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Abstract: - This paper focuses on a method for construction both Galois and Fibonacci p-ary LFSRs. Theorems 
for the transformations of the primitive polynomial generating the extended Galois field GF(pL) that need to be 
done in order to receive the values of the multiplier coefficients of the register’s feedback polynomial are 
proven. An algorithm for the transformation is proposed. 
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1 Introduction 
Nowadays, stream ciphers are often used for fast 
encryption over communication channels such as 
mobile and wireless telephone and Internet. Stream 
ciphers offer a number of advantages to the user, 
including high speed encryption, immunity from 
dictionary attacks, low error propagation and 
protection against active wiretapping. For 
synchronous stream ciphers, the keystream is 
generated independently of the plaintext and the 
cipher text using a keystream generator, commonly 
a Pseudo Random Number Generator (PRNG) 
which produces binary Pseudo Random Sequences 
(PRSs). 

The goal of the stream cipher cryptosystems 
design is to design a PRNG with good randomness 
properties, which is equivalently to unpredictability 
of generated keystream. In order to be unpredictable 
PRSs must have long period, balance and run 
property, n-tuple distribution, two-level 
autocorrelation, low-level cross correlation and 
large linear complexity. Most of those sequences 
can be generated by means of Linear Feedback Shift 
Registers (LFSRs) and Feedback with Carry Shift 
Registers (FCSRs) [3]. 

In this paper we will focus on the task of 
constructing such LFSRs. They provide a fast and 
efficient method for generating a wide variety of 
pseudo-random sequences both with their hardware 
and software implementations. Binary LFSRs are 
well studied and discussed but a major application 
of p-ary LFSRs (pLFSR) can be found as their long 

period and good statistical properties of their output 
sequences are proven. 

This paper is organized as follows. First a recall 
of the LFSR architectures is made, their recurrence 
equations are stated. Next, a theorem for 
transforming a primitive polynomial into a feedback 
one used for building a pLFSR with Galois 
architecture is proven. Then, it is proven that the 
feedback polynomial for a pLFSR with Fibonacci 
architecture has the same order. Finally, a 
proposition of an algorithm for transforming a 
primitive polynomial into feedback polynomial is 
made. 
 
 
2 pLFSR architectures 
A p-ary linear-feedback shift register (pLFSR) is a 
circuit consisting of L storage units ai, 0 ≤ i ≤ L-1, 
regulated by a single clock. Each unit can store an 
element of the field GF(p). At each clock pulse a 
linear feedback function defined by the feedback 
multiplier coefficients q1, q2, …, qL, transforms the 
current state into a new one. 

It is proven that when p = 2 and the feedback 
multiplier coefficients are defined by a primitive 
polynomial q(x) generating the field GF(2L) the 
output sequence is with maximal period [1], [2], [3], 
[4], [5]. 

In terms where p is an odd prime that direct 
mapping between primitive polynomial coefficients 
and multipliers of the feedbacks is not applicable. 
We will prove that when p ≠ 2, the coefficients of 
the primitive polynomial q(x) generating the field 
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GF(pL) needs additional conversion to ensure that 
the register generates a maximum length sequence. 

First the two underlying LFSR architectures will 
be recalled. Depending on the position of the 
addition operators modulo p in the scheme LFSRs 
can be characterized as Galois LFSR (Internal 
Feedback LFSR or one-to-many) or Fibonacci LFSR 
(External Feedback LFSR or many-to-one). 
[2][3][7][8] 
 
 
2.1 Galois Architecture 
The Galois architecture is shown on figure 1. As one 
can see the new state of each cell ai depends on the 
value in the cell on their left ai+1 and the rightmost 
value a0 multiplied by the corresponding multiplier 
qi. The multiplication is performed also modulo p. 
Thus the recurrence equation of the register is: 

𝑎𝑎𝑖𝑖′ = 𝑎𝑎𝑖𝑖+1 + 𝑞𝑞𝑖𝑖+1𝑎𝑎0 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝,  
for 0 ≤ 𝑖𝑖 ≤ 𝐿𝐿 − 2 
𝑎𝑎𝐿𝐿−1
′ = 𝑞𝑞𝐿𝐿𝑎𝑎0 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝. 

(1) 

 
One of the advantages of this architecture relays 

on the independence of the operations when 
calculating the new value of each cell. Each clock 
cycle all multiplication and sum operations can be 
performed in parallel and thus increasing the speed 
of execution can be easily achieved. 
 

 
Figure 1 - Galois LFSR 

 
 
2.2 Fibonacci Architecture  
The pLFSR Fibonacci architecture is based on the 
well-known for more than 2000 years Fibonacci 
number sequence that is a linear recurrent sequence. 

The Fibonacci LFSR architecture is given in 
figure 2. The register cells are loaded with initial 
values a0, a1, …, aL-1. Each clock cycle a new value 
for the leftmost cell is calculated by the formula: 

 
𝑎𝑎𝐿𝐿−1
′ = ∑ 𝑞𝑞𝑖𝑖𝑎𝑎𝐿𝐿−𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝐿𝐿

𝑖𝑖=1 , for 𝑡𝑡 ≥ 𝐿𝐿 
𝑎𝑎𝑗𝑗′ = 𝑎𝑎𝑗𝑗+1, for 0 ≤ 𝑗𝑗 ≤ 𝐿𝐿 − 2 (2) 

 
Here only the multiplications modulo p can be 

performed in parallel. There will be a second step of 
summing all results modulo p. In order to achieve 

speed-up, it is a good practice to choose 
construction primitive polynomial with fewer 
elements in order to reduce number of calculations. 

 
Figure 2 - Fibonacci LFSR 
 
For binary LFSR it is known that it is maximal-

length if and only if the corresponding feedback 
polynomial is primitive. The same can be stated for 
a pLFSR with the correction that feedback 
coefficients are obtained from the primitive 
polynomial by some mathematical transformations. 
 
 
3 Polynomial transformations 
Both the Galois and Fibonacci architectures of 
pLFSR will produce maximum length sequence 
when a primitive polynomial generating field 
GF(pL) is used for choosing the feedbacks. 

In this section two theorems for the feedback 
polynomial of a pLFSR register with Galois and 
Fibonacci architecture will be proven. 
 
 
3.1 Feedback polynomial in Galois 
architecture 
In order to build a pLFSR with Galois architecture 
for a chosen extended Galois field GF(pL) we need 
first to choose a primitive polynomial that generates 
the field. The next step is to find the corresponding 
to its coefficients multipliers in the register’s 
architecture. The following theorem will set the 
relation between them. 

Theorem 1. The feedback polynomial 𝑞𝑞∗(𝑥𝑥) of a 
pLFSR register with Galois architecture is defined 
by the formula  

𝑞𝑞∗(𝑥𝑥) = ��𝑞𝑞𝑖𝑖
(𝑝𝑝 − 1)
𝑞𝑞0

  𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝� .
𝐿𝐿

𝑖𝑖=1

𝑥𝑥𝑖𝑖−1 − 1, (3) 

where 𝑞𝑞𝑖𝑖, 𝑖𝑖 = 0, 1, … , 𝐿𝐿, are the coefficients of the 
primitive polynomial 𝑞𝑞(𝑥𝑥) generating the field 
GF(pL) 

𝑞𝑞(𝑥𝑥) = �𝑞𝑞𝑖𝑖

𝐿𝐿

𝑖𝑖=0

𝑥𝑥𝑖𝑖 . (4) 
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In this case the generating function of the pLFSR 
output sequence is 

𝑂𝑂(𝑥𝑥) = −
ℎ0(𝑥𝑥)
𝑞𝑞(𝑥𝑥) , (5) 

where ℎ0(𝑥𝑥) is the polynomial defined by the initial 
state (𝑎𝑎𝐿𝐿−1,  … ,  𝑎𝑎1,  𝑎𝑎0) of the pLFSR register. 

 
Proof of Theorem 1 
The first operation that the pLFSR register with 

Galois architecture is performing is addition in 
GF(p) of a0.qi and ai for 1 ≤ i ≤ L − 1. Then a shift 
operation is performed as all elements are moved 
one position to the right and the leftmost position 
aL−1 is replaced with a0qL. The new pLFSR content 
can be formulated as following: 

ℎ1(𝑥𝑥) = �𝑎𝑎𝑖𝑖

𝐿𝐿−1

𝑖𝑖=1

𝑥𝑥𝑖𝑖−1 + 𝑎𝑎0 �𝑞𝑞𝑖𝑖

𝐿𝐿

𝑖𝑖=1

𝑥𝑥𝑖𝑖−1. (6) 

Multiplying both sides of the equation by x and 
adding and subtracting a0 it is obtained 

ℎ1(𝑥𝑥)𝑥𝑥 = 𝑎𝑎0 + �𝑎𝑎𝑖𝑖

𝐿𝐿−1

𝑖𝑖=1

𝑥𝑥𝑖𝑖 + 𝑎𝑎0 �𝑞𝑞𝑖𝑖

𝐿𝐿

𝑖𝑖=1

𝑥𝑥𝑖𝑖 − 𝑎𝑎0 (7) 

The upper equation (7) can be represented like 
ℎ1(𝑥𝑥)𝑥𝑥 = ℎ(𝑥𝑥) + 𝑎𝑎0𝑞𝑞(𝑥𝑥), (8) 

where 

𝑞𝑞(𝑥𝑥) = �𝑞𝑞𝑖𝑖

𝐿𝐿

𝑖𝑖=1

𝑥𝑥𝑖𝑖 − 1 (9) 

is the feedback polynomial.  
Let q(x) is a primitive polynomial in GF(p) and it 

generates the extended Galois field GF(pL). Because 
the primitive element α of the field is a root of q(x) 
transforming (8) we receive 

ℎ1(𝛼𝛼)𝛼𝛼 = ℎ(𝛼𝛼). (10) 
Therefore if ℎ(𝛼𝛼) = 𝛼𝛼𝑗𝑗  then ℎ1(𝛼𝛼) = 𝛼𝛼𝑗𝑗−1. 

From this, it can be concluded that the pLFSR 
register with Galois architecture generates the 
powers of the primitive element α in reverse order. 
Respectively the output of the register is a sequence 
of the zero coefficients of those powers. The 
sequence will have a period Т = pL - 1 because the 
number of non-zero elements in GF(pL) is pL - 1. 

Equation (8) can be generalized for the moment 
 t + 1 as: 

ℎ𝑡𝑡+1(𝑥𝑥)𝑥𝑥𝑡𝑡+1 = ℎ𝑡𝑡(𝑥𝑥)𝑥𝑥𝑡𝑡 + 𝑂𝑂𝑡𝑡𝑥𝑥𝑡𝑡𝑞𝑞(𝑥𝑥), (11) 
where ℎ𝑡𝑡(𝑥𝑥) is the pLFSR state in the moment t, and 
𝑂𝑂𝑡𝑡  – its input at the same moment t, t = 1, 2, ... . 

When summing (11) for all moments t = 0, 1, ... 
∞ we get 

�ℎ𝑡𝑡(𝑥𝑥)𝑥𝑥𝑡𝑡
∞

𝑡𝑡=0

= ℎ0(𝑥𝑥) +  �ℎ𝑡𝑡(𝑥𝑥)𝑥𝑥𝑡𝑡
∞

𝑡𝑡=0
+ 𝑂𝑂(𝑥𝑥)𝑞𝑞(𝑥𝑥), 

(12) 

For the output generation function 
 𝑂𝑂(𝑥𝑥) = ∑ 𝑂𝑂𝑡𝑡𝑥𝑥𝑡𝑡∞

𝑡𝑡=0  we get 

𝑂𝑂(𝑥𝑥) = −
ℎ0(𝑥𝑥)
𝑞𝑞(𝑥𝑥) , (13) 

where ℎ0(𝑥𝑥) is the initial pLFSR state. 
As one can see in (9) the free coefficient of the 

feedback polynomial is -1. When working with field 
with base p = 2 we can use the fact that GF(2) -1 ≡ 1 
mod 2 and thus the feedback polynomial can be 
written as  

𝑞𝑞∗(𝑥𝑥) = 𝑞𝑞(𝑥𝑥) = �𝑞𝑞𝑖𝑖

𝐿𝐿

𝑖𝑖=0

𝑥𝑥𝑖𝑖 . (14) 

Generally, in fields GF(p) with any base p the 
following equation is true 

−1 ≡ 𝑝𝑝 − 1  𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝. (15) 
Therefore, the general representation of the 

primitive polynomial (4) in GF(pL) is needed to be 
transformed so that its free coefficient is equal to  
(p - 1). 

Equation (4) can be rewritten as 

𝑞𝑞(𝑥𝑥) = �𝑞𝑞𝑖𝑖

𝐿𝐿

𝑖𝑖=1

𝑥𝑥𝑖𝑖−1 + 𝑞𝑞0. (16) 

Multiplying both sides of (16) with the 
coefficient (𝑝𝑝−1)

𝑞𝑞0
  𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝, we get 

𝑞𝑞(𝑥𝑥)
(𝑝𝑝 − 1)
𝑞𝑞0

  𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝

= ��𝑞𝑞𝑖𝑖
(𝑝𝑝 − 1)
𝑞𝑞0

  𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝� .
𝐿𝐿

𝑖𝑖=1

𝑥𝑥𝑖𝑖−1

+ (𝑝𝑝 − 1). 

(17) 

When a primitive polynomial q(x) is multiplied 
by a constant the result is also primitive [6], 
therefore the polynomial (17) is also primitive. 

We can generalize the feedback polynomial 
𝑞𝑞∗(𝑥𝑥) for every p as (3) 

𝑞𝑞∗(𝑥𝑥) = ��𝑞𝑞𝑖𝑖
(𝑝𝑝 − 1)
𝑞𝑞0

  𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝� .
𝐿𝐿

𝑖𝑖=1

𝑥𝑥𝑖𝑖−1 − 1, (18) 

and with that the theorem is proven. 
 
 
3.2 Feedback polynomial in Fibonacci 
architecture 
In this section it will be proved that the theorem 1 is 
valid also when the feedback polynomial of a 
pLFSR register with Fibonacci architecture is 
determined.  

Theorem 2. The feedback polynomial 𝑞𝑞∗(𝑥𝑥) of a 
pLFSR register with Fibonacci architecture is 
defined by formula (3), where 𝑞𝑞𝑖𝑖, 𝑖𝑖 = 0, 1, … , 𝐿𝐿, are 
the coefficients of the primitive polynomial 𝑞𝑞(𝑥𝑥) 
generating the field GF(pL), represented as (4). 
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In this case the generating function of the pLFSR 
output sequence after the subtraction of the initial 
register state is (5). 

Proof of Theorem 2 
An approach derived from the essence of 

Fibonacci sequence will be applied. When pLFSR 
with Fibonacci architecture is in operation (2) is 
calculated as the register’s input: 

𝑎𝑎𝑛𝑛 = (𝑞𝑞1𝑎𝑎𝑛𝑛−1 + 𝑞𝑞2𝑎𝑎𝑛𝑛−2 + ⋯
+ 𝑞𝑞𝐿𝐿𝑎𝑎𝑛𝑛−𝐿𝐿)  mod 𝑝𝑝, 

for 𝑛𝑛 ≥ 𝐿𝐿. 
(19) 

Both sides of (19) are multiplied by xn and summed 
for n ≥ L, then the result is 
�𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛
𝑛𝑛≥𝐿𝐿

= 𝑞𝑞1 �𝑎𝑎𝑛𝑛−1𝑥𝑥𝑛𝑛
𝑛𝑛≥𝐿𝐿

+ 𝑞𝑞2 �𝑎𝑎𝑛𝑛−2𝑥𝑥𝑛𝑛
𝑛𝑛≥𝐿𝐿

+ ⋯+ 𝑞𝑞𝐿𝐿�𝑎𝑎𝑛𝑛−𝐿𝐿𝑥𝑥𝑛𝑛
𝑛𝑛≥𝐿𝐿

. 
(20) 

By denoting the generation function 𝑂𝑂(𝑥𝑥), the 
polynomial of the initial state ℎ0(𝑥𝑥) and 
representing the right part of the equation as shifted 
versions of the output sequence minus a polynomial 
for every shift, respectively ℎ1(𝑥𝑥), ℎ2(𝑥𝑥), ℎ3(𝑥𝑥) … 
the equation is transformed into 

ℎ𝐿𝐿(𝑥𝑥) + ⋯+ ℎ1(𝑥𝑥) − ℎ0(𝑥𝑥) =
= 𝑂𝑂(𝑥𝑥)(𝑞𝑞𝐿𝐿𝑥𝑥𝐿𝐿 + ⋯+ 𝑞𝑞2𝑥𝑥2

+ 𝑞𝑞1𝑥𝑥 − 1). 
(21) 

From (21) we can retrieve the value of the output 
generation function, that is 

𝑂𝑂(𝑥𝑥) =
−(ℎ0(𝑥𝑥) − ℎ1(𝑥𝑥) − ⋯− ℎ𝐿𝐿(𝑥𝑥))
𝑞𝑞𝐿𝐿𝑥𝑥𝐿𝐿 + ⋯+ 𝑞𝑞2𝑥𝑥2 + 𝑞𝑞1𝑥𝑥 − 1

= −
ℎ0(𝑥𝑥)
𝑞𝑞(𝑥𝑥) . 

(22) 

Where 𝑞𝑞(𝑥𝑥) = 𝑞𝑞𝐿𝐿𝑥𝑥𝐿𝐿 +⋯+ 𝑞𝑞2𝑥𝑥2 + 𝑞𝑞1𝑥𝑥 − 1 is 
the feedback polynomial of the pLFSR with 
Fibonacci architecture, and the polynomial ℎ0(𝑥𝑥) =
ℎ0(𝑥𝑥) − ℎ1(𝑥𝑥) − ⋯− ℎ𝐿𝐿(𝑥𝑥) depends only on the 
initial state of the register and has power lower than 
L. 

As one can see from (22) the feedback 
polynomial has its free coefficient equal to -1. 
Therefore, a transformation of the primitive 
polynomial is needed in order to have free 
coefficient equal to (p - 1) = -1 mod p. That is done 
by multiplying all coefficients of the primitive 
polynomial with the constant (𝑝𝑝−1)

𝑞𝑞0
  𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝 and by 

this the result will be equation (3) and with that the 
theorem is proven. 
 
 
4 Algorithm proposition 
Based on theorem 1 and 2 an algorithm for finding 
the feedback multipliers for constructing a p-ary 

LFSR with both Galois and Fibonacci architecture 
can be constructed as follows. 

Algorithm 1. Determining the feedback 
multipliers of a p-ary LFSR 

Input: Primitive polynomial q(x) of degree L, 
generating the extended Galois field GF(pL). 

Output: Coefficients of a primitive polynomial 
q*(x) of degree L, that define the feedback 
multipliers in a p-ary LFSR. 

Steps: 
1. Calculating the constant 𝑐𝑐 = (𝑝𝑝−1)

𝑞𝑞0
  𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝, 

where q0 is the free factor of q(x). 
2. For every i = 1, 2, …, L the following is 

calculated 
𝑞𝑞∗𝑖𝑖 = 𝑞𝑞𝑖𝑖c  𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝. 

It is important to note that when constructing a 
pLFSR with Galois architecture of the coefficient  
q*

1 is positioned rightmost, and q*
L – leftmost in the 

scheme and with Fibonacci architecture it is reverse 
(q*

L is positioned rightmost, and q*
1  – leftmost). 

 
 
5 Conclusion 
In this paper we have shown how to construct both 
Galois and Fibonacci p-ary LFSRs. When the 
register is binary, the coefficients of its feedback 
polynomial can be directly substituted by the 
coefficients of a primitive polynomial in GF(2L) and 
the output sequence is proven to be with maximum 
length. In controversy, the same is not true when p 
is an odd prime. Further transformation of the 
chosen primitive polynomial is needed. We have 
proven two theorems for both Galois and Fibonacci 
architectures, that define the transformations of the 
primitive polynomial generating the extended 
Galois field GF(pL) in order to receive the values of 
the multiplier coefficients of the register’s feedback 
polynomial. Finally, a unified algorithm for the 
transformation in both architectures is proposed. 
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