Modifications of Optimization Algorithms Applied in Multivariable Predictive Control

MAREK KUBALCIK, VLADIMIR BOBAL
Department of Process Control
Faculty of Applied Informatics
Tomas Bata University in Zlin
Nad Stranemi 4511, 76005, Zlin
CZECH REPUBLIC
kubalcik@fai.utb.cz, bobal@fai.utb.cz
http://fai.utb.cz/en

TOMAS BAROT
Department of Mathematics with Didactics
Faculty of Education
University of Ostrava
Frani Sramka 3, 709 00, Ostrava
CZECH REPUBLIC
Tomas.Barot@osu.cz
http://pdf.osu.eu

Abstract: - Non-linear optimization, particularly quadratic programming (QP), is a mathematical method which is widely applicable in model predictive control (MPC). It is significantly important if constraints of variables are considered in MPC and the optimization task is then computationally demanding. The result of the optimization is a vector of future increments of a manipulated variable. The first element of this vector is applied in the next sampling period of MPC in the framework of a receding horizon strategy. In practical realization of a multivariable MPC, the optimization is characterized by higher computational complexity. Therefore, reduction of the computational complexity of the optimization methods has been widely researched. Besides the generally used numerical Hildreth’s method of QP, a possible suitable modification is based on precomputing operations proposed by Wang, L. This general optimization strategy is further modified. Two modifications, which could be applied separately each, were interconnected in this paper. The first modification was published previously; however, its application can be more efficient in connection with the second proposed approach, which modifies precomputing operations. Decreasing of the computational complexity of the optimization by using of the proposal is discussed and analyzed by measurements of floating point operations and control quality criterions using hypotheses tests – paired T-test and Wilcoxon test.

Key-Words: - Model Predictive Control; Multivariable Control; Optimization; Quadratic Programming; Hildreth's Method; Constraints.

1 Introduction
Model predictive control (MPC) [11]-[2] has been widely applied in controlling of industrial processes with respect to its ability to deal with control difficulties such as constrained variables [3], time-delay [4], nonlinearity [5] and non-minimum phase [6]. Theoretical research has a great impact on the industrial world in this area of predictive control. There are many applications of predictive control in industry [7]-[8]. Research of the predictive control has been significantly related to industrial practice. Predictive control is also one of the most effective approaches for control of multivariable systems (MIMO) [9]. An advantage of model predictive control is that the multivariable systems can be handled in a straightforward manner.

A predictive controller can be divided into two subsystems, a predictor and an optimizer, which are cooperating on a receding horizon strategy [10]. In the MPC, the basic idea is to use a model of a controlled process to predict future outputs of the process [11] and a trajectory of future manipulated variables is given by solving an optimization problem incorporating a suitable cost function with constraints [12]. Only the first element of the obtained control sequence is applied in a framework of the receding horizon strategy. One of the advantages of the predictive control is its ability to do on-line constraints handling in a systematic way, which frequently appears in industrial applications.

A significantly important part of the constrained MPC is an optimization task. A frequently used type of optimization in MPC is the quadratic programming [13], where constraints are considered. Previous, current and predicted control variables of MPC are included in a cost function [14]. In case of constrained multivariable predictive control, many constraints are processed in the optimization problem. Therefore, a selection of an appropriate numerical method is a necessary condition for successful achievement of the vector of future increments of the manipulated variables.

The Hildreth’s method [15] has been widely used for purpose of solving of the quadratic programming...
problems in MPC. This approach can be categorized as a dual method [15], which manipulates with the Lagrangian multipliers [15]. Its modifications applied in MPC have not been widely described in literature.

However, a general modification, presented by Wang, L., has been published in [15] and is frequently utilized in MPC algorithms [16]. Reduction of a computational complexity is based on testing of the occurrence of a multidimensional extreme, which is computed in the current sampling period in MPC under all constraints.

In this paper, an observed modification [18] of the optimization strategy following Wang, L. [15] is further improved by interconnecting together with an efficient approach to Hildreth's method [17], which is based on from algorithmic point of view. As evaluation of all defined constraints is significantly time-demanding in multivariable MPC, the proposed modification of the Wang’s approach can be advantageous due to significant reduction of numerical iterative operations required by the optimization algorithm.

2 Multivariable Model Predictive Control

In the multivariable model predictive control [1]-[2], a system with two inputs and two outputs (TITO) will be further considered. The TITO processes are frequently encountered multivariable processes in practice [9]. A general transfer matrix [11] of a TITO system can be expressed as (1), where \(U \) and \(Y \) are vectors of the manipulated variables and the controlled variables.

\[
G(z) = \begin{bmatrix} G_1(z) & G_2(z) \\ G_3(z) & G_4(z) \end{bmatrix} \tag{1}
\]

\[
Y(z) = G(z)U(z) \tag{2}
\]

\[
U(z) = [u_1(z), u_2(z)]^T, \quad Y(z) = [y_1(z), y_2(z)]^T \tag{3}
\]

It may be assumed that the transfer matrix (1) can be transcribed to form (4) of the matrix fraction.

\[
G(z) = A^{-1}(z^{-1})B(z^{-1}) = B(z^{-1})A_i(z^{-1}) \tag{4}
\]

The model can be also written in form (5).

\[
A(z^{-1})Y(z) = B(z^{-1})U(z) \tag{5}
\]

As an example, a model with polynomials of second degree was chosen in (6)-(7). This model proved to be effective for control of several TITO laboratory processes [7]-[8], where controllers based on a model with polynomials of the first degree failed. The model has sixteen parameters. The matrices \(A \) and \(B \) are defined as follows:

\[
A(z^{-1}) = \begin{bmatrix} 1 + a_5z^{-1} + a_2z^{-2} & a_1z^{-1} + a_4z^{-2} \\ a_5z^{-1} + a_2z^{-2} & 1 + a_1z^{-1} + a_4z^{-2} \end{bmatrix} \tag{6}
\]

\[
B(z^{-1}) = \begin{bmatrix} b_5z^{-1} + b_2z^{-2} & b_1z^{-1} + b_4z^{-2} \\ b_5z^{-1} + b_2z^{-2} & b_1z^{-1} + b_4z^{-2} \end{bmatrix} \tag{7}
\]

A widely used model in model predictive control is the CARIMA (Controller Autoregressive Integrated Moving Average) model which we can obtain by adding a disturbance model (8), where \(n \) is a non-measurable random disturbance that is assumed to have zero mean value and constant covariance and (9) in case of TITO system.

\[
A(z^{-1})y(k) = B(z^{-1})u(k) + C(z^{-1})A^i(z^{-1})a(k) \tag{8}
\]

\[
A(z^{-1}) = \begin{bmatrix} 1 - z^{-1} & 0 \\ 0 & 1 - z^{-1} \end{bmatrix} \tag{9}
\]

For purposes of simplification, polynomial matrix \(C \) will be further supposed to be equal to the identity matrix [19].

The difference equations (10) of the CARIMA model are used for computation of predictions in predictive control. These equations can be further written into a matrix form (11)-(12).

\[
y_1(k + 1) = (1 - a_1)y_1(k) + (a_1 - a_2)y_1(k - 1) + a_2y_1(k - 2) - a_3y_2(k) + (a_3 - a_1)y_2(k - 1) + a_4y_2(k - 2) + b_1\Delta u_1(k) + b_2\Delta u_1(k - 1) + b_3\Delta u_1(k - 2) + b_4\Delta u_1(k - 3) + b_5\Delta u_1(k - 4)
\]

\[
y_2(k + 1) = (1 - a_1)y_2(k) + (a_1 - a_2)y_2(k - 1) + a_2y_2(k - 2) - a_3y_1(k) + (a_3 - a_1)y_1(k - 1) + a_4y_1(k - 2) + b_1\Delta u_2(k) + b_2\Delta u_2(k - 1) + b_3\Delta u_2(k - 2) + b_4\Delta u_2(k - 3) + b_5\Delta u_2(k - 4)
\]

\[
y(k + 1) = A_1y(k) + A_2y(k - 1) + A_3y(k - 2) + B_1\Delta u(k) + B_2\Delta u(k - 1) \tag{11}
\]

\[
A_1 = \begin{bmatrix} 1 - a_1 & -a_1 \\ -a_3 & 1 - a_3 \end{bmatrix}, \quad A_2 = \begin{bmatrix} a_1 - a_2 & a_1 - a_4 \\ a_3 - a_6 & a_3 - a_5 \end{bmatrix} \tag{12}
\]
\[
A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}, \quad B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}
\]

It was necessary to directly compute three steps-ahead predictions by establishing of previous predictions to later predictions. The model order defines that computation of one step-ahead prediction is based on the three past values of the system output:

\[
\hat{y}(k+1) = A y(k) + A y(k-1) + A y(k-2) + B_u \Delta u(k) + B_2 \Delta u(k-1)
\]

\[
\hat{y}(k+2) = A y(k+1) + A y(k) + A y(k-1) + B_u \Delta u(k+1) + B_2 \Delta u(k)
\]

\[
\hat{y}(k+3) = A y(k+2) + A y(k+1) + A y(k) + B_u \Delta u(k+2) + B_2 \Delta u(k+1)
\]

Computation of the predictions can be divided into recursion of the free response and recursion of the matrix of dynamics. The free response vector can be expressed as:

\[
y_r = \begin{bmatrix} p_{1u} & p_{2u} \\ p_{3u} & p_{4u} \\ \Delta u(k-1) & \Delta u(k-1) \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{13} & q_{14} \\ q_{15} & q_{16} \end{bmatrix} \begin{bmatrix} y(k) \\ y(k-1) \end{bmatrix} = \begin{bmatrix} P_r & \Delta u(k-1) \\ \Delta u(k-1) & y(k-2) \end{bmatrix}
\]

\[
\hat{y}(k+j) = \hat{y}_0 + P \Delta u(k-1) + Q \Delta y(k-1)
\]

2.1 Implementation of MPC

In the framework of the optimization subsystem of MPC, the computation of a control law of MPC is particularly based on minimization of quadratic criterion (22). This specific form of the optimization problem is then related to quadratic optimization [13]-[14].

\[
J(k) = \sum_{j=1}^{N} e(k+j)^2 + \lambda \sum_{j=1}^{N} \Delta u(k+j)^2
\]
increments, y_0 is the free response vector. G is a matrix of the dynamics given by equation (24).

$$
G = \begin{bmatrix}
G_0 & 0 & \cdots & 0 \\
G_1 & G_0 & 0 & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & G_0 \\
G_{N-1} & \cdots & \cdots & G_0
\end{bmatrix}
$$

(24)

where sub-matrices G_i have dimension 2x2 and contain values of the step sequence.

The criterion (22) of the optimization problem can be written in a general vector form (25).

$$
J = (\dot{y} - w)^T (\dot{y} - w) + \lambda \Delta u^T \Delta u
$$

(25)

where w is a vector of the reference trajectory. The criterion can be modified using the expression (25) to (26).

$$
J = 2g^T \Delta u + \Delta u^T H \Delta u
$$

(26)

where the gradient g and the Hess matrix H are defined by following expressions:

$$
g^T = G^T (y_0 - w)
$$

(27)

$$
H = G^T G
$$

(28)

In context of the quadratic programming optimization with constraints, general formulation of predictive control is as follows

$$
\min_{\Delta u} 2g^T \Delta u + \Delta u^T H \Delta u
$$

(29)

with respect to matrix inequality in a compact form:

$$
M \Delta u \leq \gamma
$$

$$
M = \begin{bmatrix}
M_{11} & M_{12} & \cdots & M_{1n} \\
M_{21} & M_{22} & \cdots & M_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
M_{m1} & M_{m2} & \cdots & M_{mn}
\end{bmatrix}
$$

$$
\gamma = [\gamma_1, \gamma_2, \cdots, \gamma_n]^T
$$

(30)

The main idea of the modification is based on a pre-computed vector of future increments of the manipulated variables in form of a multi-dimensional extreme (31). If the inequality (30) is fulfilled, then the whole problem of quadratic programming is eliminated and the solution has form (31).

$$
\Delta u = -H^{-1}b
$$

(31)

If the multi-dimensional extreme is achieved, then the computational complexity significantly decreases. Otherwise the quadratic programming problem has to be solved using Hildreth’s method, which results in equation (32).

$$
\Delta u = -H^{-1}(M^T d + b^T)
$$

(32)

3 Proposal of Interconnection of Convenient Optimization Strategies

For purposes of further decreasing of computational complexity of the optimization algorithm, the approach described in the previous section was further improved. The approach presented by Wang, L [15] spends a large amount of the computational time by evaluation of all conditions in (33). This approach was published in [18]. It was focused on improving of precomputing operations based on constraints in QP.

The condition (33) can be effectively modified while maintaining the original advantages of the modification presented by Wang, L. A new form of the conditions is defined by (34). The testing of the conditions is progressively divided into partial operations.

\[
\exists \delta, 1 \leq \delta < m : M\hat{A}\hat{u} > \tilde{\gamma} \Rightarrow \hat{A}u = \text{argmin}(J; M\hat{A}u \leq \gamma)
\]

\[
\exists \delta, \delta = m : M\hat{A}\hat{u} \leq \gamma \Rightarrow \hat{A}u = -H^{-1}b
\]

\[
\exists \delta, 1 \leq \delta < m : M\hat{A}\hat{u} > \tilde{\gamma} \Rightarrow \hat{A}u = \text{argmin}(J; M\hat{A}u \leq \gamma)
\]

\[
M \in \mathcal{R}^{n \times m}, \tilde{\gamma} \in \mathcal{R}^{m \times 1}; \hat{A}u = -H^{-1}b;
\]

\[
M = M(\delta) = \begin{bmatrix}
M_{11} & M_{12} & \cdots & M_{1n} \\
M_{21} & M_{22} & \cdots & M_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
M_{m1} & M_{m2} & \cdots & M_{mn}
\end{bmatrix}
\]

\[
\hat{\gamma} = \hat{\gamma}(\delta) = [\gamma_1, \gamma_2, \cdots, \gamma_m]^T
\]

In case of the first failure the testing is terminated and the rest of the conditions is not evaluated. The multi-dimensional extreme problem is then solved. This enables saving of the computational time. This is significant particularly in case of multivariable MPC where the number of operations is large. If all the conditions are fulfilled and the testing is completed, then the quadratic programming problem must be solved.

The second approach, focused on improving the Hildreth’s method, was published in [17]. This method was primarily based on improving the numerical algorithm of the Hildreth’s method. The main principles are bound with including of a new exit condition of the iterative algorithm. This modified exit condition did not significantly affect quality of control, as can be seen in simulation results in [17]. Instead the comparison of equality of last computed results in main numerical cycle, further condition of fulfilling constraints (30) is being tested [17, p. 78].

In this paper, modification [17] is denoted as the first modification. As the second modification, the methodological extension [18] is entitled.

\[B(z^{-1}) = \begin{bmatrix}
0.298z^{-1} - 0.097z^{-2} & 0.093z^{-1} + 0.0682z^{-2} \\
0.1755z^{-1} + 0.0688z^{-2} & 0.1779z^{-1} + 0.1065z^{-2}
\end{bmatrix} \]

(36)

\[u_{\max} = -1.7, u_{\max} = 1.75, \Delta u_{\max} = 0.07 \]

(37)

Constraints of the manipulated variables and increments of the manipulated variables were considered which is obvious from definition (37). Setting of constraints has an appropriate form, as can be seen in (38). Where \(I \) is an identity matrix [19] and \(E \) is a unit matrix [19].

\[
M = \begin{bmatrix}
-E^{2,2} & 0 & \cdots & 0 \\
-E^{2,2} & -E^{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-E^{2,2} & -E^{2,2} & \cdots & -E^{2,2}
\end{bmatrix}
\]

\[
E^{2,2} = \begin{bmatrix}
0 & 0 & \cdots & 0 \\
0 & E^{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
E^{2,2} & \cdots & E^{2,2}
\end{bmatrix}
\]

\[F \]

\[u(k-1) + \begin{bmatrix}
u_{\max} \\
u_{\max} \\
u_{\max} \\
u_{\max}
\end{bmatrix}
\]

\[-u(k-1) + \begin{bmatrix}u_{\max} \\
u_{\max} \\
u_{\max} \\
u_{\max}
\end{bmatrix}
\]

\[-u(k-1) + \begin{bmatrix}u_{\max} \\
u_{\max} \\
u_{\max} \\
u_{\max}
\end{bmatrix}
\]

(38)

Floating point operations of particular cases of MPC were computed using rules in [20]. The complexity variable \(\mu \), which is equal to a maximum horizon \(N \), was incrementally increasing. As can be seen in Table 1, a significantly lower number of floating point operations \(F^\# \) was achieved when using MPC with both modifications. In \(F \), a maximum number of operations was achieved for case of non-modified MPC. Application of only the first modification of MPC was active in small horizons \(\mu=10 \) and \(\mu=15 \) with a number of operations \(F_1 \). In other cases with horizons greater than \(\mu=15 \), the second modification got better results, as can be seen in \(F_2 \). Interconnection of both modifications caused decreasing of floating point operations.

Simulation results of MPC without modifications can be seen in Fig. 1-2 and with proposed modifications in Fig. 3-4.
An order of the computational complexity can be expressed by using a function $O = O(\mu)$ [20]. F^* is the number of flops and O^* expresses the order of the complexity function for the proposed approach with both modifications. O is a complexity function for the case of MPC without modifications. In equations (39) and (40), the results are obtained using a non-linear regression [21].

$$F = 21859\mu^3 - 14376\mu^2 + 6666.1\mu$$ \hspace{1cm} (39)

$$O = O(\mu) = 21859\mu$$

$$F^* = 20267\mu^3 + 103648\mu^2 - 2 \times 10^6 \mu$$ \hspace{1cm} (40)

$$O^* = O^*(\mu) = 20267\mu^3$$

Results of analyses of floating point operations for MPC without modifications F and for MPC with both modifications F^* can be seen in Fig.5 and Fig.6.
Further, quality of control was analyzed using criterions (41) and (42) generally used in research focused on control engineering e.g. [4], [17].

\[J_1 = \sum_k [\Delta u_1(k)]^2 + \sum_k [\Delta u_2(k)]^2 \] \hspace{1cm} (41)

\[J_2 = \sum_k [w_1(k) - y_1(k)]^2 + \sum_k [w_2(k) - y_2(k)]^2 \] \hspace{1cm} (42)

These criterions of quality (41)-(42) were measured in whole MPC control in case with both proposed modification and without modifications depending on horizons defined by \(\mu \), as can be seen in Table 2 and Table 3. Where both criterions \(J_1 \) and \(J_2 \) are depended on a number of horizons \(\mu \).

Table 2: Analysis of Control Quality using Criterion \(J_1 = J_1(\mu) \)

<table>
<thead>
<tr>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC without Modification</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>45</td>
</tr>
</tbody>
</table>

According to procedures for testing hypotheses, described e.g. in [22]-[23], the measured criterions in Table 2 and Table 3 were further tested.

At first, testing the normality of data [22] was provided using a generally applied method Shapiro-Wilk described in [24]. Table 4 contains results of testing normality of data. Testing zero-hypotheses, which express fulfilling of the normality, were confirmed on the significance level \(\alpha \) in software PAST [25].

Table 3: Analysis of Control Quality using Criterion \(J_2 = J_2(\mu) \)

| \(\mu \) | MPC without Modification | MPC with 1st Modification | MPC with 2nd Modification | MPC with Both Modifications |
|---|
| 10 | 195,4043 | 195,4043 | 195,4043 | 195,4043 |
| 15 | 196,0841 | 196,0841 | 196,0841 | 196,0841 |
| 20 | 197,6621 | 197,6620 | 197,6620 | 197,6621 |
| 25 | 196,7333 | 196,7332 | 196,7332 | 196,7333 |
| 30 | 193,0959 | 193,0959 | 193,0959 | 193,0962 |
| 35 | 192,9479 | 192,9479 | 192,9479 | 192,9479 |
| 40 | 192,7495 | 192,7495 | 192,7495 | 192,7495 |
| 45 | 192,1464 | 192,1464 | 192,1464 | 192,1464 |

Table 4: Testing Normality of Data of Criterion \(J_1 = J_1(\mu) \) using Shapiro-Wilk Test

| \(\alpha \) | Result of Testing Zero-Hypothesis (Fail to Reject / Reject) |
|---|
| 0.009781 | Reject |
| 0.009785 | Reject |
| 0.009781 | Reject |
| 0.009785 | Reject |

Table 5: Testing Normality of Data of Criterion \(J_2 = J_2(\mu) \) using Shapiro-Wilk Test

| \(\alpha \) | Result of Testing Zero-Hypothesis (Fail to Reject / Reject) |
|---|
| 0.245 | Reject |
| 0.2451 | Reject |
| 0.245 | Reject |
| 0.2451 | Reject |
Existence of statically significant differences between J_1 and J_2 with and without modification was tested by paired T-test or Wilcoxon test. The paired T-test can be applied for data comparison, which indicate normality behaviour. The fulfilling of normality is obvious from Table 4 or Table 5. In other cases, the Wilcoxon test has to be used for non-parametrical data.

Depending on testing normality of all data in Table 4 and Table 5, zero hypothesis about non-existence of statistically significant differences were performed, as can be seen in Table 6 and Table 7. Hypotheses, which were failed to reject, express express situation with similarities of both data sets (before and after modifications in MPC).

In results of testing hypotheses, similarities in criterions J_1 and J_2 were found. Therefore modifications of MPC, proposed in this paper, have not statistically significant influence on the control quality. These conclusions can be verified using Table 2 and Table 3, where differences on the 4th decimal places can be seen.

Table 5: Testing Hypotheses on Non-Existence of Differences between Data of Criterion $J_1=J_1(\mu)$ before and after Applied Modification in MPC

<table>
<thead>
<tr>
<th>Result of Testing Zero- Hypothesis (Fail to Reject / Reject)</th>
<th>MPC without Modif. p-value</th>
<th>MPC with Both Modif. p-value</th>
<th>Applied Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha=0.05$</td>
<td>$p=0.1036$: Fail to Reject</td>
<td>Paired T-test</td>
<td></td>
</tr>
<tr>
<td>$\alpha=0.01$</td>
<td>$p=0.1036$: Fail to Reject</td>
<td>Paired T-test</td>
<td></td>
</tr>
<tr>
<td>$\alpha=0.001$</td>
<td>$p=0.10881$: Fail to Reject</td>
<td>Wilcoxon</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Testing Hypotheses on Non-Existence of Differences between Data of Criterion $J_2=J_2(\mu)$ before and after Applied Modification in MPC

<table>
<thead>
<tr>
<th>Result of Testing Zero- Hypothesis (Fail to Reject / Reject)</th>
<th>MPC without Modif. p-value</th>
<th>MPC with Both Modif. p-value</th>
<th>Applied Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha=0.05$</td>
<td>$p=0.0796$: Fail to Reject</td>
<td>Paired T-test</td>
<td></td>
</tr>
<tr>
<td>$\alpha=0.01$</td>
<td>$p=0.0796$: Fail to Reject</td>
<td>Paired T-test</td>
<td></td>
</tr>
<tr>
<td>$\alpha=0.001$</td>
<td>$p=0.0796$: Fail to Reject</td>
<td>Paired T-test</td>
<td></td>
</tr>
</tbody>
</table>

7 Conclusion

Interconnection of modifications of optimization numerical methods was applied in constrained multivariable MPC in this paper. Advantages of the proposed approach were demonstrated and proved by simulations in MATLAB. Multivaribility and considered constraints in MPC significantly increase a computational complexity of the optimization. Therefore, the proposed approach can be advantageous for multivariable MPC with constraints. Analysis of saving of floating point operations and influence of the proposed approach on quality of control was performed. By analysis of the simulation results it was proved that application of the proposed modification significantly saves floating point operations and concurrently does not affect quality of control. It was then proved that the proposed method can be successfully applied.

References:

