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Abstract: - The problem of solving systems of linear algebraic equations (SLAES) is connected
with finding the eigenvalues of the matrix of the system. Often it is necessary to solve SLAES with
positive definite symmetric matrices. The eigenvalues of such matrices are real and positive. Here
we propose an interpolation method for finding eigenvalues of such matrices. The proposed
method can also be used to calculate the real eigenvalues of an arbitrary matrix with real elements.
This method uses splines of Lagrangian type of fifth order and/or polynomial integro-differential
splines of fifth order. To calculate the eigenvalue, it is necessary to calculate several determinants
and solve the nonlinear equation. Examples of humerical experiments are given.
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1 Introduction

In the process of solving various physical problems,
it is necessary to solve systems of linear algebraic
equations with positive definite symmetric matrices.
Systems of linear algebraic equations (SLAESs) with
positive definite symmetric matrices arise quite
often, for example, during the solution of ordinary
differential equations by the Ritz method, which
leads to Gram matrices.

An important problem related to solving SLAEs
is the calculation of the eigenvalues of a matrix.
Using some methods one can find all the
eigenvalues of the matrix (as with Krylov’s method,
see [1]), using other methods one can find the
largest eigenvalue in its absolute value (as with the
power iteration method, see [1]). For the initial
localization of eigenvalues, one can use
Gershgorin's theorem or use a norm of the matrix to
be consistent and subordinate to the vector norm.
The theory of finding eigenvalues is constantly
being improved [2]-[4].

Here we propose an interpolation method for
finding the real eigenvalues of a matrix with real
elements, based on the use of polynomial splines of
Lagrangian type and polynomial integro-differential
splines [5]-[9]. This method can be used to
calculate the eigenvalues of symmetric positive
definite matrices, and for obtaining real eigenvalues
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of matrices with real elements. The main features of
integro-differential splines are the following: the
approximation is constructed separately for each
grid interval, the approximation constructed as the
sum of products of the basic splines and the values
of function in nodes and/or the values of its
derivatives and/or the values of integrals of this
function over subintervals. Basic splines are
determined by using a solving system of equations
which are provided by the set of functions. It is
known that when integrals of the function over the
intervals are equal to the integrals of the
approximation of the function over the intervals
then the approximation has some physical parallel.

Here we construct polynomial integro-
differential splines of fifth order. In this paper we
discuss the construction of polynomial integro-
differential splines which use integrals over
subintervals in addition to the values of the function
in the nodes. To calculate the eigenvalue, it is
necessary to calculate five determinants and solve
the nonlinear equation.

2 About Calculation Eigenvalues

Often it is very important to know all eigenvalues or
the largest eigenvalue of a matrix. For solving this
problem it is possible to use different types of
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splines [10]-[12]. For the calculation of the
eigenvalues we can recommend a modification of
the interpolation method (the idea of an
interpolation method was suggested in 1960 by
D.K.Faddeyev). The interpolation polynomial in the
Lagrange form is well known. Here we suggest the
following modification of the interpolation method
for obtaining the eigenvalues of a positive defined
symmetric matrix (or a near symmetrical positive
defined matrix) using splines of Lagrange type.

Let matrix H,, = (hij)?jzl of the SLAE H,,z=f
be symmetric and positive definite (for example, the
Hilbert matrix, i.e. the matrix where h;; = 1/(i +
j—1)). For example, we calculate the eigenvalues
for positive definite non symmetric matrices that
can be constructed in this way. Let us put n = 20,
replace element h,o,; = 1/20 of the matrix Hy,
with the element h,,, = 1/(20.1) and replace
element hy 5o = 1/20 of the matrix H,, with the
element El,ZO = 1/(19.9). Now we obtain matrix
H,, in which all elements except 520,1 and
El,ZO coincide with the elements of the matrix Hy.
Matrix Hyo is not symmetric, ||H,o — Hyoll <
0.000251 = § (using Euclidean norm).

Let us calculate the largest eigenvalue of H,, . It
is not difficult to verify that all eigenvalues of H,,
are positive. The calculation of the value of
determinant is rather complicated, so we should do
it as seldom as possible. At first we construct the
function F(t) = H,, — tE,,. Using Gershgorin’s
theorem we can calculate domains Dj, = [ay, b],
where there are eigenvalues ;. Let {t;} be a set of
nodes, t; € Di. On every [t;,t;41] We construct
polynomial Py (t) = ¥; det (F(t])) w; (t), where
w; (t) are local basic functions, that are obtained
from system of equations P,(t) = P(t), P(t) =
t%,s =0,1,2,3,4. Such local interpolation splines
have been studied in [5]-[9].

Further we denote by
lgl[e,p) = maxqp) |g(x)|. If suppw; consists of
5 intervals and h = max;h;, h; = t;;1 — t;, we have

1Py = FIl < Kh3IF(q, 5,1, F € C>(Dy),
K > 0.

Here F(t) is the characteristic polynomial. On
every interval [t;, t;.1] Wwe can construct the
interpolation polynomial in one of the following
relations. We denote them as P ().
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2.1 The first option

Approximation on the rightmost interval may be
obtained with the following approximation:

PRt = 2y det (F(t))wi (0), t e [t tia] (1)

where
w;(t) = (t—t )t —t;3)(t —t;p)(t — ;1)
l (i —tica) (b — tia) (b — ti) (i — tiy)
w;—1(t)

_ t—ti—)t—ti3)E -t —t)

(tic1 — tima) (timg — tig) (tiog — ti2) (timg — &)
w;—,(t)
_ t—ti—)t—ti3)Et -t — )

(ticg — tima)(tiz — ti3)(ti—p — timq) (tiz — t;)

w;_3(t)
t—ti_)t— )t —ti))(E— )

(tics — tima)(timz — tip) (ti—g — ti—q) (tiz — t;)

(t—ti—g)(t—ti—p)(t—t;—1)(t—t;)
(tia=ti—3)(ti—a—ti2)(ti—a—ti1)(ti—a—t;)
The error of approximation we receive from
remainder term of the Lagrange interpolation. For
t € [t;, t;41] using (1) we obtain

wi_4(t) =

IPE = Fllige,ep,n < Kh® /50 IIFO, 1, K = 120.

—4otit1
2.2 The second option

Approximation on the interval to the right of the
rightmost interval may be obtained with the
following approximation:

P = B 515 det (F(5)) wy (0), ¢ € [t tisa),
@

where

w;_3(t)
(t—ti)(—ti—) (@ —t)( — tiy1)

(tics — tip)(tim3 — ti—) (ti—g — t)(ti_3 — tip1)’

w; ()
(t—ti—3)(t— i) — ) — tiy1)

(ticz — ti—3) (tiz — tim) (ti—g — ) (ti—g — tip1)’

w;_1(t)
_ (t—ti3)(t —tip)(t —t)(t — tiq)
(ticg = ticg)(tiog — tip)(timg — t) (g — tiyq)
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(t—tiz)(t — i)t — 1) (t — tiyq)
(t; — tim3)(t; — tip) (b — i) (t; — tig1)

w;(t) =

w41 (6)
t—ti3m)t—t )t —t_)(E—¢t)

(tip1 = tim3) (tipr — tig) (tigr — tim) (tig1 — ;)

The error of approximation we receive from the
remainder term of the Lagrange interpolation. For
t € [t;, t;41] using (2) we obtain:

|lPZ — F|l < K h®/5! |[F®|;, K =3.632.
[ ]

i-3:tit1

2.3 Next option

On the interval to the right of the previous one, we can
apply the approximation

P3(0) = 225 det (F(5))wi(®), t € [ty tial,
®)

w;_5(t)
(=t —t)(E = tiy)(E — tiy2)

(tiep — timg) (timp — ) (tip — tiy) (tip — tig2)’

w;_1(t)
(=t ) —t)(E — tiy1)(E — tiy2)

(tic1 — ti—p) (timq — ) (g — tip) (tig — tig2)’

(t = ti—2)(t — ti—1)(t — tiy1) (t — tig2)
(t; — tisp)(t; — tim)(t; — tip) (& — tiy2)

w;(t) =

wi1(t)
(t—ti ) —ti)(E =) — tiy2)

(tis1 = timg) (tipq — tim) (g1 — ) (L1 — tig2)’

W42 (t)
(=t —ti)(E =) — tiy1)

(tivz = timg) (tirz — tim1) (tivz — t) (tigz — tiz1)

The error of approximation we receive from the
remainder term of the Lagrange interpolation:

IP? = FIl < K IFP g, _yz,,,1h° /5! K = 0.864.

i-2ti+2

2.4 Another option

On the interval to the right of the previous one, we can
apply the approximation

PE(E) = T)2 det (F(t))wy (©), € € [ty b))
@
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w1 (1)
(t = t)(t = tip)(t — tig2) (E — tig3)

(ticg — t)(timg — tip1)(ticg — tig2) (Gimg — tigs)’

w; ()
(t =) =t — tig2) (E — tig3)

(ti — ti—) (@t — tip) ([t — tig2) (t; — tigs)’

w1 (1)
(=t —t)( — tig2)(t — tiy3)

(tivr — tic1)(Civr — t) (g1 — tig2) (bipr — tigs)’

Wiy (1)
(=t ) —t)(t = ti41) (€ — tiy3)

(tivz — tim1) (tivz — t) (tigz — tiy1) iz — tigs)’

wiy3(t)
(=t — ) — tip1)(E — tig2)

(tiys — tim1)(tivs — t) (tigs — tiy1) (bips — tiva)

The error of approximation we receive from the
remainder term of the Lagrange interpolation. For
t € [t;, t;41] from (4) we obtain

IP¢ = F SKIIFOllg, el /5 K =121

titiv1]

2.5 One more option

On the interval to the right of the previous one, we
can apply the approximation

PS(6) = S)= det (F (1)) wy (0), t € [ty tiya),
()

(t = tig1)( — tig2)(t — ti3) (E — tiga)
(t; = tip1) (t = tig2) (G — tig3) (b — tiga)’

w; (t) =

w41 ()
(=t = tig2)(t — tig3)(t — tiga)

(tiv1 = t) (tirr — ti2) (tisr — tivs) (g — tia)’

W42 ()
(=t = tig1)(E — tig3)( — tiga)

(tivz = t) (tia = tip) (tisz — tivs) (v — tia)’

wiy3(t)
(=t =tz — tig2) (E — tiga)

(tiys = t)(tiyz — tip1)(tivs — tigy2) (tivs — tiva)’
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Wi44(t)
(t = t)(t — tiz)(t — tiy2)(E — tig3)

(tiva — t)(tiva — tiy1) (Civa — tign) (tiga — tis)

The error of approximation we receive from the
remainder term of the Lagrange interpolation: for

t € [t;, tiy1] by (5)

|P? = F|| < K IF® I, z,,.R° /5N K = 3.632.
Formulae (3), (4) give us the less error of
approximation. If it is possible it is better to use
formulae (3) or (4) to obtain the root on [t;, t;1].
Now we will discuss the method of calculation of
the largest eigenvalue using values of F(t),F(t) =
det(H,o — tEy), at no less than 5 different points
t;. Let the largest eigenvalue u be such that u €
Dy = [am,by]. We put  hy, = (by —an)/5,
t; =a, +ih,,i =0,1,..,5. Eigenvalues of H,,
are positive, so we can put a,, = 0. Thus, for the
calculation of eigenvalues on [t;, t;;1] we have to
find the roots of polynomial P, (t). We begin from
the right side of domain D,,,. If i = 4 then we have
t € [b,, — h,b,,] and we have to solve Pj(t) =0,
where Pl (t) is given by (1) (we can also use
PZ(t), which is given by (2)). If there is a real root
in the interval [b,, — h, b,,] then this root is the
largest eigenvalue. If there is no real root in this
interval then we try to obtain a real root in the next
interval. For i = 3 we have t € [b,, — 2h, b,,, — h]
and solve PZ(t) = 0, where PZ(t) has the form
(2). If there is a real root in the interval [b,, —
2h, b, — h] then this root is the largest eigenvalue.
If there is no real root in this interval then we should
try to obtain a real root in the next interval. If i = 2
then we have t € [b,, — 3h, b,, — 2h] and we have
to solve P7(t) = 0, where P3(t) is (3). If there is
a real root in the interval [b,, — 3h, b,, — 2h] then
this root is the largest eigenvalue. If there is no real
root in this interval then we should try to obtain a
real root in the next interval. If i =1 we have
t € [ay, + h,a,, + 2h] and solve Pj(t) = 0, where
P}(t) is given by (4). If there is a real root in the
interval [a,, + h,a,, + 2h] then this root is the
largest eigenvalue. If there is no real root in this
interval then we should try to obtain a real root in
the next interval. If i =0 we have t € [a,,,a,, +
h] and solve P (t) = 0, where PP (t) is given by

).

Example. Results of the calculation of the largest
eigenvalue of matrix H,,. First we have to
calculate D,, = [a,,, b, ], SO, with the help of the
Gershhorin’s theorem, we get b, ~ 3.60,a,, ~
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—1.59. As all eigenvalues of H,, are positive, we
can put a,, = 0. After that we obtain h,, = (b,, —
a,)/5 = 0.72. Thus we have x, =0, x; = 0.72,
x, ~ 1.439,x3 ~ 2.1588, x, ~ 2.878, x5 ~ 3.598.
Using (1), (2) we see that there aren’t any roots at
[x4,x5] and [x3,x4]. Using (3) we calculate root
ue [xy,x3]: u = 2.1573. Thus we know the upper
and lower boundaries of the domain where the
largest eigenvalue is |t, —t,.| < Kh®> ~ 02K,
K = const. Here t, is the exact value of the largest
eigenvalue. Now, using (1)-(5), we can continue the
process of determining the boundaries of the largest
eigenvalue. Let us take [a,,,b,] = [x2, %3],
hy = (x3 —x3)/5. So we have h; = 0.088 and
Xoo = 1.439 X109 = 1583, Xy0 = 1.727,X30 =~
1.871, x40 ~ 2.015, x50 =~ 2.159. The new
approach to the largest eigenvalue is 1.8993.
Choosing

[@m, bm] = [x30, X40] = [1.899768,1.928536], we
obtain 1.907127. The value of the largest
eigenvalue, which may be calculated using Maple,
is approximately 1.907135. So the error is less then
0.8:107>. We calculated 13 determinates. Suppose
that D,, N D; # @. If our aim is to obtain all
eigenvalues then we can take into account all real
roots which possibly belong to D; and not belong to
D,,. Continuing the process, we obtain the
remaining eigenvalues.

3 Integro-differential Splines
Application

There are other possibilities  for interpolating
polynomial spline construction. Here for obtaining
the eigenvalues we can use integro-differential
splines, which were suggested recently by one of the
authors (see [5]-[7], [9])-

3.1 First option

We can construct the polynomial on [¢;, t; 1] in
the form:

j+1
P(t; +th) = Z det(F (t;.)) wy (£)

k=j—2

tj+1
+ f det(F(t)) dt w="">(0),
t

J

(- D(Gt-2)(E+2)(E+ 1)

wy () 2
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t(135t — 97)(t + 2)(t + 1)

Wiy (8) =

228 ’

Wy () = — t(t — 1)(25t76— 13)(t + 2)‘
Wy (£) = t(t — 1)(13;; 8)(t+ 1)'

WO (1) = — 30t(t — 1)5;2— 2)(t+ 1)'

It can be proved that

IP—Fll < K h®/5! |FO||;

ti—2,tiy1]?
(2) we obtain:

tj —h
[ detitF (e)de ~ 7 (264 det(F(5-1)) —

251 det(F(t; 1)) —646 det(F(t;))
—106 det(F(tj_2))+19 det(F(t;_3))).

Using (5) we obtain:  [7*!detifF(¢t))dt ~
]

—- (251 det(F(t)) +

646 det(F(t;11))—264 det(F(t; 42))
+106 det(F (t; 43))—19 det(F(t;14))).

Using (3) we obtain:

fti”l detifF (1))dt ~ — (456 det (F(¢)) -

19 det(F (j4+2))+346 det(F(f +1))—74 det(F (t; 4
)+11 det(F(t_5))).

3.2 The next option

j+2

P(x; +th) = Z det(F (&) vy ()

k=j—1

ti+1 0
+ f det(F () dt v~ (1),
t

J

where

v (£) = —(65 t — 22)(t — 1)(t — 2)(t + 1)/44,
V41 (6) = —t(65 t — 43)(t — 2)(t + 1)/44,
v_1(t) = t(t — (- 2)(15t—7)/132,
V() = t(t —1)(A5t —8)(t + 1)/132,

30
1]j<o,1>(t) =1Th tt—-DE-2)t+1).
It can be proved that

P — Fll < K h®/5!||FO||; K > 0.

ti—1tj42]
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Using (3) we obtained the relation:

456 det(F (¢ 1))~ 74 det(F (¢ 12))+11 det(F (3
))—19 det(F (t;-1))).

) N
fjf“ detifF (¢))dt ~ —- (346 det (F(tj )) +

We can also use the quadrature:

féf'“ detifF (£))dt ~ —— (~258 det (F(4 +2)) -

27 det(F (t;_1))+637 det(F (t;))+77 det(F (t;3))
+1022 det(F (t; 1)) —11 det(F (¢.44)))-

Example. If we obtain the root in the interval
[x1,x,], x; = 1.899768, x, = 1.928536, and other
nodes are the following:x; =x;+jh, j=
-1,0,1,2,3,4, h = 0.028768, then we get the value
of the largest eigenvalue 1.9071355.

3.3 The next option

j+3

P(x; +th) = z det(F (t)) vi (t)
=)

+ ftm det(F(8)) dt v="">(¢),
where the basic splines are the following:
v (t) = (t—1)(t—2)(t —3)(135 ¢t — 38) /228,
V(@) =t (t—-2)(t-3)(5t—-3)/4
Vi 2(t) = —t(t — 1)(t — 3)(25 t — 12) /76,
v 43(t) = t(t — 1)(t — 2)(15t — 7)/228,

<015,y _ 30 1 2 3
Y (t)——m t(t— D —2)(t—3).

It can be shown that

IP—FIl < Kh®/5! IFP e, ¢, 47, K > 0.

+3]
Using (5) we obtain:

tiy h
ft,’ "deti@F ()dt ~ - (251 det (F(tj)) +
646 det(F (t;41))—264 det(F (t;42))+106 det(F (;,3))
—~19 det(F (t14))).

3.4 One more option
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j+1
p(x] + th) = z det(F(tk)) v ()

k=j—3

ti+1 0
+ f det(F () dt v~ (1),
t

J

where
(323t —-135)(t +3)(t +2)(t* — 1)
y® = 810 ’
_ (502t —-367)(t+3)(t+2)(t+1)
vj+1(t) =t 3240 )
t(t— 1)+ 3)(t+2)(88t—47)
vq(t) = — 520 )
tt—1D(E+3)B3t—-29)(t+1)
v o(8) = 810 )
tt—1)@B8t—-21)(t+2)(t+1)
Y- == 3240 ’
vj<0’1>(t) - t(t—1D(t+ ?;ft +2)(t + 1).

It can be shown that

IP - Fll < K h/6!||[FO|, K > 0.

ti-3tiv1]’

3.5 One more option
j+2
p(x] + th) = z det(F(tk)) v ()
k=j—2

ti+1 0
+ f det(F () dt v~ (1),
t

J

where
152t —55)(t2 —1)(t2 — 4
(@ = — 52 )g;o IGED)
t(173t—-118)(t —2)(t+2)(t + 1)
17j+1(t) = 330 )
tt—1D(—-2)(t+2)(37t — 18)
v () = 330 ,
tt—1DEt-2)QRt—-1D(t+1)
vp(t) = — 120 )
t(t—1)B8t—21)(t+2)(t+1)
Vi42(8) = 1320 )
s () = 12t Et-Dt-2)t+2)(t+1) .

J 11h
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It can be shown that

IP—FIl <K RS/6IF©Olly, ,e..o1 K > 0.

3.6 One more option
j+3
P(x; +th) = Z det(F(t,)) vi (t)
k=j—1
ti+
+ f " det(F()) dt v~ (1),
£
(173t —55)(t—2)(t—3)(t* = 1)
330 ’

v (t) =

V41 (t) = %t (152t —=97)(t—2)(t—3)(t+ 1),

Vi = —ﬁt(t— D(E-2)(t—-3)(38t—17)

1
54s(0) = ot = DE— D@ t—D(E+ 1),

-1
Vi 42(t) = %t(t —1)B7t—19)(t—-3)(t+ 1),

01>y o _ 12 1 2 3 1
y (O = =t (= D= 2) (= 3)(E+ 1.

It can be shown that

IP—FIl<KR®/6F©Ollp,_ sy K>0. We
can also use the quadrature:

ftj_f'“ det(F(t)) dt ~ (258 det (F(t42)) -

27 det (F(tj_l)) + 637 det (F(tj)) +
77 det (F(t43)) +1022 det (F(t11) ) —

11det (F(tj +4)) + %% h’, where

ue[tj_1,15j+4],h = Xj41 —x = const. Using this
formula we obtain 1.907136, while using Maple we

obtain 1.907135.

4 Application for the Search for
Eigenvalues of Matrices with Real
Elements

In this section, we consider the calculation of the
eigenvalues of the Le Verrier matrix M [13]:
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M
—5.509882 1.870086 0.422908 0.008814
_ ( 0.287865 11.811654 5.711900 0.058717
0.049099 4.308033  12.970687 0.229326
0.006235 0.269851 1.397369 17.596207

It is not difficult to calculate the eigenvalues of this
matrix. They have the following
values: —5.298698, —7.574043, —17.152427,—17.863261.
Applying the power method Y, ,; = MY, after 150
iterations with initial vector Y, = (1,0,0,0), we

obtain a vector with components Mhso)i ; 1,2,3,4.

(Y149)i’
Each of these components is the approximation to
the eigenvalue largest in absolute value of matrix
M:
(—17.858871, —17.859182, —17.859907, —17.865201).
Thus we have obtained the largest eigenvalue with
two precise digits after the decimal point. We
performed 2400 multiplicative operations.

One can directly calculate the characteristic
polynomial degree n =4 of matrix M: @(t) =
det(M — tE) = t* — p,t3 — p,t? — p3t — p,. Each
Dy is the sum (taken with the sign  (—1)*~1) of all
minors of order k supported on the main diagonal
of the matrix M. The number of the minors is equal
to the number of combinations from n =4 to k,
ps = (—=1)3 det(M). Thus, in order to calculate the
eigenvalue, which is greatest in absolute value, it is
necessary to perform about 100 multiplicative
operations and solve the equation of the fourth
degree.

Calculating the eigenvalue with the interpolation
method, using formula (2), we perform about 300
multiplicative operations. Let us describe this
process in more detail. Using Gershgorin's theorem,
we find the interval in which there is an eigenvalue:
[a,b] = [—-19.269662,—15.922752].  In this
interval, we construct a uniform grid of nodes

{t}j=012345 with sep h=="
0.669382. Next, we calculate

determinants
det (F(t])) of the fourth order at the grid nodes and
successively find the roots of the polynomials PL{ ®
on the subintervals [g;, b;]. Using (1) and (3) we
construct ~ PY(t) and P}(t). There are no real
roots of P/ (t) on the intervals [a;, b;],j = 0,1. For
J = 2 using (2) we obtain polynomial

PZ (t)= t*+47.888430 t3+797.278765 t>
+5349.455515 t + 12296.550566.
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Solving this find the
roots:
—17.863261,—17.152427,—7.574043,—5.2986,
one of them, which equals —17.863261 is in the
considered interval

[a; ,b;] = [-17.930898,—17.261516].  Thus,
the required eigenvalue is equal —17.863261 and
the error of the method in this case is equal O.

We note that with increasing order of the matrix,
the degree of the polynomial for which it is
necessary to find the root does not increase, but
remains equal to 4. This is in contrast to finding the
eigenvalues as the roots of the characteristic
polynomial.

Thus, the difference between finding the
eigenvalues of the matrix by the interpolation
method from finding the eigenvalues by the method
of finding the roots of the characteristic polynomial
consists in solving an equation of a low degree. The
number of multiplicative operations performed by
the interpolation method will be 2.5 times greater
than in the construction of the characteristic
polynomial (except for the process of finding the

roots).

equation we

4 Conclusion

At present, there are effective algorithms for finding
the eigenvalues of the matrix. The power method
and the method of scalar products are among the
most commonly used. Nevertheless the interpolation
method may also be used for finding eigenvalues.
The most laborious part in the proposed
interpolation method is the calculation of
determinants. Therefore, according to the number of
multiplicative and additive operations, the proposed
method will be more efficient in comparison with
the methods traditionally used for matrices which
aren’t very big, for example not more than n = 10.
Nevertheless, the interpolation method can be used
to calculate the real eigenvalues of matrices with
real elements of any order.
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