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Abstract:-  The electric furnace temperature control system is one of the real-world second-order systems plus 
time delay (SOSPD) widely used as the process control in industries. It is normally operated under the PID 
feedback control loop. The PIDA controller, however, performed better response than the PID controller for 
higher order plant. In this paper, an optimal PIDA controller design for the electric furnace temperature control 
system is presented.   Regarding to modern optimization context, the flower pollination algorithm (FPA) which 
is one of the most efficient population-based metaheuristic optimization techniques is applied to search for the 
appropriate PIDA’s parameters. The proposed FPA-based PIDA design framework is considered as the 
constrained optimization problem. System responses obtained by the PIDA controller designed by the FPA will 
be compared with those obtained by the PID controller also designed by the FPA. As results, it was found that 
the PIDA can provides the very satisfactory tracking and regulating responses of the electric furnace 
temperature control system superior to the PID, significantly. 
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1 Introduction 
The electric furnace temperature control system is 
one of the real-world second-order systems plus 
time delay (SOSPD) [1] widely used in various 
industrial production processes [1],[2]. The electric 
furnace uses electricity as its main power source in 
order to generate heat for industrial uses. By 
literatures, temperatures of the electric furnace 
system can be effectively controlled by the PID 
controller [3],  fuzzy controller [4], fuzzy-PID 
controller [5] and neural network [6]. The PID 
controller is most popular and easiest way for  the 
electric furnace  temperature control. Based on the 
modern  optimization context, the PID design 
problem for the electric furnace system can be 
considered as one of the constrained optimization 
problems that can be efficiently solved by 
metaheuristics, for example, the design of PID 
controller  for the electric furnace temperature 
system by Nelder-Mead (NM) algorithm [7], by 

Genetic Algorithm (GA) [8],[9]  and by Flower 
Pollination Algorithm (FPA) [10]. 

However, the PIDA controller, possessing three 
arbitrary zeros and one pole at origin, performed 
faster and smoother responses for the higher-order 
plants than the PID controller. The PIDA controller, 
firstly proposed by Jung and Dorf in 1996 [11], was 
conducted and designed by several metaheuristics, 
such as GA [12], Particle Swarm Optimization 
(PSO) [13],[14], Current Search (CuS) [15], Firefly 
Algorithm (FA) [16], Bat Algorithm (BA) [17] and 
Cuckoo Search (CS) [18].  

In 2012, the FPA was firstly proposed by Yang 
[19] as one of the most powerful population-based 
metaheuristics for solving the optimization 
problems. The FPA algorithm mimics the behavior 
of pollination of flowering plant in nature associated 
with the Lévy flight distribution in order to generate 
the elite solutions. By literatures, the FPA was 
applied to solve many real-world optimization 
problems, for example, pressure vessels design [19], 
disc break design [20], traveling transportation 
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problem [21], control system design [10],[22], 
[23],[24] and model identification [25]. In this 
paper, the FPA is applied to obtain an optimal PIDA 
controller for the electric furnace temperature 
control system. Results obtained by the PIDA 
controller designed by the FPA will be compared 
with those  obtained by the PID designed by the 
FPA.  The rest of the paper is provided as follows. 
The PIDA control loop for the electric furnace 
temperature system is given in section 2.  Problem 
formulation consisting of FPA algorithms and FPA-
based PIDA controller design for the  electric 
furnace temperature control system is  described in 
section 3. Results and discussions are illustrated in 
section 4.  Conclusions are followed in section 5. 

  
 

2 PIDA Control Loop 
The electric furnace temperature system operated 
under the PIDA feedback control loop is represented 
by the block diagram as shown in Fig. 1. 
 

 
 

Fig. 1 PIDA feedback control loop. 
 
 
2.1 Electric Furnace Temperature System 
Fig. 2 shows the schematic diagram of the electric 
furnace temperature system [26] consists of 
electrical furnace, controller, thermocouple and 
heater in order to control the temperature in 
electrical furnace. Referring to Fig. 2, r is input 
voltage, U is output voltage from controller, y is 
output voltage from thermocouple and R is armature 
resistance. 
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Fig. 2 Electric furnace temperature system [26]. 

The s-domain transfer function of the electric 
furnace  temperature system Gp (s) was formulated as 
the second-order system plus time delay (SOSPD) 
[26] as given in (1).   The time delay (or transport 
lag)  in (1)  is approximated by (2).  Then, the s-
domain transfer function of the electric furnace 
temperature system in (1)  can be rewritten as 
expressed in (3) .   The model Gp(s)  in (3) will be 
used as the plant in the feedback control loop shown 
in Fig. 1.  
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2.2 PIDA Controller 
Proposed by Jung and Dorf in 1996 [11], the s-
domain transfer function of the PIDA controller is 
stated in (4), where Kp, Ki, Kd and  Ka are 
proportional, integral, derivative and accelerated 
gains, respectively. Referring to (4), a, b, c and d, e 
are zeros and poles of the PIDA controller. Once         
a, b, c << d, e, the poles d, e  can be  neglected [11]. 
Due to this, the PIDA  transfer function in (4) can be 
rewritten as expressed in (5). It can be observed that 
the PIDA controller possesses three arbitrary zeros 
and one pole at origin. Regarding to Fig. 1, the 
PIDA controller Gc (s) receives the error signal E(s) 
and produces the control signal U(s) to control the 
output response C(s) and regulate the external 
disturbance signal D(s )   referring to the reference 
input R(s).
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3 Problem Formulation 
In this section, the problem formulation is 
presented.  The FPA algorithms are briefly described 
and the FPA-based PIDA controller design for the 
electric furnace temperature control system  is then 
given as follows.   
 
 
3.1 FPA Algorithms 
In nature, the objective of the flower pollination is 
the survival of the fittest and optimal reproduction 
of flowering plants. Pollination in flowering plants 
can take two major forms, i.e. biotic and abiotic 
[27]. About 90% of flowering plants belong to 
biotic pollination. Pollen is transferred by a 
pollinator such as bees, birds, insects and animals. 
About 10% remaining of pollination takes abiotic 
such as wind and diffusion in water. Pollination can 
be achieved by self-pollination or cross-pollination 
as visualized in Fig. 3 [28],[29]. Self-pollination is 
the fertilization of one flower from pollen of the 
same flower (Autogamy) or different flowers of the 
same plant (Geitonogamy). They occur when a 
flower contains both male and female gametes. Self-
pollination usually occurs at short distance without 
pollinators. It is regarded as the local pollination. 
Cross-pollination, Allogamy, occurs when pollen 
grains are moved to a flower from another plant. 
The process happens with the help of biotic or 
abiotic agents as pollinators. Biotic, cross-
pollination may occur at long distance with biotic 
pollinators. It is regarded as the global pollination. 
Bees and birds as biotic pollinators behave Lévy 
flight behaviour [30] with jump or fly distance steps 
obeying a Lévy distribution. The FPA algorithm 
proposed by Yang [19] can be summarized by the 
pseudo code as visualized in Fig. 4.  
 

 
 

Fig. 3 Flower pollination in nature [28],[29]. 

 
 

Fig. 4 Pseudo code of FPA algorithms [19]. 
 

In FPA algorithms, a solution xi is equivalent to 
a flower and/or a pollen gamete. For global 
pollination, flower pollens are carried by pollinators. 
With Lévy flight, pollens can travel over a long 
distance as expressed in (6), where g* is the current 
best solution found among all solutions at the 
current generation/iteration t, and L stands for the 
Lévy flight that can be approximated by (7), while 
() is the standard gamma function as given in (8). 
The local pollination can be represented by (9), 
where xj and xk are pollens from the different 
flowers of the same plant species, while  stands for 
random walk by using uniform distribution, where  
 [0,1]. Flower pollination activities can occur at all 
scales, both local and global pollination. In this 
case, a switch probability or proximity probability p 
is used to switch between global pollination and 
local pollination. From Yang’s recommendations 
[19], the number of pollens n = 25, proximity 
probability p = 0.8 and  = 1.5 works better for most 
applications. Therefore, these recommendations are 
then conducted in this work. 
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3.2 FPA-Based PIDA Design 
The FPA-based PIDA controller design for the 
electric furnace temperature control system can be 
represented by the block diagram as shown in Fig. 
5.  The objective function J is performed as sum-
squared error between  the reference temperature 
R(s) and the actual temperature C(s) stated in (10).  
J will be sent to the FPA block to be minimized by 
searching for the optimal values of Kp, Ki, Kd and Ka 
as the parameters of the PIDA controller within their 
particular boundaries or search spaces K  ∈ [Kmin, 
Kmax] as shown in (11). In this work, J will be 
minimized according to the constrained functions as 
defined in (12), where tr and tr_max are rise time and 
maximum rise time, Mp and Mp_max are percent 
overshoot and maximum percent overshoot, ts and 
ts_max are settling time and maximum settling time, 
and Ess and Ess_max are steady-state error and 
maximum steady-state error, respectively. 
 

 
                  

Fig. 5 FPA-based PIDA controller design. 
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4 Results and Discussions 
In order to apply the FPA for designing the optimal 
PIDA controller for the electric furnace temperature 
control system, the FPA algorithms were coded by 
MATLAB version 2017b (License No .#40637337) 
run on Intel(R) Core(TM)  i5-3470 CPU@3 .60GHz, 
4 .0GB-RAM.   The FPA’s parameters, i.e. number of 
flower (pollen gametes) n     = 40 and a probability p = 
0 .2  (20%) for switching between local pollination 

and global pollination, are set according to 
recommendations of Yang [19].   Search spaces and 
constraint functions  in (11) are then performed as 
given in (12). The maximum generation 
MaxGeneration     = 500 is then set as the termination 
criteria (TC).   50 trials are conducted to find the 
optimal PIDA controller for the electric furnace 
temperature control system. For comparison with 
the PID controller, Ka in (5) will be set as zero. 
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When 50 trials of the search process were 

completed, the FPA can successfully provide the 
optimal  PID and PIDA controllers for the electric 
furnace temperature control system as shown in (13) 
and (14), respectively.  
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The convergent rates of the objective functions 

in (10) associated with inequality constraint 
functions in (12)  proceeded by the FPA over 50 
trials are plotted in Fig. 6.  

The step-input (or tracking) responses of the 
electric furnace temperature control system without 
controller, with PID controller and with PIDA 
controller designed by the FPA are depicted in Fig. 
7. Referring to Fig. 7, the electric furnace 
temperature system without controller provides tr = 
14 .56 sec ., ts     = 20.12 sec ., without Mp and Ess = 
0.2520 (25.20%). With the PID controller, the step 
response of the electric furnace temperature control 
system yields tr     = 3.61 sec ., ts     = 8 .46 sec ., Mp = 
8.95% and without  Ess. Finally, the step response of 
the electric furnace temperature control system  with 
the PIDA controller gives tr     = 3.61 sec ., ts     = 5.18 
sec., Mp   = 2.95% and without Ess. 

 The step-disturbance (or regulating) responses 
of the electric furnace temperature control system 
with PID controller and with PIDA controller 
designed by the FPA are plotted in Fig. 8. From 
such the figure, the electric furnace temperature 
control system with PID controller provides the 
maximum overshoot from regulating Mp_reg = 
22.75% and recovering time from regulating tr_reg = 
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16.78 sec . However, the step-disturbance response 
of the electric furnace temperature control system 
with the PIDA controller gives Mp_reg = 20.01% and 
tr_reg     = 16.49 sec . This can be noticed that the PIDA 
controller designed by the FPA can provide very 
satisfactory response of the electric furnace 
temperature control system superior to the PID 
controller. 
 

 

5 Conclusions 
In this paper, the application of the flower 
pollination algorithm (FPA) to design an optimal 
PIDA controller for the electric furnace temperature 
control system has been proposed. The electric 
furnace temperature system has been conducted in 
this work as one of the real-world second-order 
systems plus time delay (SOSPD) which were 
widely used in industries. Based on modern 
optimization, the FPA, one of the most efficient 
population-based metaheuristic optimization tech-
niques, has been applied. Simulation results have 
shown that the PID and PIDA controllers designed 
by the FPA can provide vary satisfactory response 
of the  electric furnace temperature control system 
according to the predefined constrained functions. 
However, the PIDA could provide the very 
satisfactory step-input (or tracking) and step-
disturbance (or regulating) responses of the electric 
furnace temperature control system better than the 
PID controller. 
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