
On estimation of model error by an adaptive filter

HONG SON HOANG
SHOM

HOM/REC
42 Av Gaspard Coriolis, Toulouse

FRANCE
hhoang@shom.fr

REMY BARAILLE
SHOM

HOM/REC
42 Av Gaspard Coriolis, Toulouse

FRANCE
remy.baraille@shom.fr

Abstract: This paper presents an optimal filtering approach to state and model error (ME) estimation
problem, with a deterministic or stochastic ME. The approach is based on the adaptive filtering (AF)
algorithm which is aimed at overcoming the difficulties in the filter design with very high dimensionality
of the dynamic systems. The objective is to design a filtering algorithm offering potential for improvement
of numerical accuracy and reduction of computational burden. A hypothesis on the structure of ME is
introduced. The improvement of the AF performance is achieved by tuning some pertinent parameters of
the filter gain as well as bias parameters to minimize the prediction error of the system output. Numerical
experiments are presented to illustrate the performance of the proposed approach.

Key–Words: Dynamic system, Model error, Adaptive filter, Minimal mean prediction error, Filter sta-
bility.

1 Introduction

This work deals with the problem of state esti-
mation in partially observed dynamic systems of
very high dimensions, in presence of model er-
ror (ME). Given a set of measurements at each
assimilation moment, the objective is to obtain
system estimates that best exploit the measure-
ments, while facing with ME. This issue happens
frequently in data assimilation (DA) for geophys-
ical systems (DA-GeoS) applications, where a nu-
merical model is biased compared to the real phys-
ical system. The solution of such problem is im-
portant for designing a high quality forecasting
system.

Consider the problem of state estimation in a
high dimensional system (HdS)

x(t+ 1) = Φx(t) + b+ w(t),

z(t+ 1) = Hx(t+ 1) + v(t+ 1), (1)

here x(t) is the n-dimensional system state at the
t assimilation instant, with the n being of order
107−108, Φ is the (nxn) fundamental matrix, z(t)
is the p-dimensional observation vector, H is the
(pxn) observation matrix, w, v are the model and
observation noises. We assume w(t) is a stochas-
tic model error (SME), w(t) and v(t) are gaus-
sian white noise processes of zero mean and time-
invariant covariance Q and R respectively, and
they are mutually uncorrelated.

In a more general form, the problem (1) is
formulated as [3]

x(t+ 1) = Φx(t) +Bb+ w(t),

z(t+ 1) = Hx(t+ 1) +Db+ v(t+ 1), (2)

The approach to be developed in the sequel can be
easily applied to the system (2). In (1) the func-
tion b represents an unknown perturbation, deter-
ministic or stochastic. For simplicity and clarity
of presentation, in this paper, we assume that b
is a constant deterministic model error (DME).
As to Q and R, in practice, if the covariance R
is more or less known, the matrix Q is usually
unknown. In [11] the adaptive filter (AF) is pro-
posed to deal with HdS (1) under the condition
b(t) = 0.

The necessity to introduce the AF [11] is dic-
tated by the fact that the traditional Kalman fil-
ter (KF) is inappropriate for solving the filtering
problems in high dimensional setting. Moreover,
in practice, the statistics of the model error (ME)
is not known (or poorly given). Using the KF in
such situations can produce poor results, not to
say on its possible instability.

There is a long history of ME estimation for
filtering algorithms, in particular, with the bias
and covariance estimation. One of the most origi-
nal approaches, dealing with the treatment of bias
in recursive filtering (known as bias-separated es-
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timation - BSE), is carried out by Friedland in
[3]. It has been shown in [3] that the least mean
square state estimator for a linear dynamic system
augmented with bias states can be decomposed
into three parts: 1) a bias-free state estimator;
2) a bias estimator; and 3) a blender. Mention
that this BSE has the advantage that it requires
fewer numerical operations than the traditional
augmented-state implementation. In addition,
the BSE avoids numerical ill-conditioning com-
pared to the case of state vectors of large dimen-
sion. However, as in the KF, the bias-estimation
requires additional matrix equations to be solved
which are impossible for HdSs.

For the time-varying bias, see [17]. Extension
of Friedlands bias filtering technique to a class of
nonlinear systems is done in [14], [16]. In [18], the
extension of BSE is studied for randomly time-
varying bias in nonlinear systems. For estimating
parameters for a stochastic dynamic marine eco-
logical system, see [2].

As to estimation of the model error covari-
ance matrix (ECM), i.e. Q of w(t) in (1), in the
filtering algorithm for environmental HdS, it is
worth of mentioning the work of Dee [1] on on-
line estimation of model error ECM parameters
in atmospheric DA. Recently a new algorithm is
proposed in [8] for estimation of high-dimensional
ECM of the state prediction error (PE). In this
algorithm, the ECM is assumed to be of the struc-
ture of Schur product of two matrices, one is of
horizontal coordinate, another - of vertical coor-
dinates. The unknown parameters are estimated
using a Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) algorithm [15]. The opti-
mization problem is formulated as minimization
of the mean squared error (MSE) of the differ-
ence between the data matrix (generated by the
Prediction Error Sampling Procedure (PeSP) [6])
and estimated matrix.

In this paper, we examine in more detail the
question on ME estimation in the context of AF
approach. Two situations are investigated here,
one concerns a DME b(t), another - estimating
the ECM of w(t). It is assumed that the SME
w(t) is a sequence of zero mean. This assumption
is not restricting the class of considered problems
because, if w(t) is of non-zero mean, its unknown
mean can be considered as a DME b(t).

It is important to stress that the ME esti-
mation algorithms, developed in this paper, are
based essentially on the hypothesis concerning the
structure of ME and on minimization of the MSE
of the innovation process in the AF. The tuning
parameters are bias parameters and some perti-

nent parameters of the filter gain [12].
The simulation results, presented in this pa-

per, show that the proposed ME estimation pro-
cedure has a considerable potential for improving
a performance of the estimation procedure. Here
the experiments are carried out for both small and
HdSs.

2 Model error and state estima-
tion

2.1 Bias-separated estimation by filter-
ing technique

It is common to treat the bias b as part of the
system state and then estimate the bias as well
as the system state. For simplicity of presenta-
tion, consider the situation when b(t) is a con-
stant unknown vector. For a more general class
of ME, a suitable ME equation can be introduced,
for example, by various types of deterministic or
stochastic differential equations. In this situation
we say on b(t) as a structural ME (which may be
periodic, sinusoidal, Markovian ...). If the second
order statistics of b(t) is given, a suitable dynam-
ical model for b(t) can be constructed as shown in
[7]. In this situation b(t) is a structural stochastic
ME.

Under the assumption made above, we have

b(t+ 1) = b(t), t = 0, 1, 2, ... (3)

To introduce a subspace for the values of b,
one can write b = Gd where G ∈ Rn×ne , n ≥ ne.
Generally speaking, G is unknown, and finding a
reasonable hypothesis for G is desirable but very
difficult. This question will be addressed in the
next section. It what follows, for simplicity of
presentation, we assume G = I- identity matrix.

Introduce xg = col(x, b) - column vector con-
sisting of two column vectors x and b - as an aug-
mented state. The new input-output system is
written for xg on the basis of (1)

xg(t+ 1) = Φgxg(t) + wg(t),

Φg :=

∣

∣

∣

∣

∣

Φ Φ2

0 Φ3

∣

∣

∣

∣

∣

, wg(t) := col(w(t), 0), (4)

where Φ2 = I,Φ3 = I. The observation system
(8) now reads as

z(t+ 1) = Hgxg(t+ 1) + v(t),

Hg := [H, 0], (5)
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and the filtering problem is solved using the
observations z(t). This leads to an augmented
state Kalman filter (ASKF). whose implementa-
tion can be computationally intensive. The main
idea in [3] is to separate the problem of estima-
tion of x in the presence of systematic bias b into
two estimation problems. First, form a modi-
fied bias-free filter by ignoring the bias term and
by adding an external bias-compensating input.
Second, take the bias into account and derive a
bias filter to compensate the modified bias free
filter in order to reconstruct the original filter.
More concretely, for the filtering problem (1), in-
stead of writing an ASKF for the augmented state
xg = col(x, b) one has

x̂(t+ 1) = x̃(t+ 1) + Vxb̂(t+ 1),

x̃(t+ 1) = Φx̃(t) +Kxζx(t+ 1),

b̂(t+ 1) = b̂(t) +Kbζb(t+ 1),

ζx(t+ 1) = z(t+ 1)−Hx̃(t+ 1),

ζb(t+ 1) = ζx(t+ 1)−Hb̂(t), t = 0, 1, 2, ... (6)

The estimate x̂g(t) := col(x̃(t), b̂(t)), defined
by (6), is an unbiased with minimal variance as
such obtained by applying an ASKF for the aug-
mented state xg(t) if Vx is obtained in an optimal
way as shown in [3]. For the optimal gain matrices
Kx,Kb, see [3].

2.2 Variational method (VM)

In the VM [13], for a set of observations z(t), t =
1, ..., N , one seeks the initial state for the aug-
mented state xg which minimizes the cost func-
tion

J [θ] → minθ, θ := col(x(0), b(0)),

J [θ] := (1/2)
N
∑

k=1

||z(k)−Hxg(k)||
2
M−1 ,

(7)

Mention the objective function in (7) is not
written explicitly as a function of θ. This can be
done by expressing xg(k) through xg(0) using (4).
Thus, in the VM, the bias is considered also as a
part of the initial (augmented) state to be esti-
mated along with x(0) to minimize the objective
function (7).

3 Adaptive filter and model er-
ror

3.1 Adaptive filter

Under the condition that b(t) = 0, the AF in [12]
is designed as an optimal solution the class of fil-
ters of a given (stabilizing) structure. The ob-
jective of the AF is to minimize the MSE of the
innovation. As seen in section 2.2, if in the VM,
the initial state is chosen as a control vector for
the optimization problem, in the AF the control
vector consists of some pertinent parameters of
the filter gain. These parameters are turned dur-
ing the assimilation process to minimize the MSE
of innovation [12]. The choice of tuning parame-
ters is dictated by the wish to ensure a stability of
the filter : we select only the parameters, whose
values belong to prescribed intervals, so that the
filter remains stable during the assimilation pro-
cess.

The main goal in the development of an AF is
to overcome the difficulties encountered in dealing
with the systems of high state dimension. For
example, it is impossible to solve the Algebraic
Riccati Equation (ARE) in the KF. Construction
of high performance DA-GeoS represents a great
challenge for both theoreticians and practitioners
in the field of filtering and estimation.

Consider a non-adaptive filter (NAF)

x̂(t+ 1) = x̂(t+ 1/t) +Kζ(t+ 1),

x̂(t+ 1/t) = Φx̂(t), (8)

where ζ(t+ 1) = z(t+ 1)−Hx̂(t+ 1/t) is the in-
novation vector, x̂(t + 1) is the filtered estimate,
x̂(t + 1/t) is the prediction for x(t + 1), where
the structure of the gain K := K(θ), in difference
with that in the KF, is assumed to be given a pri-
ori and parametrized by some vector of unknown
parameters θ. The AF is obtained by tuning θ to
minimize the PE of the system output,

J [θ] = E[Ψ(ζ(t)] → min θ,Ψ(ζ(t)) := ||ζ(t)||2,
(9)

where E(.) denotes the mathematical expecta-
tion.

Different parameterized structures of K are
proposed in [12] which are obtained from the point
of view of filter stability: K must be chosen in
such a way to ensure a stability of the filter. One
of stabilizing gain structures is

K = PrKe,Ke =MeH
T
e [HeMeH

T
e +R]

−1,Me > 0
(10)
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or

K =MHT [HMHT +R]−1,M = PrMeP
T
r (11)

where Me is a symmetric positive definite (SPD)
matrix which represents the ECM for the re-
duced state (in the reduced space). The matrix
Pr ∈ Rn×ne is a projection from the reduced space
Rne into the full spaceRn. The ECM of the full-
order state PE ep(t + 1) = x̂(t + 1/t) − x(t + 1)
is given by M . Under the detectability condi-
tion, a stability of the filter is guaranteed if the
columns of Pr are the unstable and stable eigen-
vectors (EiVecs) (or singular vectors, or real Schur
vectors) of the system dynamics Φ. In [6] the
PeSP has been proposed to generate an ensemble
of PE samples (EnPE) which are samples of the
leading real Schur vectors. These samples used as
columns of Pr in order to ensure a stability of the
filter.

3.2 Model errors

We are interested in two types of the ME : (i)
DME b(t); (ii) SME w(t).

Mention in practice of DA-GeoS, only a very
limited number of observations (in time) are given
hence our aim is to use the observations in the
best way possible to estimate b(t). Moreover, as
the AF is optimal only in a class of admissible
stable filters, the problem of identifiability of b(t)
is not of our interest in this paper. As to the SME,
the attention is drawn on how one can account for
the ECM Q in the structure of the filter gain ?

For both the DME and SME, we will assume
in this paper a hypothesis on the subspace for the
ME. This hypothesis is based on the observation
that in practice of data assimilation, the model
time step δt (required for advancing in time the
numerical solution) is much less than the assim-
ilation window ∆T (time interval separating two
observations). Mention that δt is chosen in order
to ensure a stability of numerical scheme and to
provide an accuracy of the numerical solution.

4 Estimation of deterministic
model error

4.1 Non-adaptive filter : augmented
state approach

The filter for solving the problem (4)(5), is pro-
posed of the form

x̂g(t+ 1) = x̂g(t+ 1/t) +Kgζ(t+ 1),

ζ(t+ 1) = z(t+ 1)−Hgx̂g(t+ 1/t),

x̂g(t+ 1/t) = Φgx̂g(t). (12)

The gain Kg can be constructed as proposed
in [12] (analogous to (10)(11) for the input-output
system (1)(8)).

Kg = Pg,rKg,e,

Kg,e =Mg,eH
T
g,e[Hg,eMg,eH

T
g,e +R]−1,

Hg,e = HgPg,r, (13)

where Mg,e is SPD matrix.
Introduce the Jordan decomposition for Φ [5],

Φ = UJU−1, J = diag[σ1, σ2, ..., σn]

|λ1| ≥ |λ2|... ≥ |λn|,

U = [U1, U2], D = block diag [D1, D2],

Ũ = U−1 = [ŨT
1 , Ũ

T
2 ]

T , (14)

where U1, Ũ1 ∈ Rn×ns , Dns
∈ Rns×ns , ns is

the number of all unstable and neutral EiVs of
Φ. In the future, for simplicity, unless otherwise
stated, we say on the set of all unstable EiVs as
that including all unstable and neutral EiVs. In
the sequel, for simplicity we assume that D1, D2

are diagonal and the presentation is done in term
of eigenvalue (EiV) decomposition (21). However,
all the results presented below are valid for the
Schur decomposition of Φ and in practice it is
more efficient to work with the real Schur decom-
position. In the Schur decomposition, U is an
orthogonal matrix.

Looking at Φg one sees that according to the
AF approach in [12], in order to ensure a stability
of the filter, the projection operator Pg,r can be
chosen in the form

Pg,r = [P (1), P (2)] =

∣

∣

∣

∣

∣

U1 P2

0 P3

∣

∣

∣

∣

∣

,

(15)

where the columns of U1 are the unstable
EiVs (or Schur vectors) of Φ. As to P2, P3, they
are the matrices of dimensions Rn×n. The diffi-
culty we have here is related to computation of
P (2) := [P T

2 , P
T
3 ]T . From the point of view of the
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stability of the AF [12], as Φ3 = I - the transition
matrix for the system b(t+1) = b(t), all the EiVs
of Φ3 are neutrally stable, all the EiVs, associ-
ated with them, must be taken into account in the
construction of Pg,r. The following Lemma shows
that there are two simple ways for the choice of
P2, P3.

Lemma 4.1. The projection operator Pg,r

can be chosen in the form (15) subject either to

P2 = U,P3 = UΣ,Σ = diag[1− λ1, ..., 1− λn],

U = [U1, U2].(16)

where λi, i = 1, ..., ns are all the unstable and
neutral EiVs of Φ, or in the form (15) s.t.

P2 = I = [x
(1)
1 , ..., x

(n)
1 ], x

(i)
1 = ei,

P3 = I − Φ = [x
(1)
2 , ..., x

(n)
2 ], x

(i)
2 = ei − φ(i), (17)

where ei := (0, ..., 1, ..., 0)T , i = 1, ..., n with
all components of ei equal to 0 except the i

th equal
to 1 and φ(i) is the ith column of Φ.

Comment 4.1. The projection operator based
on the formula (16) is difficult to realize because it
requires computation of all EiVs of Φ. As to (17),
if one wants to have Φ, this requires to make n
integrations of the model by ei, i = 1, ..., n to com-
pute all the columns of Φ (in a linear case). One
way to overcome this difficulty is to employ the
numerical method proposed in [9] to estimate Φ
by perturbing Φ and solve the associated opti-
mization problem using the SPSA algorithm.

In the next section we will show that in fact
the NAF can be implemented at the cost of mak-
ing one more additional integration of the numer-
ical model without the need to store Φ. By this
way it is possible to apply the AF with the aug-
mented state approach for very HdSs.

4.2 Non-adaptive filter based (17)

Consider the filtering problem (4)-(5). Let us cal-
culate the filter gain Kg in (20). According to
Lemma 4.1, using the projection operator Pg,r

given in the form (17) and under the assumption
Mg,e = I one has

Hg,e = HgPg,e = [HU1, H],

Kg,e = [Ke(1),Ke(2)] = HT
g,eΣ

−1,

Ke(1) = (HU1)
TΣ−1, Ke(2) = HTΣ−1,

Σ := [Hg,eH
T
g,e +R].

Using the formula for Pg,r we have now

Kg = [KT
g (1),K

T
g (2)]

T ,

Kg(1) = (I + U1U
T
1 )H

TΣ−1,

Kg(2) = (I − Φ)HTΣ−1. (18)

It is seen that Φ participates only in Kg(2).
The filter (12) is rewritten as

x̂(t+ 1) = x̂(t+ 1/t) + c(1),

b̂(t+ 1) = b̂(t) + c(2),

x̂(t+ 1/t) = Φx̂(t) + b̂(t),

c(1) := (I + U1U
T
1 )H

T η,

c(2) := (I − Φ)HT η, η = Σ−1ζ(t+ 1),

Σ = [HUU1H
T +HHT +R]

ζ(t+ 1) = z(t+ 1)−Hx̂(t+ 1/t),

(19)

Mention that for HdS, η is found by iteratively
solving the equation Ση = ζ(t+ 1).

In comparison with the case of no bias esti-
mation, the implementation of (19) requires, in
addition, only one integration of Φ to perform
c(2) = Kg(2)ζ(t + 1). It means that there exists
no principal difficulty to implement the filter (19)
for very HdS. The obtained result is formulated
in the following

Theorem 4.1 Consider the filtering problem
(1). Under the observability condition of (1), the
filter (19) is stable.

The proof of Theorem 4.1 is given in Ap-
pendix A.

Mention that including the equation for b
makes the filtering problem more complex and us-
ing only the information from the subspace U1 is
insufficient for ensuring a stability of the filter for
the augmented state. That is why the condition
detectability of (1) in the case with b = 0 is now
replaced by the stronger condition observability of
the system (1). Note that in fact observability of
the system (1) is equivalent to detectability of the
augmented state system (4)-(5).

4.3 Adaptive filter

It is well known [4] that if the system (1) is sta-
tionary, applying the KF filter to (1) s.t. b := b∗,
where b∗ is the true value of b, the Kalman gain
Kkf (t) will tend to an optimal constant gain
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Kkf (∞) = K∗ as t → ∞ and ζ(t) is of mini-
mal variance. This idea has been used in [11] for
the design of the AF.

In this paper, we will follow the same idea to
construct the AF. Let the gain matrix Kg be cho-
sen as a stabilizing gain for the filter (12), with
an appropriate parameterization as done in [12].
We remark that in the ideal situation, if α - the
vector of unknown parameters of the gain Kg -
consists of all elements of Kg, under the suitable
condition (detectability of (4)-(5)), by solving the
optimization problem (9), in asymptotic, we ob-
tain a stationary (constant) optimal estimate K∗

g

forKg, with the corresponding innovation ζ(t) be-
ing of minimal variance.

Based on this idea, consider the problem of
minimizing (9) s.t. the control vector α :=
(θT , γT )T where θ is the vector of tuning parame-
ters in the gain Kg := Kg(θ), γ - the vector of un-
known parameters in b := b(γ). As before, when
θ consists of all elements of K, γ - comprises all
elements of b, under suitable condition, the in-
novation ζ(t) will be of minimal variance and in
asymptotic one obtains the optimal gain K∗

g .
Based on the NAF, developed in the previous

section, we can write out now a structure for the
AF. According to [12], one of the AFs can be of
the form (12) where the gain Kg now takes the
form

Kg = Pg,rΞgKg,e,

Kg,e =Mg,eH
T
g,e[Hg,eMg,eH

T
g,e +R]−1,

Hg,e = HgPg,r, (20)

where

Ξg = block diag[Θ,Γ],

Θ ∈ Rne×ne ,Γ ∈ Rn×n. (21)

The matrices Θ,Γ in (21) may be diagonal
with positive diagonal elements. For more details
on the constraints for the diagonal elements, see
[12]. The diagonal elements of Θ,Γ (denoted by
the two vectors (θ, γ)) are the tuning parameters
to be adjusted to minimize the objective function
(9). Substituting Pg,r from (17), Ξg from (21),
into the gain Kg in (20) yields

Kg = [KT (1),KT (2)]T ,

K(1) = block diag[Θ,Γ],

Θ ∈ Rns×ns ,Γ ∈ Rn×n. (22)

The AF is obtained by tuning α = col(θ, γ)
to mimimize the objective function (9). For HdSs,
the SPSA algorithm (c.f., [15]) is very useful for
solving such optimization problem : This follows
from the fact that the SPSA algorithms require to
evaluate only the gradient of the sample cost func-
tion Ψ := ||ζ(t)||2, at each assimilation instant
and ||ζ(t)||2 is quadratic with respect to (w.r.t.)
the vector α. It makes the optimization process
much easier and accelerates a convergence of esti-
mated gain parameters. According to the SPSA
approach,

α(t+ 1) = α(t)− µ(t+ 1)∇α(t)Ψ[ζ(t+ 1)]. (23)

where ∇α(t)Ψ[ζ(t + 1)] is the gradient of
Ψ[ζ(t + 1)] with respect to (wrt) α(t); µ(t + 1)
is a scalar or matrix sequence chosen for ensuring
a convergence of the algorithm (23).

The gradient ∇α(t)Ψ[ζ(t + 1)] can be com-
puted by simultaneously perturbing (stochasti-
cally) all the components of α(t). This method
requires integrating only two or three times the
numerical model Φ to generate the forecast and
its perturbations for estimating a sample gradi-
ent vector. For more detail, see [9]. According to
Theorem 5.4 [12], the constraint for the ith com-
ponent αi(t) of α(t) is expressed as following

αi(t) ∈ [1− ǫi, 1 + ǫi], ǫi ∈ (0, 1),

ǫi → 1 as |λi| → 1, ǫi → 0 as |λi| → ∞ (24)

From (24) it is seen that the interval of ad-
missible values for αi(t) approaches to [0,2] for
a neutrally stable EiV and it shrinks to consist
of one point 1 for a large (by modulus) EiV. It
means that there is a relatively large freedom to
vary αi(t) when the corresponding Eiv is close to
be neutrally stable. In contrast, for large unstable
EiV, no margin left to vary αi(t). As all {αi(t)}
do not have any physical sense, no normalization
procedure is imposed for {αi(t)} in the systems
with different physical variables. This simplifies
the implementation procedure for optimizing the
filter performance.

5 Structure of the model error

5.1 Hypothesis on the structure of
model error

In this section we will concentrate our attention
on the question on whether it is possible to de-
scribe a subspace for the values of the ME in the
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framework of the data assimilation problem ? In
the context of the MEs b(t) and w(t), this ques-
tion is equivalent to saying on whether one can
find the relationships

b = Gbd, w = Gwψ,

Gb ∈ Rn×nd , GwR
n×nw , nd < n, nw < n. (25)

where Gb, Gw are known ? The information,
given by (25), allows to better estimate the DME
as well as the filter gain, especially for nd <<
n, nw << n in a HdS setting. For example, for
the SME, if in Eqs (10)(11) the ECM M is as-
sumed to be constructed on the basis of only the
PE samples (from application of the PeSP in [6]),
with the assumption w = Gwψ, one can obtain a
richer structure for M in the form

MQ =M +Qw, Qw = GwQeG
T
w. (26)

As to the DME b, there is now a need to esti-
mate only d ∈ Rnb with a much lower dimension
nb << n. In vue of very large n and a small num-
ber of observations (compare to n), this structure
allows to accelerate a convergence of estimation
procedure and to produce a more precise estimate
for the vector b.

The difficulty, encountered in the practice of
operational forecasting systems (OFS), is that
(practically) nothing is given a priori on the ME.
This concerns, for example, a subspace spanned
by the values of the ME. To overcome this diffi-
culty, a simple hypothesis on this subspace will
be introduced. This hypothesis is possible to be
postulated if one takes into consideration the fact
that for a large number of data assimilation prob-
lems, the model time steps δt (chosen for en-
suring a stability of numerical scheme and for
guaranteeing a high precision of the discrete so-
lution) is much smaller than ∆T - the assimila-
tion window (time interval between two observa-
tion arrivals). More precisely, suppose ∆t = naδt
and µ(τ) represents an ME between two model
time steps. Symbolically we have (for simplicity,
x′(0) := x(t), x′(naδt) = x′(∆t) = x(t+ 1), x(t) is
the system state in (1)). Hence

x′(τ + 1) = φx′(τ) + µ(τ), τ = 0, 1, ..., na,
x′(na) = φ(na, 0)x

′(0)+
∑na−1

τ=1 φ(na − 1, τ)µ(τ), φ(τ +m, τ) := φm,
φ(τ, τ) = I, φ(τ, τ +m) := 0,m > 0,

hence

x(t+ 1) = Φx(t) + w(t),Φ = φ(na, 0),

w(t) =
na−1
∑

τ=1

ν(τ), ν(τ) := φna−1−τµ(τ). (27)

It is not hard to see that the dominant part
of w(t) consists of the members ν(τ) for which
na − 1− τ is large, if φ is unstable. It means that
approximately one can consider w(t) belongs to
the subspace of unstable Schur vectors of Φ if na
is relatively large.

Hypothesis. Under the condition that na is
relatively large, the ME belongs to the subspace
spanned by the unstable and neutral EiVecs (or
Schur vectors) of the system dynamics Φ.

In the sequel we will refer to the formulated
hypothesis as the Hypothesis on ME (HME).

5.2 Structure of NAF under hypothe-
sis

Under the HME, as b = U1d, the system (3) be-
comes

b(t+ 1) = U1d(t+ 1), d(t+ 1) = d(t), (28)

As U1 is known, there is a need to estimate
only the vector d. Introduce xg = col(x, d). From
(1)(28),

xg(t+ 1) = Φgxg(t) + wg(t),

Φg :=

∣

∣

∣

∣

∣

Φ U1

0 Ins

∣

∣

∣

∣

∣

, wg(t) := col(w(t), 0), (29)

where Φ2 = U1,Φ3 = Ins
. The observation sys-

tem (8) reads

z(t+ 1) = Hgxg(t+ 1) + v(t),

Hg := [H, 0n×ns
], (30)

Applying the filter, similar to (12)? with the
gain Kg of the structure (20) to the filtering prob-
lem (29)-(30) yields

Lemma 5.1. The projection operator Pg,r

can be chosen in the form (15) s.t.

P2 = U1, P3 = U1S1, S1 =

diag[1− λ1, ..., 1− λns
], (31)

where λi, i = 1, ..., ns are all the unstable and
neutral EiVs of Φ, i.e.
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Pg,r =

∣

∣

∣

∣

∣

U1 P2

0 P3

∣

∣

∣

∣

∣

= U1

∣

∣

∣

∣

∣

Ins
Ins

0 S1

∣

∣

∣

∣

∣

.

Comment 5.1. The second choice, similar to
that done in Lemma 4.1, is of no interest. In fact,
we have now for a given µi, i = 1, ..., ns, the equa-

tions for the corresponding x(i) = col(x
(i)
1 , x

(i)
2 )

are x
(i)
1 = ei, Gbx

(i)
2 = ei − φ(i), i = 1, ..., ns. One

sees there exists no interesting choice for x
(i)
2 as it

does for ns = n.

5.3 Structure of the AF under HME

According to [12], one class of stabilizing gains for
the AF based on NAF under HME is

Kg = Pg,r blockdiag [Θ,Γ]HT
g,rΣζ(t+ 1),

Σ := [Hg,rH
T
g,r +R]−1. (32)

where Pg,r is defined in Lemma 5.1. The diag-
onal matrices Θ,Γ are similar to those described
in Section 4.3.

6 Experiments

6.1 Illustration of the hypothesis

To illustrate the postulated hypothesis, let us con-
sider

Φ = [φij ]
2
i,j=1, φ11 = 1.02,

φ12 = 0.1, φ21 = 0, φ22 = 0.9. (33)

Numerically one finds the first Schur vector of
φ equal to û1 = (−1.0,−7.0× 10−7)T .

Fig. 1 shows the results computed on the
basis of (27). One sees that, for na > 10, the
2nd component is close to 0 whereas the 1st com-
ponent becomes bigger and bigger (in absolute
value) as na increases. Here µ(τ) is a sequence
of independent 2-dimensional Gaussian random
vectors of zero mean and variance 1. This means
that w becomes more and more close to the sub-
space spanned by û1 hence the hypothesis holds
for na > 10 in this example. Mention that, as
a rule, in ocean numerical models, na is of order
O(100) (na = 800 for the MICOM model in the
experiment in section 6.4).

6.2 Two dimensional systems

Consider the system (1) with Φ given in (33) and
H = [1, 1] with the DME b∗(1) = b∗(2) = 0.1.
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Figure 1: Two components of w as function of na
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Figure 2: Sample time average RMS of the state
forecast error produced by the NAF, KF and AF.

In the experiment, t = 0, 1, ..., 390 and the
observations are given only at the assimilation
moments k = 1, 2, ..., 26 which correspond to the
model time instants t = 15, 30, ..., 390, i.e. k =
t/15. As seen from Fig. 1, for na = 15 the sep-
aration of the two components of the first Schur
vector is well established. The true system states
x∗(t) are generated by (1) s.t. b∗ = col(0.1, 0.1),
Q = I, R = 0.16. For the KF and NAF, the
forecast is obtained at each assimilation instant k
as x̂(k + 1/k) = Φkx̂(k) + b′(k) where Φk = Φ15.
The vector b′ = col(b′(1), b′(2)) is obtained by in-
tegrating the numerical model s.t. b∗ over the
assimilation window t = 1, ..., 15 and is equal to
b′ = (0.2296, 2.0589E−02). Thus b′ represents ap-
proximately a correct bias produced by the model
over the assimilation window.

The initial gain of the KF is assigned to the
gain in the NAF as well as the initial gain for
the AF, which is equal to K = col(0.584, 0.386).
For the AF, α is updated during the assimilation
process along with the gain parameters θ as shown
in section 4.3.
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Fig. 2 displays the sample time average RMS
of the state forecast error produced by the NAF,
KF and AF. From Fig. 2 and Fig. 3, if there is no
significant difference in the forecast performance
produced by the three filters, the AF outperforms
the NAF and KF in term of the filtered error (Fig.
3) performance. Thus tuning the three parame-
ters α, θ(1), θ(2) during the assimilation process
allows to improve considerably the performance
of the AF. Fig. 4 shows a very quick convergence
of the KF gain. This explains why two filters KF
and NAF have produced nearly the same perfor-
mance.

6.3 High dimensional system

For the HdS, the assimilation experiment on the
MICOM ( Miami Isopycnic Coordinate Ocean
Model) has been carried out. For the real op-
erational HdS, unfortunately, the information on
the space of model error is usually unavailable. If

there exists a model error and we do not take it
into account, the error will be accumulated and
grows mostly in directions of leading EiVecs (or
Schur vectors) of the dynamical system matrix.
This motivates us to postulate the hypothesis that
R[Qw] is spanned by a few leading EiVecs of the
ECM M , i.e. by assuming

Qw = U1ΛU
T
1 ,

M = UDUT = U1Σ1U
T
1 + U2Σ2U

T
2 . (34)

The columns of U = [U1, U2] are its EiVecs, Σ
is diagonal with the EiVs σ1 ≥ σ2.... ≥ σn ≥ 0,
U1 ∈ Rν×n, ν ≤ n.

The ocean model MICOM used in the exper-
iment has 4 layers and the observations are the
sea surface height (SSH). The ocean state has the
dimension n = 302400. For the more detail, see
[10]. The ECM Qw is assumed to be of the form of
Kronecker product of the vertical ECM Mv and
the horizontal ECM Mh [8]. For simplicity, the
model error ECM is accounted only in the verti-
cal ECM hence

Mv =Mm
v +Qv, (35)

where Mm
v ∈ Rnv×nv is the ECM estimated from

an ensemble of PE samples generated by the PeSP
[6], Qv represents the covariance of the associated
model error. The structure of Qv is supposed to
be of the form

Qv = Uv(1)DΣv(1)U
T
v (1),M

m
v = UvΣvU

T
v ,

Uv = [Uv(1), Uv(2)],

Σv = block diag [Σv(1),Σv(2)], (36)

Computation reveals that the EiVs decompo-
sition ofMm

v has the first mode with the explained
variance 67%, the second and third modes - with
the corresponding explained variances 17% and
15%. The explained variance of the fourth mode
is only 0.7E-07 %.

In the experiment Uv(1) consists of the three
first eigenmodes, D = 0.2I. The corresponding
AF is denoted ad AF3U.

Fig. 5 shows rms of filtered error for the u-
component of surface velocity resulting from the
AF0U - the AF whose non-adaptive version has
the gain computed on the basis of an ensemble
of PE samples (PeSP) hence Qv = 0. It is seen
that by introducing a simple hypothesis on the
subspace for the model error ECM, it is possible
to improve the AF performance compared to the
case of no specification of the model error ECM.
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7 Conclusions

We have presented in this paper the first results
on an AF approach to deal with the ME (deter-
ministic and stochastic) present in the dynamics
of a HdS. The advantage of the traditional BSE
(or two-stage estimation) in separating the esti-
mation of the bias from that of the dynamic state
is that it allows to reduce the size of the matrices
and vectors involved in the filtering computations.
However, due to matrix equations involved in es-
timation algorithms, the BSE is inappropriate for
HdSs as such encountered in practice of DA-GeoS.
The main objective in this study is to develop the
algorithms without recourse to solve the matrix
equations for gain computation. This requires to
introduce a new optimality criterion for the filter
and the choice of appropriate tuning parameters.
The AF approach, developed initially in [11], is
completely adaptable for this purpose.

In the numerical part, based on the postu-
lated hypothesis, the structure of the ME has
been chosen in accordance with the postulated
hypothesis and the optimization of the filter per-
formance has been carried out. The numerical
results clearly show a relevance and significance
of the introduced hypothesis, its usefulness in the
optimization of the filter performance.

In the future, we plan to extend this approach
to the class of time-varying MEs which belong
to the class of random processes with separable
correlation matrices as studied in [7]. That would
be an important step forward towards the goal of
achieving a solution of GeoS-DA for HdSs for a
wide class of MEs.

8 Appendix

Introduce the two classical definitions
Definition A.1. A linear system (1) is observ-

able if all its EiVecs are observable.
Definition A.2 A linear system (1) is de-

tectable if all unstable EiVecs (modes) are observ-
able.

Mention that the criteria for checking an ob-
servability of (1) is that its observability matrix
Ø has the rank n where

Ø := [HT , (HΦ)T , ..., (HΦn)T ]T (37)

Checking the rank of the observability ma-
trix provides an algebraic test for observability,
however this method is generally less interesting
compared to the Popov-Belevich-Hautus (PBH)
tests. The more useful is the Popov-Belevich-
Hautus EiVec and rank tests for observability.

Theorem A1. (PBH Eigenvector Tests for Ob-
servability) The state equation (1) specified by
(Φ, H) is observable if and only if there exists no
right EiVec of Φ orthogonal to the rows of H.

Proof of Theorem 4.1. For b = 0, a stability
of the filter under observability of (1) is proved in
[12] (in fact, it requires only a detectability of (1),
but observability implies detectability). The filter
(19) is stable if we can show that observability of
(1) implies observability of (4)-(5).

Return the the structure (16) in Lemma 4.1.

One sees that the right EiVecs of Φ̃ are of the form
ug,i = (uTi , 0)

T , i = 1, ..., n and ug,n+i = (uTi , [(1−
λı)ui]

T )T , i = 1, ..., n. We have Hgug,i = Hui 6=
0, i = 1, ..., n since the system (1) is observable
which implies Hui 6= 0 by the PBH Test for Ob-
servability. Moreover, as Hgug,n+i = Hui, i =
1, ..., n it implies Hgug,n+i 6= 0, i = 1, ..., n too.
(End of Proof)
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