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Abstract: The accuracy of the fine tracking system is the premise of high-accuracy positioning in quantum posi-
tioning systems. In this paper, we propose a method combining model reference adaptive control (MRAC) strategy
and adaptive strong tracking Kalman filter (ASTKF) to reduce the impacts of satellite platform jitter and environ-
ment noise. A mathematical model of the fine tracking system with disturbance and environmental noise are set
up and analyzed. Aiming at colored irregular noise signal, we design an ASTKF to estimate the state of the system
on-line, at the same time, the disturbance and noise changing with time are also estimated and eliminated. By
combining a MRAC strategy, we enhance the robustness of the fine tracking system. Numerical experiments of
tracking performances comparing different methods available in the literature are given. The numerical simulation
results show that the proposed method can improve the tracking accuracy, and almost 99.7 % of the spots can be
projected into the square area within 2 µrad.
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1 Introduction

The quantum positioning system (QPS) which is
based on quantum mechanics and informology has
become a promising trend of the future positioning
and navigation systems. It can overcome the pre-
cision limitation due to classic noise in electromag-
netic based positioning systems [1]. By transmitting
and receiving the entangled photon pairs and measur-
ing their second order coherence bewteen the quan-
tum satellite and ground user, the QPS can achieve a
measurement precision of the time difference of ar-
rival (TDOA) value at femtosecond level, which cor-
responds to a micron level distance measurement pre-
cision. During the working process of the QPS, It
needs to set up a bidirectional optical communica-
tion link between the quantum satellite and ground
user, and transmit and receive the entangled pho-
ton pairs through the optical link. This process de-
pends on the acquisition, tracking and pointing (AT-
P) of position system. The positioning accuracy is
strongly related to the performance of the ATP sys-
tem. Recently, the ATP technique has made a great

use in the satellite-ground quantum optical communi-
cation. The successful implementations of the three
quantum experiments about satellite-to-ground quan-
tum key distribution [2], quantum teleportation [3],
entanglement based quantum key distribution [4] on
the Micius satellite, Quantum Experiments at Space
Scale (QUESS) launched in China in August 2016,
have fully verified the feasibility of adopting the AT-
P system for satellite-ground quantum optical align-
ment. Due to the characteristics of small beam di-
vergence angles, long transmission distances, atmo-
spheric interference, and satellite vibration, the stabil-
ity of optical alignment is seriously affected [5, 6, 7].
Therefore, ATP system uses a compound technolo-
gy of nested fine tracking system in the coarse track-
ing system to achieve the accurate tracking of quan-
tum photons [8], where the coarse tracking system is
mainly responsible for scanning and capturing a large
range of beacon light in the initial period and guid-
ing the beacon light spot into the fine tracking field,
while the fine tracking system is mainly responsible
for accurate tracking and locking of the beacon light
and quantum photons. Because the tracking accu-
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racy of the ATP compound system depends on the
tracking accuracy of the fine tracking system, the fine
tracking system is becoming a hot spot of research.
Some methods based on the wavelength selection and
advanced devices techniques were proposed [9, 10]
in fine tracking system. Some advanced controller-
s were proposed for the precision position tracking,
such as the constrained observer-based controller for
uncertain stochastic nonlinear discrete time system-
s with input constraints [11], active disturbance re-
jection controller [12], embedded self-learning fuzzy
controller [13] and sliding mode for positioning and
tracking tasks [14], and a novel switching controller
incorporated with backlash and friction compensa-
tions is utilized to achieve speed synchronization a-
mong multi-motor and load position tracking in the
paper [15]. Some filters were also studied, such as
the recursive-least-squares adaptive filter [16] and the
extended Kalman filter [17]. Those methods did im-
prove the tracking accuracy. However, in the existing
published papers, there are a few researches on the
consideration of the effects of state disturbances and
environmental noise in position track systems and the
high performance of adaptive reference model con-
troller with filter.

In this paper, we propose a MRAC system with
an ASTKF. Because the satellite platform disturbance
is time-varying, the ASTKF is designed to on-line es-
timate the system state and the satellite platform dis-
turbance at the same time to reduce the environmental
noise and achieve high accuracy in fine tracking sys-
tem. Up to now there has not been reported that these
advance stratagies had been applied in the quantum
positioning systems. In our work, the MRAC sys-
tem is used to achieve the high performance of less
than 2 µrad tracking error in average and the high ro-
bustness of the fine tracking system. It is better than
the performance of ATP system in QUESS which has
an accuracy of 3.5 µrad in average. We establish the
fine tracking system model with the influence of dis-
turbance and noise first. Then the internal and ex-
ternal disturbance and environmental noise are ana-
lyzed, and the vibration signal of the satellite platfor-
m is simulated. The discrete block diagram of the fine
tracking system with state disturbance and measure-
ment noise is established. Last, the MRAC with the
ASTKF is designed. Numerical experiments of pro-
posed method compared with traditional proportional-
integral-derivative (PID) and the auto disturbances re-
jection control (ADRC) are implemented. The exper-

imental results are analyzed.
The rest of the paper is organized as follows. In

Section 2, the model of fine tracking system with state
disturbance and environmental noise are established.
The method combining MRAC with ASTKF is pro-
posed in Section 3. Numerical experiments are given
in Section 4 and the conclusion is in Section 5.

2 Modeling of fine tracking system
with disturbance and noise

The structure of the fine tracking system is shown in
Fig. 1, which is composed of three parts: 1) a FSM
with two axes, 2) an angle deviation acquisition mod-
ule with a complementary metal-oxide-semiconductor
transistor (CMOS) photodetector, 3) a fine tracking
controller. The input signal of the fine tracking sys-
tem is the tracking error of the coarse tracking system,
so the fine tracking system can compensate the track-
ing error in coarse tracking stage and get an ultra-high
tracking precision.

The FSM is an actuator composed of a (x-y)-axis
frame structure and is used to adjust the angle of inci-
dent light. The CMOS sensor receives the inciden-
t light reflected by the FSM and converts the light
spot on its surface into analogue spot energy curren-
t E(t), which is converted into digital spot energy sig-
nal E(k) after A/D sampling. After obtaining the dig-
ital spot energy signal, the two-axis digital fine track-
ing angle error ∆θxF (k) and ∆θyF (k) can be calculat-
ed by the angle deviation calculation unit. Then con-
troller generates two digital control signals ux(k) and
uy(k) according to the designed control strategy. Af-
ter that, through the D/A converter, ux(k) and uy(k)
are converted into analogue signals ux(t) and uy(t)
which drive x-axis and y-axis of the FSM, respec-
tively, and deflect the FSM from an angle opposite to
the input coarse tracking angle error, so that the an-
gle deviation between the output angle and the input
coarse tracking angle error can be reduced. Because
the characteristics of the x-axis and y-axis are simi-
lar, we only take one axis as an example. The discrete
block diagram of the fine tracking system on the con-
sideration of the satellite platform vibration signal dθ
and the environmental noise vθ is shown in Fig. 2, in
which, ∆θC(k), the coarse tracking error, is the in-
put signal in the fine tracking control system, θF (k)
is the digital deflection angle of the FSM, θ′F (k), the
FSM deflection angle with measuring noise, is the out-
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put signal in the fine tracking system, S(z) is the dis-
crete transfer function of the angle deviation acquisi-
tion module, G(z) is the discrete transfer function of
the controlled object FSM, which is calculated by Eq.
(2). C(z) is the discrete transfer function of the con-
troller that we need to design.
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Figure 1: Structure diagram of fine tracking system.
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Figure 2: Block diagram of fine tracking system.

In Fig.1, we do the analysis for the x-axis. ux
drives the FSM to deflect an angle θxF along the x-axis
direction, FSM’s continuous transfer function G(s)
can often be considered as a second-order system. So
G(s) can be represented by

G(s) =
θxF (s)

ux(s)
=

ω2

s2 + 2ηωs+ ω2
(1)

where ω is the resonant frequency of the FSM, η is
the damping coefficient of the FSM. By using the ze-
roth order retainer to discretize the continuous trans-
fer function of the FSM, its discrete transfer func-
tion G(z) can be written as

G(z) =
(b0 + b1z

−1)z−1

1 + a1z−1 + a2z−2
(2)

where

a1 = −2e−ηωT cos
√

1− η2ωT

a2 = e−2ηωT

b0 =
[
1− 2e−ηωT cos(

√
1− η2ωT ) + e−2ηωT

]
/2

b1 =
[
1− 2e−ηωT cos(

√
1− η2ωT ) + e−2ηωT

]
/2

(3)
and T is the sampling period.

In Fig. 1, the CMOS sensor and A/D sampling
convert the analogue fine tracking error ∆θF (t) in-
to the spot energy signal E(k), and the digital angle
deviation calculation unit calculates the digital form
signal ∆θF (k) of fine tracking error through two cal-
culation steps: the acquisition of spot centroid and ac-
quisition of angle (The derivation process of the ac-
quisition of spot centroid and acquisition of angle is in
Appendix 1). When the acquisition accuracy of the C-
MOS sensor is sufficiently high, the angular deviation
acquisition module is often approximated as a mod-
el with a magnification of 1, and the discrete transfer
function S(z) is often expressed as S(z) = 1.

In the fine tracking system, the satellite platfor-
m vibration and the environmental noise are the main
factors affecting tracking accuracy. So, we need to
model the satellite platform vibration dθ and envi-
ronmental noise vθ. Generally, the satellite platform
vibration is described as the continuous-angular vi-
bration [18, 19]. It can be simulated by inputting a
zero mean unit Gauss white noise (ZMUGWN) to a
filter obtained from the power spectrum density (PS-
D) function adopted by the European Space Agency
for the semiconductor-laser inter-satellite link experi-
ment(SILEX) program, the PSD function is expressed
as s(f) = 160/[1 + (f/f0

2)] µrad2/Hz, where f0 is
equal to 1Hz. Through the PSD function, one filter is
designed as F (z) = 0.496(1+z−1)/(1−0.9939z−1).
By converting F (z) into a discrete time domain ex-
pression, the satellite platform vibration signal dθ can
be formulated as follows

dθ(k) = 0.99dθ(k−1)+0.49 (rand(k) + rand(k − 1))
(4)

where rand(k) is the ZMUGWN at time k; dθ in time
domain is shown in Fig. 3, and numerical simulation
of PSD is shown in Fig. 4 to illustrate the rationality of
dθ when it is compared with SILEX program. From
Fig. 4, one can see that dθ we designed satisfies the
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PSD characteristic of the satellite platform vibration
on the SILEX satellite platform.
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Figure 3: dθ in time domain.
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Figure 4: PSD comparison of dθ and SILEX.

The environmental noise in the fine tracking sys-
tem mainly includes detector noise, processing circuit
noise, spatial background noise and thermal noise.
The integrated noise can be regarded as the root
mean square of the above noises and is often equiv-
alent to a white noise with an amplitude close to
10 µrad. By carefully debugging the Gauss white
noise in MATLAB, we get a model of Gauss white
noise with a mean value of 0 and a variance val-
ue of 6.5 whose max amplitude is close to 10 µrad.
Thus, the environmental noise vθ is represented by
vθ(k) = 6.5rand(k), where rand(k) is the ZMUG-
WN at time k. Then the closed-loop transfer func-
tion in fine tracking system with state disturbance and
measurement noise is obtained as:

θ
′

F
(k) =

S(z)C(z)G(z)

1 + S(z)C(z)G(z)
∆θC(k)+

1

1 + S(z)C(z)G(z)
vθ(k)+

G(z)

1 + S(z)C(z)G(z)
dθ(k)

(5)

The discrete time model of the controlled system
G(z) can be written as

A(z−1)θF (k) = z−1B(z−1)u(k) (6)

in which, A(z−1) = 1 − a1z
−1 − a2z

−2 ,B(z−1) =
b0 + b1z

−1 , θF (k) is the output of FSM; u(k) is the
control input of controlled system.

The discrete time system of the reference model
is selected

Am(z−1)θmF (k) = z−1Bm(z−1)∆θC(k) (7)

where, Am(z−1) = 1− ā1z
−1 − ā2z

−2;Bm(z−1) =
b̄0+b̄1z

−1, θmF (k) is the output of the reference model
and ∆θC(k) is the reference input.

3 Design of MRAC and ASTKF

In this section, an adaptive strong tracking Kalman
filter (ASTKF) is designed to estimate out the sys-
tem state and disturbance, and we’ll design a model
reference adaptive control (MRAC) system to adjust
the coefficients of control law and improve the accu-
racy of the control system. The overall structure of the
control system is depicted in Fig. 5, in which the w-
hole control system design is divided into two stages:
one the MRAC system design without considering the
disturbance and noise, another is ASTKF design with
the on-line estimations and eliminations of the distur-
bance and noise.

3.1 Design of the control law in MRAC sys-
tem

The design of the control law in MRAC system is giv-
en in Theorem 1.

Theorem 1: Consider the controlled system Eq.
(6) select the reference model Eq. (7) , the control
laws which can make the equation 6 stable are:
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Figure 5: Structure of the control system

u(k) =

Bm(z−1)
H(z−1)
F (z−1)

T ∆θC(k)
−θmF (k)
−e(k)

 /G(z−1) (8)

where

H
(
z−1
)

= h1 (k) + h2 (k) z−1

G
(
z−1
)

= g0 (k) + g1 (k) z−1

F
(
z−1
)

= f1 (k) + f2 (k) z−1

(9)

in which the items in Eq. (9) can be represented as

hi(k) = h′i(k) + µie(k)θmF (k − i)
h′i(k) = h′i(k − 1) + λie(k)θmF (k − i)
h′1(−1) = 0, h′2(−1) = 0

gi−1(k) = g′i−1(k) + σi−1e(k)u(k − i)
g′i−1(k) = g′i−1(k − 1) + ρi−1e(k)u(k − i)
g′0(−1) = 15.5, g′1(−1) = 1

fi(k) = f ′i(k) + qie(k)e(k − i)
f ′i(k) = f ′i(k − 1) + lie(k)e(k − i)
f ′1(−1) = 0.563, f ′2(−1) = 0.217

(10)
where i = 1, 2, and the rest items in Eq. (10) satify

λi > 0 ; µi ≥ −λi/2
ρi > 0 ; σi ≥ −ρi/2
li > 0 ; qi ≥ −li/2

The error between the system output and refer-
ence model output can be represented as:

e(k) = eo(k)

1 +
∑2

i=1

 li + qi
λi + µi

ρi−1 + σi−1

T  e2(k − i)
θmF

2(k − i)
u2(k − i)


−1

(11)

in which eo(k) is the forecast error:

eo(k) =

2∑
i=1

 ai − fi′(k − 1)
ai − ā− fi′(k − 1)
bi−1 − g′i−1(k − 1)

T  e(k − i)
θmF (k − i)
u(k − i)


Next, we will prove the adaptive laws in Theo-

rem 1 Eqs. (8-11) can stabilize this MRAC system by
Popov hyper-stability theory.

Proof: According to the Popov hyper-stability
theorem, we will prove that the designed MRAC con-
trol laws in Eq. (8) can guarantee the stability of the
control system. The proof is divided into three steps:
1) to transform the MRAC system into a standard error
feedback control system which consists of two links:
the linear link in the forward channel and the nonlin-
ear link in the feedback channel; 2) to prove that the
transfer function of the linear link is strictly positive
real, and 3) to prove that the nonlinear feedback link
satisfies the Popov integral inequality.

We define the generalized output error of the M-
RAC system as e(k) = y(k)−ym(k), and by combin-
ing error with the Eqs. (6-10) , a system model with
the output error e(k) as the controlled variable can be
obtained as

e(k) =
2∑
i=1

 −fi(k) + ai
−hi(k) + ai − āi
bi−1 − gi−1(k)

T  e(k − i)
θmF (k − i)
u(k − i)


(12)

The structure diagram of system in Eq. (12) is shown
in Fig. 6. According to system structure in Fig. 6,
let: v(k) = w1(k) = e(k), and w(k) = −w1(k), then
we have

w(k) = −w1(k)

= −
2∑
i=1

 fi(k)− ai
hi(k)− ai + āi
gi−1(k)− bi−1

T  e(k − i)
θmF (k − i)
u(k − i)


The equivalent feedback control system (11) in Fig. 6
can be equivalently shown as Fig. 7, from which one
can see that the transfer function of the linear forward
link from w1k to v(k) is v(k)

w1(k) = e(k)
e(k) = 1, which is

obviously strictly positive real.
Now we need to prove that the nonlinear feedback

link from v(k) to w(k) in Fig. 7 satisfies the Popov

integral inequality: η(0, k1) =
k1∑
k=0

w(k)v(k) ≥ −r2
0,
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in which ∀k1 > 0,∃r2
0 < ∞. In order to do so, by

dividing r2
0 = r2

f + r2
h + r2

g , we have:
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Figure 6: dθ in time domain.
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Figure 7: PSD comparison of dθ and SILEX.

η(0, k1) =

k1∑
k=0

w(k)v(k)

=
2∑
i=1

k1∑
k=0

 fi(k)− ai
hi(k) + āi − ai
gi−1(k)− bi−1

T  e(k − i)
θmF (k − i)
u(k − i)

 e(k)

=
2∑
i=1

k1∑
k=0

e(k)e(k − i)(
k∑
l=0

lie(l)e(l − i) + f ′i(−1) + qie(k)e(k − i)− ai)

+
2∑
i=1

k1∑
k=0

e(k)θmF (k − i)(
k∑
l=0

λie(l)θ
m
F (l − i)+h′i(−1) + µie(k)θmF (k − i) + āi − ai)

+

1∑
i=0

k1∑
k=0

e(k)u(k − i− 1)(
k∑
l=0

ρie(l)u(l − i− 1)+g′i(−1) + σie(k)u(k − i− 1)− bi)

(13)

in which the second term in right side of Eq. (13) has

2∑
i=1

k1∑
k=0

e(k)θmF (k − i)(
k∑
l=0

λie(l)θ
m
F (l − i) + µie(k)θmF (k − i)+h′i(−1) + āi − ai)

=

2∑
i=1

(
λi
2

(

k1∑
k=0

e(k)θmF (k − i) +
h′i(−1) + āi − ai

λi
)

2

+ (
λi
2

+ µi)

k1∑
k=0

(e(k)θmF (k − i))2 − (h′i(−1) + āi − ai)2

2λi
)

≥ −
2∑
i=1

(h′i(−1) + āi − ai)2

2λi

= −r2
h (14)
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in which r2
h =

2∑
i=1

(h′i(−1)+āi−ai)2
2λi

. Similarly we can
obtain:

2∑
i=1

k1∑
k=0

e(k)e(k − i)(
k∑
l=0

lie(l)e(l − i) + f ′i(−1) + qie(k)e(k − i)− ai) ≥ −r2
f (15)

1∑
i=0

k1∑
k=0

e(k)u(k − i− 1)(

k∑
l=0

ρie(l)u(l − i− 1)+g′i(−1) + σie(k)u(k − i− 1)− bi) ≥ −r2
g (16)

in which, r2
f =

2∑
i=1

(f ′i(−1)−ai)2
2li

, r2
g =

1∑
i=0

(g′i(−1)−ai)2
2ρi

.

By combining Eq. (13) with Eqs. (14-16) , we

can have η(0, k1) =
k1∑
k=0

w(k)v(k) ≥ −r2
0, so that the

nonlinear feedback link from v(k) to w(k) in Fig. 7
satisfies the Popov integral inequality. Q.E.D.

Remark: The calculation of e(k) in Eq. (12)
needs to use the values of the fi(k), gi(k) and hi(k) at
the time k, which are not calculated out, so Eq. (12)
can not be used to get e(k) directly. We construct a
forecast error eo(k) of e(k) by using the parameter-
s f ′i(k− 1), g′i(k− 1) and h′i(k− 1) at time (k− 1)
to replace fi(k), gi(k), hi(k) in Eq. (12) :

eo(k) =
2∑
i=1

 ai − fi′(k − 1)
ai − ā− fi′(k − 1)
bi−1 − g′i−1(k − 1)

T  e(k − i)
θmF (k − i)
u(k − i)


(17)

By Eq. (12) subtracting Eq. (17) and considering
the relations between f ′i(k − 1), g′i(k − 1), h′i(k −
1) and the e(k − 1) in equation 10 at the time (k −
1), we can obtain the actual calculation formation of
error e(k) is shown in Eq. (11) .

3.2 Design of ASTKF

In order to eliminate the system disturbance and
noise and improve the performance of the ATP sys-
tem futher more, we’ll apply an adaptive strong
tracking Kalman filter to the system. An overview
of the ASTKF is shown in Fig. 8 which is the
Kalman filter in Fig. 5. A=[0,−a2; 1,−a1] is the s-
tate transition matrix of G(z), B=[b1; b0] is the con-

trol matrix, Γ=[b1; b0] is the state perturbation tran-
sition matrix, and C= [0,1] is the observation ma-
trix, x(k)=[θ̇F (k); θF (k)] is the system state at time k,
representing the angular velocity and rotation an-
gle of FSM; x∗(k) is the predicted value of x(k),

x̂(k)=[
ˆ̇
θF (k); θ̂F (k)] is the estimated value of x(k).

dθ(k) is the state disturbance and vθ(k) is the mea-
surement noise, θ

′
F (k) is the output of the original

controlled object system, representing the rotation an-
gle of FSM, θ∗F (k) is the predicted output of the con-
structed prediction system, θ̃F (k)= θ

′
F (k) − θ∗F (k) is

the output error between the original controlled object
system and the constructed prediction system, θ̂F (k)
is the estimated value of θF (k), representing the fil-
tering output value θoF (k), q̂(k) is the estimated value
of the state disturbance. Q̂(k) is the estimated vari-
ance of the state disturbance. r is the mean value of
measurement noise.R is the variance of measurement
noise. Kf (k) is the Kalman filter gain.



( )u k

( )d k


)( 1x k ( )x k

( )v k


－

A

( )
F
k

( )
F
k 

*( )
F
k

r


ˆ( )q k

ˆ( )( ( ))
F

o
F k k 

C

*( 1)x k *( )x k

ˆ( )x k
C

A

C

( )fK k

B

G(z)

B

Kalman Filter

1z

1z

Figure 8: Structure of MRAC with Kalman Filter

The idea of ASTKF filter is that adaptive on-line
iterative estimation is applied to estimate the mean
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and variance of unknown state disturbances as q̂(k)

and Q̂(k), respectively, and design the Kalman fil-
ter gain in combination with the state prediction vari-
ance P ∗(k).

Kf (k) = P ∗(k)CT [CP ∗(k)CT +R]
−1

(18)

The Kalman filter gain can correct the predict-
ed value x∗(k) of the state, and get the estimated
value x̂(k) . The strong filtering algorithm used in
this paper adopts a fading factor λ(k) when calculat-
ing the state prediction variance P ∗(k) based on the
adaptive Kalman filtering algorithm, and combines
the estimated variance P̂ (k − 1) of the previous mo-
ment to adjust the prediction variance of the state in
real time P ∗(k) = λ(k)AP̂ (k − 1)AT + ΓQ̂(k −
1)ΓT ; λ(k) is a strong tracking fading factor and can
be calculated as

λ(k) =

{
1, λ0(k) < 1

λ0(k), λ0(k) ≥ 1

λ0(k) =
tr(Nk)

tr(Mk)

Nk = V (k)− CΓQ(k − 1)ΓTCT − lR(k)

V (k) =


θ̃F (1)θ̃F (1)T , k = 1

ρV (k − 1) + θ̃F (k)θ̃F (k)T

1 + ρ
, k ≥ 2

Mk = CAP (k − 1)ATCT

(19)

ρ ∈ [0, 1] is the forgetting factor in strong tracking
system, l ≥ 1 is as the weakening factor. P̂ (k) is
the state estimation covariance; q̂(k) is the estimat-
ed mean value of the state disturbance; Q̂(k) is the
estimated variance of state disturbance; α(k − 1) is
the time variable estimation correction factor, θ̃F (k)
is the output error; x∗(k) is the state predicted value,
the expressions of the variables are shown in Eq. (20)
.

P̂ (k) =[I −Kf (k)C]P ∗(k)

q̂(k) =(1− α(k − 1))q̂(k − 1)+

α(k − 1){(ΓTΓ)
−1

ΓT

[x̂(k)−Ax̂(k − 1)−Bu(k − 1)]}
Q̂(k) =(1− α(k − 1))Q̂(k − 1)+

α(k − 1){(ΓTΓ)
−1

ΓT

[Kf (k)θ̃F (k)θ̃F (k)TKf (k)T+

P̂ (k)−AP̂ (k − 1)AT ]Γ(ΓTΓ)
−1}

α(k − 1) =
1− c
1− ck

θ̃F (k) = θ′F (k)− Cx∗(k)− r
x∗(k) = Ax̂(k − 1) +Bu(k − 1) + Γq̂(k − 1)

(20)
The filtering output θoF (k) can be formulated by

θoF (k)=θ̂F (k) = Cx̂(k) (21)

in which, x̂(k) = x∗(k) + Kf (k)θ̃F (k) and x∗(k) =
Ax̂(k − 1) +Bu(k − 1) + Γq̂(k − 1), Kf (k) can be
calculated by Eq. (18)

4 Numerical experiments and results
analyses

In order to verify the disturbance rejection and robust-
ness performance of the method proposed in this pa-
per, three numerical experiments are carried out un-
der the Simulink platform, the first one is the perfor-
mance comparisons of MRAC, ADRC and PID meth-
ods without using Filter in one axis, the second one is
the performance comparisons of MRAC, ADRC and
PID with ASTKF designed in one axis, the third one
is the tracking control simulation experiments for of
two axes with ASTKF.

4.1 Performance comparisons of MRAC,
ADRC and PID methods without using
Filter

In the experiment, the parameters in FSM are set as
: ω = 9420, η = 0.7, simulation period T=0.0004 s.
Put these three values into Eq. (2) , we get the coeffi-
cients in the discrete transfer function of the FSM as
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: a1 = 0.1288, a2 = 0.005117, b0 = 1.034, b1 = 0.1;
Then the coefficients in the state space function in the
controlled system are :

A = [0,−0.005117; 1,−0.1288]

B = [0.1, 1.034]

C = [0; 1]

D = 0

The reference model in the MRAC system are set
as ā1 = 0.174, ā2 = −0.051, b̄0 = 0.649, b̄1 =
0.228, and λ1 = 0.1, λ2 = 0.5, µ1 = 1, µ2 =
2, ρ0 = 1.05, ρ1 = 4, σ0 = 1.5, σ1 = 1.1, l1 =
1, l2 = 1, q1 = 1.5, q2 = 1.5, the initial settings
for each parameter in equation 10 are h

′
1(−1) =

0, h
′
2(−1) = 0, g

′
0(−1) = 15.5, g

′
1(−1) =

1, f
′
1(−1) = 0.563, f

′
2(−1) = 0.217. Furthermore,

ADRC experiment is also designed and implement-
ed referred in the paper [20], in which, the accel-
eration r0=65000, the filter factor h0=0.0032 in the
transition process, the damping factor c=0.0188, the
accuracy factor h1=0.5384, the control gain r=450
in the nonlinear function fhan(e1, e2, c, r, h1) of non-
linear controller [20](The nonlinear function is in
Appendix 2), the compensation factor b0=4.94 β01=
1, β02= 2.2822, β03= 3.0591 in the extended state ob-
server. PI controller parameters are : kp =0.13, ki
=0.4.

The numerical experiments results are shown in
Figs. 9-10, in which Fig. 9 is the angle error curves be-
tween output of the system and the desired input in the
whole process of coarse and fine tracking, and Fig. 10
shows the fine tracking error. As can be seen from
Fig. 9 that the PID, ADRC and MRAC can make the
output quickly track the input signal. When the track-
ing error is less than 500 µrad, the time is at 0.796 s,
the fine tracking system is starting to work. Tracking
error can reach the steady-state tracking area at 0.892
s. One can see from Fig. 10 that the fine tracking er-
ror during steady-state tracking area after 0.892 s, and
the tracking error by using MRAC can be as low as
2 µrad.

In order to further improve the tracking accura-
cy, ASTKF is added on the basis of the above three
control schemes.
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Figure 9: Angle errors of the coarse and fine tracking
system.

Time (s)

F
in

e 
tr

ac
k
in

g
 e

rr
o
r 

(μ
ra

d
)

0.892 2 3 4 5
-10

-5

0

5

10 noise

PID
ADRC

MRAC

Figure 10: Comparative fine tracking errors of three
methods.

4.2 Performance comparisons of MRAC,
ADRC and PID with ASTKF

In this subsection, we perform the nu-
merical experiments when adding the fil-
ter. Parameters of ASTKF are set as fol-
lows, c=0.47, q̂(0)=0, Q̂(0)=0, x̂(0)=[0;0], P̂ (0)=[0.1,
0; 0, 0.1], R=6.115, l=20, ρ=0.9. The experimental
results are shown in the Fig. 11, compared with
Fig. 10, one can see that the tracking error of the
three control strategies with ASTKF is significantly
better than the tracking error without filter done in
4.1, and the tracking performance of the method with
MRAC + ASTKF is the best, the tracking error can
be reached within 1.5 µrad. To highlight the contrast,
we calculate the probability that the tracking error
fell within 2 µrad and the tracking error value with
99% probability. The experimental results are shown
in TABLE 1. From TABLE 1 one can conclude
that when adopting MRAC + ASTKF method, the
fine tracking error less than 2 µrad with 99.84%
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probability, which is biggest among all methods,
and the corresponding fine tracking error can reach
1.3125 µrad, which is smallest.
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Figure 11: Comparative experimental results of three
methods with filter

Table 1: Tracking errors and probabilities
Methods Errors*

(µrad)
Probabilities**

(%)
MRAC+ASTKF 1.3125 99.84
ADRC+ASTKF 2.2951 96.56
PID+ASTKF 1.8101 99.70

MRAC 1.7618 99.63
ADRC 2.4637 96.14

PID 3.3746 86.72
* Tracking error with 99% probability
** Probabilities when tracking error is less than 2 µrad

4.3 Numerical experiments of two axes

From the analysis in subsection 4.1 and 4.2, MRAC
with ASTKF is the best solution compared with PID
and ADRC. Therefore, the numerical experiments of
the two axes is carried out by MRAC with ASTK-
F, and the distribution of spots on the CMOS sen-
sor is checked. This experiment considers both the
x-axis and the y-axis of the fast reflector mirror (F-
SM). The parameters in the x-axis frame of FSM
are set as ω = 9420, η = 0.7, and for universal-
ity, the parameters in the y-axis are slightly differ-
ent ω = 9000, η = 0.8. At x-axis, the parame-
ters in the reference model are ā1 = 0.174, ā2 =
-0.051, b̄0 = 0.649, b̄1 = 0.228, λ1 = 0.1, λ2 =
0.5, µ1 = 1, µ2 = 2, ρ0 = 1.05, ρ1 = 4, σ0 =
1.5, σ1 = 1.1, l1 = 1, l2 = 1, q1 = 1.5, q2 = 1.5,
the initial settings for each parameter are h

′
1(−1) =

0, h
′
2(−1) = 2.2, g

′
0(−1) = 15.5188, g

′
1(−1) =

1, f
′
1(−1) = 0.563, f

′
2(−1) = 0.2178. The filter

parameters are set as c = 0.49, q̂(0) = 0, Q̂(0) =

0.1, x̂(0) = [0; 0] , P̂ (0) = [0.1, 0; 0, 0.1] , R =
6.115, l = 20, ρ = 0.9, and when at y-axis, only the
forgetting factor c is changed to 0.47. Then the pho-
tons’ distribution is shown in Fig. 12. One can see
from Fig. 12 that when combining the functions of
MRAC and ASTKF in fine tracking system, 99.7%
of the photons can be projected into the square area
within 2 µrad.
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Figure 12: Photons’ distribution

5 Conclusion

In this paper, the model reference adaptive control the-
ory and adaptive strong tracking Kalman filter were
applied to the fine tracking system. The mathematical
model of each module based on the structure of the
fine tracking system with the influence of state distur-
bance and measurement noise were established. The
actual working environment of the fine tracking sys-
tem was analyzed, and the continuous-angular vibra-
tion of the satellite platform was simulated with the
SILEX satellite test data. A model reference adap-
tive control strategy and an adaptive strong tracking
Kalman filter were designed to on-line estimate and e-
liminate the nonlinear disturbance and noise. The nu-
merical experiments compared with ADRC, PID con-
trol were done. The comparison experimental results
show that the MRAC strategy with ASTKF proposed
in this paper has the best performance in the all com-
pared methods and can achieve 2 µrad tracking error.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Shuang Cong, Zisheng Zou, Shiqi Duan, Ding Chen

E-ISSN: 2224-2856 273 Volume 14, 2019



Appendix

Appendix 1. Deviation of acquisition of spot
centroid and acquisition of angle

The angle tracking error calculation process is main-
ly divided into two steps: 1) acquisition of the spot
centroid (xc, yc), 2) acquisition of the angle devia-
tion (∆θxF ,∆θ

y
F ).

1) Acquisition of spot centroid

First, we define two coordinate systems: pixel plane
coordinate system x′Oy′ and the detector three-
dimensional coordinate system Oxyz. The coordi-
nate origin O′ of the coordinate system x′Oy′is at the
center of the CMOS detector’s surface, the coordinate
x-axis and coordinate y-axis are established parallel
to the two edges of the detector pixel, and axis unit
length is a pixel size value da. Next, the coordinate
origin O of the coordinate system Oxyz is at the cen-
ter of the CMOS detector lens’s surface, and z-axis is
along the direction of the origin O point to point O′
in coordinate system x′Oy′ , x-axis and y-axis are es-
tablished in parallel to the sides of the detector cell by
the right-hand theorem. Fig. 13 illustrates above two
coordinate systems specifically. The coordinate trans-
formation formula from a point (x′, y′) in coordinate
systems x′Oy′ to (x, y, z) is


x = dax

′

y = day
′

z = f

(22)

in which, da is the size of the CMOS detector pixel, f
is the focal length of the detector lens.

Generally, the spot centroid (xc, yc) is calculated
by using the centroid algorithm, which is based on the
principle of centroid in plane geometry. The spot cen-
troid position is calculated as the pointing point of the
beacon light on the detector. Define the spot’s electri-
cal energy signal which is distributed on the detector
is: {v(x′y′)| (x′y′) ∈ S, S ∈ x′Oy′}, in which S is
the surface area of the CMOS, so the centroid of the
spot can be expressed as [21]

xc =

∑
(x′,y′)∈S

x′ ·W (x′, y′)∑
(x′,y′)∈S

W (x′, y′)
yc =

∑
(x′,y′)∈S

y′ ·W (x′, y′)∑
(x′,y′)∈S

W (x′, y′)

(23)
in which

W (x′, y′) =

{
v(x′, y′)− vthresh, v(x′, y′) ≥ vthresh
0, v(x′, y′) < vthresh

(24)

x
x

y

O

z

y

x

F


y

F


O,( )c cx y

A
 , ,c a c ax d y d f

Figure 13: Coordinate transformation diagram

2) Acquisition of angle

The conversion relations of the angle deviation ∆θxF
are shown in Fig. 13. Firstly, we convert the spot cen-
troid (xc, yc) to the corresponding coordinate values
at point A in the coordinate system Oxyz, in which
on the yOz plane basis, the angle between theOA line
and the yOz plane is the pitching angle ∆θxF , and the
angle between OA’s projection line on the plane yOz
and z axis is the azimuth ∆θyF , thus ∆θxF and ∆θyF can
be obtained by the calculations of


∆θxF = arctan

xcda√
(ycda)

2 + f2

∆θyF = arctan
ycda
f

(25)

For the reason that the unit of f is meter (m), which is
far greater than the unit µm of da, equation 25 can be
simplified as
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
∆θxF = arctan

xcda√
(ycda)

2 + f2

≈ xcda√
(ycda)

2 + f2

≈ xcda
f

∆θyF = arctan
ycda
f
≈ ycda

f
(26)

Appendix 2. Nonlinear function ”fhan” used
in ADRC

fhan(e1, e2, c, r, h1) is expressed as follows

d = r · h1

d0 = h1 · d;

e3 = e1 + h1 · e2;

a0 =
√
d2 + 8r · |e3|

fhan = −r · sat(a, d);

(27)

where,

a =


e2 +

(a0 − d)

2
sign(e3), |e3| > d0

e2 +
e1

h0
, |e3| ≤ d0

and sat(a, d) is defined below

sat(a, d) =


a

d
, |a| ≤ d

sign(a), |a| > d
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