), 100 randomly
initial condition x0 are chosen and 1000 iterates are
computed considering the case a = 3.9 for which the
system is apparently chaotic as shown in Fig. 1. An
important characteristic of a chaotic attractor is that
there exist an infinite number of unstable periodic
orbits embedded within it. Now suppose we want to
avoid chaos at a = 3.9.

Hénon map is one of the known 2D discrete sys-
tems, has the form

xi+1 = a− xi2 + byi, yi+1 = xi, (12)
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Figure 1: xi values for Logistic map

Figure 2: (x, y) values for Hénon map

where a and b are parameters. For a = 1.2 and
b = 0.3, Eq. (12) has fixed point 0.8. Taking ini-
tial conditions x0 = y0 = 0.7, its eigenvalues for the
jacobian matrix are −1.58883 and 0.18, which shows
instability and Fig. 2 represents its chaotic series.

Let us begin with applying OGY method to
control Logistic map. Suppose that the parameter a is
allowed to vary in the range [a0 − δ, a0 + δ], where
δ � 1. Denote the target x∗ (period-1 orbit), that
gives the best system performance, to be controlled.
Assume that at time j, the trajectory falls into the
neighborhood of x∗. The linearized dynamics in the
neighborhood of component x∗ is then

xj+1 − x∗ = ∂f
∂x [xj − x∗] + ∂f

∂a∆aj
=

a0[1− 2x∗][xj − x∗] + x∗[1− x∗]∆aj ,

where the partial derivatives are evaluated at x = x∗

and a = a0. We require xi+1 to stay in the neighbor-

Figure 3: xi values for each of OGY, TDAS and PFC
methods

hood of x∗. Hence, we set xj+1 = x∗, which gives

∆aj = a0
(2x∗ − 1)(xj − x∗)

(x∗[1− x∗])
(13)

Eq. (13) holds only when the trajectory xj
enters a small neighborhood of x∗, i.e., when
|xj − x∗| � 1 and hence the required parameter
perturbation ∆aj is small. So for our example, we
can adjust| xj − x∗ |< 0.01.

The TDAS and PFC methods could be applied to
stabilize Logistic map at the fixed point. We set K =
−0.48 for TDAS method, while µ = −1.9 and p = 5
for PFC method.

The three control methods are applied to Logistic
map 100 times for the 100 random initial conditions.
TDAS method succeeded to control Logistic map tra-
jectory for only 41 out of the 100 initial conditions,but
for the close ones to 0 and 1, and the series diverges.
The results of the first 100 iterates for each method are
plotted as in Fig. 3, starting from x0 = 0.8147... (one
of the 100 random chosen initial conditions). Fig. 3
shows that OGY method is controlling Logistic map
lately than TDAS and PFC methods.

The autocorrelation (AC) of a random sequence
describes the correlation between its values for finding
repeated ones. The maximum AC values are evaluated
as shown in Table 1.

Table 1 shows that TDAS and PFC methods has
high AC compared to that of Logistic uncontrolled
map, while OGY method is less AC than TDAS and
PFC method. Also the range of iterations (minimum
and maximum iterations) to achieve x∗ with accuracy
10−5 for the 100 samples. PFC method gives the best
method for general use to control Logistic of period
one without restrictions and with minimum value of
the maximum control term Fi for all the 100 samples.

Control terms are applied to Hénon map, defined
in Eq. (12). All the control methods are inserted 100
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Table 1: Maximum autocorrelation, range of itera-
tions (it.) and maximum absolute value of Fi for 100
Logistic map samples.

Methods Max. AC Range of it. Max. |Fi|
OGY 0.7207 2 - 822 0.0181
TDAS 0.8955 37 - 73 0.3230
PFC 0.8102 22 - 118 0.0075

times for 100 random initial conditions(x0, y0). For
OGY method, | xi − x∗ |< 0.1 and K = 1.6354.
TDAS control parameter is K = −0.85, while the
used values of the control parameters for ETDAS
method R and K are 0.326949 and 1.03809 respec-
tively. The PFC method value of µ is taken equal to
the eigenvalue greater than 1, µ = −1.58883. Fig. 4
shows the first 50 iterations for each method as they
are all stabilizing the Hénon map to the fixed point
(x∗, y∗) = (0.8, 0.8).

Table 2 compares the methods results. TDAS, ET-
DAS, and PFC methods are capable to control all the
inserted initial conditions. The higher max. AC values
are for CL1, CL2 and PFC methods as shown in Ta-
ble 2. Minimum iterations to control Hénon map is 10
for CL1 method and 12 for ETDAS and PFC meth-
ods, while minimum numbers of maximum required
iterations are 23, 32, 40 and 50 for ETDAS, CL3,
TDAS and PFC methods respectively. Finally, min-
imum values of the coast functions are (0.1574, 0),
(0.2217, 0.2687) and (0.4428, 0) for OGY, PFC and
CL3 methods.

TDAS and PFC methods are capable to control
any discrete nonlinear map starting at any initial con-
dition. PFC mehtod showed higher efficiency than
TDAS method due to its small control term values and
quick convergence. OGY method defect is that the
control term takes place only when the iterations come
close to the desired point, so it is not a good choice
for short short time use of a real life application. ET-
DAS method is suitable to be applied for wide range
of variables, to prevent divergence. The control meth-
ods based on SOMA and DE show weakness points
due to its high control term values and divergence of
some orbits.

4 Conclusions
A comparison is done to the recent control methods
OGY, TDAS, ETDAS, PFC, and three control meth-
ods based on SOMA and DE. The methods are dis-
cussed briefly and then applied to control 100 orbits of

Figure 4: a) x values, b) y values, and c) x − y plot
of Hénon map after applying OGY, TDAS, ETDAS,
PFC, CL1, CL2, and CL3.
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Table 2: Successfully controlled percent(SC%) orbits, maximum autocorrelation (AC), range of iterations (it.) and
maximum absolute value of Fi for 100 Hénon samples.

Methods SC % Max. AC Range of it. Max.|Fi|
x y Min. Max. x y

OGY 76 0.7897 0.7913 19 1000 0.1574 0
TDAS 100 0.6358 0.6923 19 40 1.2338 0

ETDAS 100 0.6404 0.7331 12 23 1.6233 0
PFC 100 0.8535 0.7874 12 50 0.2217 0.2687
CL1 74 0.9317 0.9210 10 129 3.4058 0
CL2 79 0.8642 0.8904 16 64 2.9337 0
CL3 35 0.7522 0.6643 16 32 0.4428 0

Logistic and Hénon maps generated randomly. They
are compared according to the percent of success-
fully controlled period-1 orbit, maximum absolute au-
tocorrelation, minimum and maximum required num-
ber of iteration to reach accuracy less than 10−5, and
maximum absolute value of additive control term.
TDAS and PFC methods showed the most capability
to control the discrete nonlinear systems with high ef-
ficiency, but PFC method has higher autocorrelation
and less value of maximum absolute control term.
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