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Abstract: - A 3-D novel hidden chaotic attractor with no equilibrium point is proposed in this paper. The 
dynamical properties of the new chaotic system are described in terms of phase portraits, Lyapunov exponents, 

Kaplan-Yorke dimension, dissipativity, etc. As an engineering application, adaptive synchronization of 

identical hidden chaotic attractors with no equilibrium point is designed via nonlinear control and Lyapunov 

stability theory.  Furthermore, an electronic circuit realization of the novel hidden chaotic attractor is presented 

in detail to confirm the feasibility of the theoretical hidden chaotic attractor model. The outputs show that 

results of the system modelled in MATLAB simulation confirm the MultiSIM results. 
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1 Introduction 
A chaotic system is commonly defined as a 

nonlinear dynamical system that is highly sensitive 

to even small perturbations in its initial conditions 
[1-2].  

Chaos theory has several applications in science 

and engineering such as oscillators [3-5], chemical 

reactors [6-7], biology [8], ecology [9], economic 

[10], robotics [11-12], magnetic bearing [13], 

satellite communication [14], memristors [15-16], 
voice encryption [17],  secure communication 

systems [18-20]. 

Recently, there has been some good interest in 
finding and studying of chaotic systems with infinite 

number of equilibria such as equilibria located on 

the circle [21], square [22], ellipse [23], rounded 
square [24], line [25], heart shape [26], conic-

shaped [27] and three-leaved clover [28]. In 

addition, 3D chaotic systems with no equilibria are 

reported [29-31].   

There are two types of attractors: self-excited and 
hidden attractors. The hidden attractor is periodic or 

chaotic attractor in the system without equilibria or 

with only stable equilibrium, a special case of multi-

stability [32] and coexistence of attractors [33]. 

Hidden attractors are important in engineering 

applications because it can explain perturbations in a 

structure like a bridge or aircraft wing, convective 

fluid motion in rotating cavity [34] and model of 

drilling system actuated by induction motor [35]. 
Motivated by the research on chaotic systems 

with hidden chaotic attractors, we prove a new 3-D 

novel chaotic system with hidden attractor in this 
paper. Section 2 describes the new chaotic system 

with hidden attractor and details the dynamical 

properties such as Lyapunov exponents and Kaplan-

Yorke dimension. Section 3 describes the adaptive
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synchronization of the new chaotic system with 
unknown parameters. Furthermore, an electronic 

circuit realization of the new chaotic system is 

presented in detail in Section 4. The circuit 
experimental results of the new hidden chaotic 

attractor show agreement with the numerical 

simulations. Section 5 contains the conclusions of 

this work. 

2. A New Chaotic System  
In this paper, we announce a new 3-D chaotic 

system given by the dynamics 

1 2

2 1 3 2 2 3

2

3 2 1

x x

x ax x bx x x

x x

 =


= − −
 = −

ɺ

ɺ

ɺ

                                (1) 

where 
1 2 3, ,x x x are state variables and ,a bare 

positive constants.  

In this paper, we show that the system (1) is 

chaotic for the parameter values 

0.1,   0.1a b= =     (2) 

For numerical simulations, we take the initial 

values of the system (1) as 

1 2 3(0) 0.3,   (0) 0.3,   (0) 0.3x x x= = =   (3) 

Fig. 1 shows the phase portraits strange attractor 
of the new chaotic system (1) for the parameter 

values (2) and initial conditions (3).  Figure 1 (a) 

shows the 3-D phase portrait of the new chaotic 
system (1). Figs. 1 (b)-(c) show the projections of 

the new chaotic system (1) in ( )1 2, ,x x  ( )2 3,x x and 

( )1 3,x x coordinate planes, respectively 

 
 

(a) 

 
    (b) 

 
(c) 

 
     (d) 

Fig 1. Phase portraits of the new chaotic system (1) 

for 0.1,  0.1a b= =  
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For the rest of this section, we take the parameter 

values as in the chaotic case (2), i.e. 0.1a = and 

0.1.b =  

The equilibrium points of the new chaotic system 

(1) are obtained by solving the system of equations 

2 0x =
     (4a) 

1 3 2 2 3 0ax x bx x x− − =    (4b) 

2

2 1 0x − =     (4c) 

Since (4a) and (4b) contradict each other, the 

new chaotic system (1) does not have any 

equilibrium point. This shows that the new chaotic 

system (1) exhibits hidden attractor. 
We note that the new chaotic system (1) is 

invariant under the coordinates transformation  

( ) ( )1 2 3 1 2 3, , , ,x x x x x x− −֏    (5) 

for all values of the parameters. This shows that the 

new chaotic system (1) has a rotation symmetry 

about the 3x − axis. 
 Fig 2. Lyapunov exponents of the new chaotic 

system (1) for 0.1,   0.1a b= =  

For the parameter values as in the chaotic case 

(2) and the initial state as in (3), the Lyapunov 

exponents of the new 3-D system (2) are determined 
using Wolf’s algorithm as 

1 2 30.0672,   0,   0.1584L L L= = = −   (6) 

Since 1 0,L > the new 3-D system (1) is chaotic. 

Thus, the system (1) exhibits a chaotic hidden 

attractor. Also, we note that the sum of the 
Lyapunov exponents in (6) is negative. This shows 

that the new 3-D chaotic system (1) is dissipative. 

The Kaplan-Yorke dimension of the new 3-D 

system (1) is determined as 

1 2

3

2 2.4242,
| |

KY

L L
D

L

+
= + =    (7) 

which indicates the high complexity of the new 

chaotic system (1). 

Since 
1 0,L > the new 3-D system (1) is chaotic. 

Thus, the system (1) exhibits a chaotic hidden 

attractor. Also, we note that the sum of the  

Fig. 2 shows the Lyapunov exponents of the new 
chaotic system (1) with hidden chaotic attractor.  

 

3. Adaptive Synchronization of the 

New Chaotic Systems with Hidden 

Attractors 
In this section, we devise adaptive controller so as to 
synchronize the respective states of identical new 

chaotic systems with unknown parameters 

considered as master and slave systems 
respectively. 

As the master system, we consider the new 

chaotic system given by 

 

1 2
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2

3 2 1

x x
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x x
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

= − −
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ɺ

ɺ

ɺ

   (8) 

where 1 2 3, ,x x x are the states and ,a bare unknown 

parameters. 

As the slave system, we consider the new chaotic 
system given by 

1 2 1

2 1 3 2 2 3 2

2

3 2 31

y y u

y ay y by y y u

y y u

 = +


= − − +
 = − +

ɺ

ɺ

ɺ

   (9) 

where 1 2 3, ,y y y are the states and 1 2 3, ,u u u are 

adaptive controls to be designed. 

The synchronization error between the systems 
(8) and (9) is defined as 

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −


= −
 = −

                (10) 

The error dynamics is obtained as 

1 2 1

2 1 3 1 3 2 2 3 2 3 2

2 2

3 2 2 3
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e e u

e a y y x x be y y x x u

e y x u

 = +
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ɺ

ɺ
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  (11) 
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We consider the adaptive control defined by 

1 2 1 1

2 1 3 1 3 2 2 3 2 3 2 2

2 2

3 2 2 3 3

ˆˆ( )( ) ( )

u e ke

u a t y y xx b t e y y x x k e

u y x k e

=− −


=− − + + − −
 =− + −

       (12) 

where 1 2 3, ,k k k are positive gain constants. 

Substituting (12) into (11), we obtain the closed-

loop system 

1 1 1

2 1 3 1 3 2 2 2

3 3 3

ˆˆ[ ( )]( ) [ ( )]

e k e

e a a t y y x x b b t e k e

e k e

=−


= − − − − −
 =−

ɺ

ɺ

ɺ

    (13) 

We define the parameter estimation errors as 

ˆ( ) ( )

ˆ( ) ( )

a

b

e t a a t

e t b b t

= −


= −
               (14) 

Using (14), we can simplify (13) as 

1 1 1

2 1 3 1 3 2 2 2

3 3 3

( )a b

e k e

e e y y x x e e k e

e k e

= −


= − − −
 = −

ɺ

ɺ

ɺ

             (15) 

Differentiating (14) with respect to ,t we obtain 

ˆ( ) ( )

ˆ( ) ( )

a

b

e t a t

e t b t

 = −


= −

ɺɺ

ɺ
ɺ

                (16) 

Next, we consider the Lyapunov function 
defined by 

 ( ) ( )2 2 2 2 2

1 2 3 1 2 3

1
, , , ,

2
a b a bV e e e e e e e e e e= + + + +        (17) 

which is positive definite on 
5.R  

Differentiating V along the trajectories of (15) 

and (16), we obtain 

( )2 2 2 2

1 1 2 2 3 3 2 1 3 1 3 2
ˆˆ( )   a bV ke ke ke e e yy xx a e e b =− − − + − − + − − 
ɺɺɺ (18) 

In view of (18), we take the parameter update 

law as  

2 1 3 1 3

2

2

ˆ ( )

ˆ

a e y y x x

b e

 = −


= −

ɺ

ɺ
               (19) 

Next, we prove the main theorem of this section. 

Theorem 2. The new chaotic systems (8) and (9) 
with unknown parameters are globally and 

asymptotically stabilized by the adaptive control law 

(12) and the parameter update law (19), where 

1 2 3, ,k k k  are positive constants.  

 

 

 Proof.  The Lyapunov function V  defined by 

(17) is quadratic and positive definite on 
5.R   

 By substituting the parameter update law (19) 

into (18), we obtain the time-derivative of V as 
2 2 2

1 1 2 2 3 3V k e k e k e= − − −ɺ               (20) 

which is negative semi-definite on 
5.R  

Thus, by Barbalat’s lemma [36], it follows that 

the closed-loop system (15) is globally 

asymptotically stable for all initial conditions 
3(0) .e ∈R  

Hence, we conclude that the new chaotic systems 

(8) and (9) with unknown parameters are globally 

and asymptotically stabilized by the adaptive control 
law (12) and the parameter update law (19), where 

1 2 3, ,k k k are positive constants.  

This completes the proof.    � 

For numerical simulations, we take the gain 

constants as  

1 2 310,   10,   10k k k= = =               (21) 

We take the parameter values as in the chaotic 

case (2), i.e.  

0.1,   0.1a b= =                (22) 

We take the initial conditions of the states of the 

master system (8) as  

1 2 3(0) 6.4,   (0) 12.3,   (0) 4.7x x x= = =            (23) 

We take the initial conditions of the states of the 

slave system (9) as   

1 2 3(0) 10.2,   (0) 7.4,   (0) 12.5y y y= = =          (24) 

We take the initial conditions of the parameter 
estimates as    

ˆˆ(0) 5.3,   (0) 11.1a b= =               (25) 

Fig. 3 shows the synchronization of the states of 
the new chaotic systems (8) and (9).  

Fig. 4 shows the time-history of the 

synchronization errors 1 2 3, , .e e e
 

 

4. Circuit Implementation of the New 

Chaotic System 
An electronic circuit which emulates the proposed 

system (1) is described  in this section to show its 

feasibility. Fig. 5 depicts the design of the circuit 
that emulates system (1). This circuit has three 

integrators (U1A, U2A, U3A), two inverting 

amplifiers (U4A, U5A) which are implemented with 
the operational amplifier TL082CD, as well as five 

signals multipliers (A1, A2, A3) by using the analog 

multiplier AD633. 
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Fig. 3. Complete synchronization of the new chaotic 

systems 
 

Fig. 4. Time-history of the synchronization errors 

for the new chaotic systems 

 

The circuital equations of the designed circuit are 

given by  
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Fig. 3. Complete synchronization of the new chaotic 

 
history of the synchronization errors 

The circuital equations of the designed circuit are 

32xx      (26) 

We choose the values of the circuital elements as











===

Ω====

Ω=Ω==

Ω=Ω=

nFCCC

kRRRR

kRKRR

kRKR

10

10

5,20

,100,200

321

10981

654

32

              

Where x1, x2, x3 are corresponding the voltages at 

the capacitors (VC1, VC2, VC3). As a result, it is easy 
to verify that the dimensionless system (26) 

corresponds to the introduced system with hidden 

attractor (1). The power supplies of all active 

devices are ±15VDC. The proposed circuit is 

implemented by using the electronic sim

package MultiSIM. Figs 6-8 show the obtained 

phase portraits in (x1, x2) plane, (

(x1, x3) plane, respectively. There is a good 

agreement between these circuit simulation and 
numerical simulation (see Fig. 1).

Fig. 5 Schematic of the proposed 

system by using MultiSIM

the values of the circuital elements as 

            (27) 

are corresponding the voltages at 

). As a result, it is easy 
to verify that the dimensionless system (26) 

oduced system with hidden 

attractor (1). The power supplies of all active 

. The proposed circuit is 

implemented by using the electronic simulation 

8 show the obtained 

) plane, (x2, x3) plane and 

) plane, respectively. There is a good 

agreement between these circuit simulation and 
1). 

 

 

 

Schematic of the proposed new chaotic 

by using MultiSIM
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Fig. 6 2-D projection of the new chaotic system on 

the (x1, x2) plan 

Fig. 7 2-D projection of the new chaotic system on 

the (x2, x3) plane 
 

 

Fig. 8 2-D projection of the new chaotic system 

on the (x1, x3) plane 

 

D projection of the new chaotic system on 

 

D projection of the new chaotic system on 

 

D projection of the new chaotic system 

 

5 Conclusion 
In this work, we presented a new chaotic system 

with hidden attractor. Excitingly,
equilibrium in this system and 

hidden chaotic attractors. Simulation results by 

using phase portraits, and Lyapunov
confirmed the new system’s chaotic behavior.

addition, the possibility of synchronization of 

identical new chaotic systems with no equilibrium 

point has been analysed and con

feasibility of the theoretical model is also con

by an electronic circuitry.    
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