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Abstract: - Fine-grained classification consists of learning and understanding the subtle details between visually 
similar classes, which is a difficult task even for a human expert trained in a corresponding scientific field. 
Similar performances can be achieved by deep learning algorithms, but this requires a great amount of data in 
the learning phase.  Obtaining data samples and manual data labeling can be time-consuming and expensive. 
This is why it can be difficult to acquire the required amount of data in real conditions in many areas of 
application, so in the context of a limited dataset it is necessary to use other techniques, such as data 
augmentation and transfer learning. In this we paper we study the problem of fine-grained ship type 
classification with a dataset size which does not allow learning network from scratch. We will show that good 
classification accuracy can be achieved by artificially creating additional learning examples and by using pre-
trained models which allow a transfer of knowledge between related source and target domains. In this, the 
source and target domain can differ in their entirety. 
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1 Introduction 
Convolutional neural networks (CNN), particularly 
efficient GPU implementations, are the method of 
choice for supervised image classification. In CNNs, 
the convolution has replaced the general matrix 
multiplication in standard neural networks. 
Therefore, the number of weights is decreased, 
reducing the complexity of the network. 
Furthermore, the images can be directly imported to 
the network, avoiding the manual feature extraction 
procedure in standard learning algorithms [1]. 
Achieving high performance deep learning requires 
large neural networks models with millions of 
parameters and large datasets, although larger 
networks and larger datasets result in longer training 
times.  

Under real-world conditions it is often difficult 
to get a large number of training samples, and that 
becomes a handicap to train a deep CNN. As a 
consequence, the accuracy of classification is 
reduced and overfitting is a common problem. 

Data augmentation is a well-known method for 
reducing overfitting on models, where the amount of 
training data is increased using information from 
training data [2]. Various data augmentation 
techniques have been applied to specific problems. 
Current accepted practice for augmenting image 

data is to perform geometric and photometric 
augmentations. Geometric transformations alter the 
geometry of the image with the aim of making the 
CNN invariant to change in position and orientation. 
Example transformations include flipping, cropping, 
scaling and rotating. Photometric transformations 
amend the color channels with the objective of 
making the CNN invariant to change in lighting and 
color [3].  

That unsupervised augmentation can also serve 
as a type of regularization, reducing the chance of 
overfitting by extracting more general information 
from the database and passing it to the network [4]. 

Another noted technique which deals with a 
limited amount of target training data is transfer 
learning. While traditional machine learning 
techniques try to learn each task from scratch, 
transfer learning techniques try to transfer the 
knowledge from some previous tasks to a target task 
when the latter has fewer high-quality training data 
[5]. In the same paper, authors classified transfer 
learning into three different settings: inductive 
transfer learning, transductive transfer learning and 
unsupervised transfer learning. Furthermore, they 
classified each of the approaches to transfer learning 
into four contexts based on “what to transfer” in 
learning. They include the instance - transfer 
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approach, the feature - representation - transfer 
approach, the parameter transfer approach and the 
relational - knowledge - transfer approach, 
respectively [5]. 

Donahue et al. [6] show that features extracted 
from the deep convolutional network trained on 
large datasets are generic and might serve as very 
strong features for a variety of object recognition 
tasks. First layers learn “low-level” features, 
whereas the latter layers learn semantic or “high-
level” features.  

The standard transfer learning approach is to 
train a base network and then copy its first n layers 
to the first n layers of a target network [7]. The 
remaining layers of the target network are then 
randomly initialized and trained toward the target 
task. The errors can be backpropagated from the 
new task into the transferred features to fine-tune 
them to the new task, or layers can be left frozen 
(they do not change during training the target 
network).

  

Fig. 2. Distribution of samples in training, validation and test dataset 

Fig. 1. Examples of vessels from different superclasses 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Mario Milicevic, Krunoslav Zubrinic, 

Ines Obradovic, Tomo Sjekavica

E-ISSN: 2224-2856 461 Volume 13, 2018



2 Problem Formulation 
CNN training is implemented with the Keras [8] and 
TensorFlow [9] deep learning framework, using an 
NVidia GeForce GTX 1080 Ti GPU with 11 GB 
memory on Ubuntu 16.04 Linux OS.  

The dataset used in this study originates from the 
maritime surveillance systems area. The coastal and 
marine vision-based surveillance systems containing 
imaging sensors can also be exploited for the 
categorization of maritime vessels.  

MARVEL dataset [10] originates from 2 million 
marine vessel images (Fig. 1) collected from the 
Shipspotting website [11]. Solmaz et al. detect 
1,607,190 images with valid annotated type labels 
belonging to one of 197 vessel categories. By 
exploiting both the dissimilarity matrix and human 
supervision, authors merge similar vessel type 
classes, resulting in final 26 superclasses. 

We randomly downloaded only 40,000 images 
from the Shipspotting website representing a use-

case scenario for a limited number of training 

samples. All images were resized to 256 × 256, and 

then monochromatic outliers and duplicate images 
(of the same vessel) were manually removed. The 

training dataset consists of 25,211 samples, where 

we tried to acquire equal numbers (1000) of samples 
from each superclass, but due to the imbalance 

between superclasses it was impossible to satisfy the 

requirement of 1000 samples per class (or a total 
number of 26,000 images).  

For this reference dataset, we decided not to 

generate additional examples by data augmentation, 
so the classes contain between 828 and 1000 

samples - a slight imbalance that will not need 

particular corrections because data should represent 
the real-world, where this is a common problem. 

Both the validation and the test dataset contain 2600 

(26 x 100) images (Fig. 2). 

 
 

3 Results and Discussion 
In order to show how far-reaching using data 
augmentation and transfer learning strategies can be, 
we conducted an experiment in which we used two 
different approaches. 
 

 

3.1 Custom CNN 
The first applied architecture (Custom CNN) is a 
variant of a deep convolutional network (Fig. 3). 
Input is a fixed-size 256×256 RGB image, with 
subtracting the mean RGB value as preprocessing 
step. The image is passed through 4x2 convolutional 
layers with 3x3 convolutional kernels. The number 
of output filters in the convolutions is 32, 64, 128 
and 256 respectively. 

Four max-pooling layers downsample the volume 
spatially. A stack of convolutional layers is followed 
by fully-connected (FC) layers, where last one 

performs a 26-way classification. The final layer is 
the soft-max layer. The configuration of the fully 
connected layers is the same in all networks. All 

Fig. 3. The proposed initial CNN model architecture 
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hidden layers are equipped with the rectification 
(ReLU) [12] non-linearity. This ramp function has 
better gradient propagation and fewer vanishing 
gradient problems compared to sigmoidal activation 
functions. Five dropout layers, with dropout rates 
between 0.2 and 0.5, are also used to reduce 
overfitting [13]. In this technique, randomly selected 

neurons are ignored during training.  
Grid search was used for hyperparameters fine-

tuning.  These are values of some important 
hyperparameters: number of epochs 200, learning 
rate 0.00001, mini-batch size 64, RMSProp 
optimizer [14]. Checkpoint is used to save the best 
model.

3.2 Pretrained Networks and Transfer 

Learning 
This architecture is compared with modern CNN 
models which achieved state-of-the-art performance 
on ImageNet [12] and where large pretrained 
networks can be adapted to specialized tasks. 
ImageNet is a dataset of over 15 million labeled 
high-resolution images belonging to roughly 22,000 

categories.  Visual Recognition Challenge 
(ILSVRC) uses a subset of ImageNet with roughly 
1000 images in each of 1000 categories.  

We compare the Keras [8] implementations of 
VGG19 [15], InceptionV3 [16], Xception [17] and 
ResNet50 [18]. All these networks can be trained 
from scratch or initialized with the ImageNet weight 
for transfer learning approach. The training, 

Table 1.  Classification accuracies and training epoch duration achieved with different CNNs 
 

Model Architecture details  
Classification accuracy Epoch 

duration train valid. test 

Custom 

CNN 
→ Figure 3 (25211 train. 

samples) 
0.782 0.489 0.497 256 s 

VGG19 

 

training from scratch; 25211 

train. samples 
0.491 0.539 0.525 125 s 

ImageNet weights + train only 

FC layers; 25211 train. samples 
0.986 0.685 0.672 171 s 

ImageNet weights + fine tuning 

last 5 conv. layers; 5000 train. 

samples 

0.981 0.651 0.649 43 s 

ImageNet weights + fine tuning 

last 5 conv. layers; 10000 train. 

samples 

0.983 0.729 0.725 72 s 

ImageNet weights + fine tuning 

last 5 conv. layers; 15000 train. 

samples 

0.987 0.759 0.743 100 s 

ImageNet weights + fine tuning 

last 5 conv. layers; 25211 train. 

samples 

0.991 0.780 0.762 166 s 

ImageNet weights + fine tuning 

last 5 conv. layers; data augm.  

5000→ 25000 

0.998 0.726 0.715 200 s 

Inception 

V3 

training from scratch; 25211 

train. samples 
0.974 0.398 0.376 164 s 

ImageNet weights + fine tuning 

last 12 conv. layers; 25211 train. 

samples 

0.617 0.335 0.330 65 s 

Xception 

training from scratch; 25211 

train. samples 
0.999 0.440 0.432 367 s 

ImageNet weights + fine tuning 

last 19 conv. layers; 25211 train. 

samples 

0.957 0.541 0.525 128 s 

ResNet50 

training from scratch; 25211 

train. samples 
0.978 0.346 0.341 243 s 

ImageNet weights + fine tuning 

last 22 conv. layers; 25211 train. 

samples 

0.998 0.453 0.460 106 s 
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validation and test accuracies for these networks are 
summarized in Table 1. 

Among the 1000 ILSVRC classes, only 12 (or 
1.2%) of them belong to different vessels (gondola, 
speedboat, lifeboat, canoe, yawl, catamaran, 
trimaran, container ship, ocean liner, pirate ship, 
aircraft carrier, submarine). In this context, it was 
interesting to analyze how much transfer learning 
can contribute to the fine-grained vessel 
classification. 

The usual transfer learning approach is to train a 
base network and then copy its first n layers to the 
first n layers of a target network. The remaining 
layers of the target network are then randomly 
initialized and trained toward the target task [7]. As 
can be seen in the table, we have experimented with 
the number of randomly initialized layers. If the 
target dataset is small and the number of parameters 

is large, the transferred feature layers can be left 
frozen, because fine-tuning may result in overfitting. 

Practically all models show high accuracy with 
training data, but, although a pretty aggressive 
dropout rates is applied, it is not possible to avoid 
overfitting. The VGG19 network accomplished the 
best results, which is interesting if it is known that, 
for example, ResNet50 achieves better results on the 
ImageNet dataset.  

For same training dataset, transfer learning 
reduces the time span for one epoch at least by a 
factor of three - compared with learning from 
scratch. It is also revealed that a decrease in the 
number of training samples hurts the validation/test 
accuracy more if the data is already scarce. A drop 
from 15,000 to 5000 training images (or from 570 to 
190 images per class) has a significant impact on the 
results. 

We also evaluate the effectiveness of 
augmentation techniques, where 25000 augmented 
images are generated from 5000 source images 
using horizontal reflections, slight cropping and 
altering the intensities of the RGB channels (Fig 4.). 
Without data augmentation, using 5000 training 
datasets, the VGG19 network achieved accuracy on 
the test dataset of about 65%.  Mentioned data 
augmentation gives an accuracy of 71.5%, but using 
training dataset, which has 25,000 original (non-
augmented) images, raised the accuracy to 76%. 

4 Conclusion 
Given the limited number of learning examples, the 
78% accuracy achieved for the validation dataset (or 
76% for the test dataset) with the VGG19 network 
and transfer learning is a very good result in the 
context of 26 classes.  

In addition, it should be noted that this is a 
problem of fine-grained recognition tasks which 
classify highly similar appearing objects in the same 
class using local discriminative features. This means 
that even highly trained human experts sometimes 

Fig. 4. An augmented image generator 
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have problems with properly classifying vessel 
types on a single image. 

We also show that data augmentation techniques 
can be successfully used to benefit fine-grained 
classification tasks which usually lack sufficient 
data. 
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