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Abstract: To prove that a fuzzy dependency follows from a set of fuzzy dependences can be a very demanding
task. As far as we know, an algorithm or an application that generally and automatically solves the problem, does
not exist. The main goal of this paper is to offer such an algorithm. In order to achieve our goal we consider
fuzzy dependences as fuzzy formulas. In particular, we fix fuzzy logic operators: conjunction, disjunction and
implication, and allow only these operators to appear within fuzzy formulas. Ultimately, we prove that a fuzzy
dependency follows from a set of fuzzy dependences if and only if the corresponding fuzzy formula is a logical
consequence of the corresponding set of fuzzy formulas. To prove an implication of the last type, one usually uses
the resolution principle, i.e., the steps that can be fully automated. Our methodology assumes the use of soundness
and completeness of fuzzy dependences inference rules as well as the extensive use of active fuzzy multivalued
dependences fulfillment.
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1 Introduction

In [18], the authors first introduced the formal defi-
nitions of fuzzy functional and fuzzy multivalued de-
pendences based on conformance values and the de-
gree of clarity of dependency itself. The inference
rules for both types of dependences are enumerated
and are proved to be consistent, sound and complete.

In this paper, we join fuzzy formulas to fuzzy de-
pendences described in [18].

For c1 /∈C+, the completeness of inference rules
allows anyone to construct a fuzzy relation instance
r1 such that all c ∈ C+ are satisfied by r1 but c1 is
not, where c1 denotes a fuzzy dependency and C is a
set of fuzzy dependences with the closure C+. In this
paper we prove that r1 may be chosen to have only
two elements.

The soundness of inference rules, however, yields
that any c1 ∈ C+ is satisfied by any r1 satisfying all
c ∈C. Consequently, we prove that arbitrary c1 is sat-
isfied by any r1 satisfying all c ∈ C if and only if c1
is satisfied by any two-element r1 satisfying all c ∈C.
Furthermore, we prove that c1 is satisfied by any two-
element r1 satisfying all c ∈C if and only if c

′
1 is valid

whenever all c
′ ∈ C

′
are valid, where c

′
1 resp. C

′
de-

note the fuzzy formula resp. the set of fuzzy formulas
joined to c1 resp. C (see, [9] for Yager’s fuzzy im-
plication operator and [10] for Reichenbach’s fuzzy
implication operator).

Summarizing what is said above, we can say that
the main result of our paper claims that: arbitrary c1
is satisfied by any r1 satisfying all c ∈C if and only if
c
′
1 is valid whenever all c

′ ∈C
′
are valid.

The structure of the paper is as follows: Section 2
provides some necessary background and preliminary
material. In Section 3 we recall the inference rules, in-
troduce closures, limit strengths of dependences, de-
pendency basis and assemble those facts we will need.
In Section 4 we prove a number of auxiliary results
related to two-element fuzzy relation instances satis-
fying actively some fuzzy multivalued dependency. In
Section 5 we state and prove the main results. In Sec-
tion 6 we give concluding remarks.

2 Preliminaries
We use the following operators
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τ (a∧b) = min(τ (a) ,τ (b)) , (1)

τ (a∨b) = max(τ (a) ,τ (b)) , (2)

τ (¬a) = 1− τ (a), where τ (a), τ (b)∈ [0,1] and τ (x)
denotes the truth value of the formula x.

An interpretation I is said to satisfy resp. falsify
the formula f if τ ( f ) ≥ 1

2 resp. τ ( f ) ≤ 1
2 under I

(see, [11, p. 111]).
The notation that will be applied in the sequel

follows similarity-based fuzzy relational database ap-
proach [18] (see also, [4]–[6]).

Recall that an entity is an object that exists. It
does not have to do anything. It just has to exist. An
entity can be a single thing, a person or a place. Each
entity has its own identity and a number of proper-
ties that characterize itself [7, p. 22]. A set of entities
that have the same properties constitute an entity type.
More freely, an entity type comprises a group of enti-
ties that are similar. When referring to the notation of
an entity type, each of its entities is often referred to
as an entity instance. For example, The University of
Oklahoma ia an entity instance of the university en-
tity type. Attributes are the properties that describe
entities. For example, if the entity is a faculty, at-
tributes could include name, faculty ID, address and
salary. More precisely, attributes (or attribute names)
are associated with entity types and attribute values
are associated with entity instances. Thus, a particu-
lar entity will have a value for each of its attributes.

Let R(U) be a scheme on domains D1, D2,..., Dn,
where U is the set of all attributes A1, A2,..., An on D1,
D2,..., Dn. Here, we assume that the domain of Ai is
Di, i = 1, 2,..., n. Moreover, we assume that Di is a
finite set for i = 1, 2,..., n.

A fuzzy instance (or fuzzy relation instance) r on
R(U) is a subset of the cross product 2D1 × 2D2× ...
×2Dn .

A tuple t of r is then of the form

(d1,d2, ...,dn) ,

where di ⊆ Di, i = 1, 2,..., n. Here, we assume that
di 6= /0 for i = 1, 2,..., n. Furthermore, we consider di
the value of Ai on t, each attribute Ai is the name of a
role played by domain Di, and the scheme R(U) de-
scribes the structure of a relation. In accordance with
what has already been said, we can underline that at-
tributes are associated with schemes and attribute val-
ues are associated with fuzzy relation instances.

A fuzzy relation instance r on R(U) can be visi-
bly represented as a two-dimensional table with the ta-
ble headings (A1,A2, ...,An) together constituting the

scheme R(U), each horizontal row of the table being
a tuple of r, and each column of the table containing
the attribute values under the corresponding heading.

For example, if U = {Name,Age,Height}
is the set of all attributes on domains D1 =
{Jane,Ana,John}, D2 = {n ∈ N |15≤ n≤ 45}, D3 =
{n ∈ N |100≤ n≤ 220}, then, a two-element fuzzy
relation instance on scheme R(U) (on domains D1,
D2 and D3) is given by Table 1 below.

Table 1:
Name Age Height

t1 {Ana} {18,25,35} {158,160}
t2 {John} {43} {100,101,203}

Recall that the relational database model was first
introduced by Codd [8]. In such a model, for each i ∈
{1,2, ...,n}, the elements of Di are mutually unrelated,
i.e., they are mutually distinct. Moreover, di is a single
element od Di (see, e.g., [7, pp. 3–6]).

The similarity based framework [4, 5] general-
izes these two assumptions of the classical relational
database model. Namely, it allows each domain to
be associated with a similarity relation (instead of just
an identity relation). Furthermore, it allows each at-
tribute value to be a subset of the corresponding do-
main rather than just a single element of the domain.

A similarity relation si on Di is a mapping si :
Di×Di→ [0,1] such that for all x,y,z ∈ Di,

si (x,x) = 1,

si (x,y) = si (y,x) ,

si (x,z)≥max
q∈Di

(min(si (x,q) ,si (q,z))) .

In the classical relational database model, two tu-
ples t1 and t2 agree on an attribute if and only if the
attribute values on t1 and t2 are identical. In the sim-
ilarity based model, similarity relations on domains
enable us to define how conformant (or similar) two
tuples are on attributes.

Let r be a fuzzy relation instance on R(U), where
R(U) = R(A1,A2, ...,An) is a scheme on domains D1,
D2,..., Dn, and U is the set of all attributes A1, A2,...,
An (U is the universal set of attributes A1, A2,..., An).
Suppose that si is a similarity relation on Di, i = 1,
2,..., n.

The conformance of attribute Ai ∈ {A1,A2, ...,An}
(defined on domain Di) on any two tuples t1 and t2
present in the fuzzy relation instance r and denoted by
ϕ (Ai [t1, t2]), is defined by
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ϕ (Ai [t1, t2]) = min

{
min
x∈d1

{
max
y∈d2
{si (x,y)}

}
,

min
x∈d2

{
max
y∈d1
{si (x,y)}

}}
,

where d1 resp. d2 denote the value of attribute Ai on
tuple t1 resp. t2.

Let α ∈ [0,1]. If ϕ (Ai [t1, t2]) ≥ α , tuples t1 and
t2 are said to be conformant on attribute Ai with α .

The conformance of attribute
set X ⊆ {A1,A2, ...,An} on any two tuples t1 and
t2 present in the fuzzy relation instance r and de-
noted by ϕ (X [t1, t2]) is defined by ϕ (X [t1, t2]) =
minAi∈X {ϕ (Ai [t1, t2])}.

The following statements hold true: (see, [18,
pp. 166–167])

1. If X ⊇ Y , then ϕ (Y [t1, t2])≥ ϕ (X [t1, t2]),

2. If X = {Ai1 ,Ai2 , ...,Aik} ⊆ {A1,A2, ...,An} and
for some α ∈ [0,1], ϕ

(
Ai j [t1, t2]

)
≥ α for all

j ∈ {1,2, ...,k}, then ϕ (X [t1, t2]) ≥ α ,

3. ϕ (X [t, t]) = 1 for any tuple t in r.

Let r be a relation instance on R(U), where R(U)
is a scheme on domains D1, D2,..., Dn, U is the uni-
versal set of attributes A1, A2,..., An on D1, D2,..., Dn.
Let X ,Y ⊆U .

Recall that the relation instance r is said to satisfy
the functional dependency X → Y if for every pair of
tuples t1 and t2 in r, t1 [X ] = t2 [X ] implies t1 [Y ] =
t2 [Y ]. Here, ti [X ] (ti [Y ]) denotes the values of the set
of attributes X (Y ) on ti, i = 1, 2.

Furthermore, the relation instance r is said to sat-
isfy the multivalued dependency X →→ Y if for any
pair of tuples t1 and t2 in r, t1 [X ] = t2 [X ] yields that
there exists a tuple t3 in r such that t3 [X ] = t1 [X ], t3 [Y ]
= t1 [Y ] and t3 [Z] = t2 [Z], where Z = U \ (X ∪Y ).

Note that the definition of functional
dependency is not directly applicable to similarity-
based databases. Namely, that definition is based on
the concept of equality. Hence, it is not possible to
check if two imprecise values are equal. However, it
is possible to check if such values are similar (see,
[18, p. 165]). If t1 [X ] is similar to t2 [X ], then we re-
quire that t1 [Y ] be similar to t2 [Y ]. Moreover, we re-
quire that the similarity between Y values be greater
or equal to the similarity between X values.

Consider the following examples: ”Employees
with similar experiences must have similar salaries”
and ”The intelligence level of a person more or less

determines the degree of success”. In the first case, the
defined dependency is precise. However, it is not the
case in the second example. Such examples force us
to introduce the linguistic strength of the dependency.
Thus, we can say that the dependency from the first
example has linguistic strength 1 ∈ [0,1], while the
dependency from the second example has linguistic
strength 0.7 ∈ [0,1]. In this way, we obtain a method
for describing imprecise dependences as well as pre-
cise ones. The linguistic strength of the dependency
(shorter, strength of the dependency) will be denoted
by θ ∈ [0,1].

As earlier, Di will be assumed to denote the do-
main of the attribute Ai, i = 1, 2,..., n. We shall sim-
plify our notation by omitting to mention this fact in
the sequel.

Now, we come to the fuzzy functional depen-
dency definition.

Let r be a fuzzy relation instance on scheme
R(A1,A2, ...,An), U be the universal set of attributes
and X ,Y ⊆U .

Fuzzy relation instance r is said to satisfy the
fuzzy functional dependency X θ−→F Y if for every pair
of tuples t1 and t2 in r,

ϕ (Y [t1, t2])≥min(θ ,ϕ (X [t1, t2])) .

Here, θ ∈ [0,1] denotes the linguistic strength of the
dependency. When θ = 1, we omit to write it in the
dependency notation.

As in the functional dependences case, multival-
ued dependences face the problem of the inability to
handle imprecise attribute values. Reasoning in the
same way as in the case of functional dependences,
we come to the fuzzy multivalued dependency defini-
tion (see, [18, p. 172]).

Let r be a fuzzy relation instance on scheme
R(A1,A1, ...,An), U be the universal set of attributes
A1, A2, ..., An and X ,Y ⊆U .

Fuzzy relation instance r is said to satisfy the
fuzzy multivalued dependency X → θ−→F Y if for ev-
ery pair of tuples t1 and t2 in r, there exists a tuple t3
in r such that:

ϕ (X [t3, t1])≥min(θ ,ϕ (X [t1, t2])) ,

ϕ (Y [t3, t1])≥min(θ ,ϕ (X [t1, t2])) ,

ϕ (Z [t3, t2])≥min(θ ,ϕ (X [t1, t2])) ,

where Z = U \ (X ∪Y ). Here, θ ∈ [0,1] denotes the
linguistic strength of the dependency. If θ = 1, we
omit to write it in the dependency notation.
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Fuzzy relation instance r is said to satisfy the
fuzzy multivalued dependency X → θ−→F Y , θ -actively
if r satisfies X → θ−→F Y and ϕ (A [t1, t2]) ≥ θ for all
A ∈ X and all t1, t2 ∈ r.

Obviously, r satisfies X → θ−→F Y , θ− actively if
and only if r satisfies X → θ−→F Y and ϕ (X [t1, t2])≥ θ

for all t1, t2 ∈ r.

3 Inference rules, closures and de-
pendency sets

The authors in [18] derived the inference rules
IR1-IR20 for fuzzy functional dependences (shorter
FFDs) and fuzzy multivalued dependences (shorter
FMV Ds).

There, U denotes some universal set of attributes
and X , Y , Z, W denote subsets of U . Moreover,
U − XY , for example, means U \ (X ∪Y ).

The inference rules IR1–IR17 are sound (see, [18,
pp. 168–176]). In the case of the IR1 rule, for ex-
ample, this means that any fuzzy relation instance
r on R(U), which satisfies X θ1−→F Y , satisfies also

X θ2−→F Y , where θ1 ≥ θ2.
Let F and G be sets of FFDs and FMV Ds on

some universal set of attributes U , respectively. The
closure of F ∪G , denoted by (F ,G )+, is the set of
all FFDs and FMV Ds that can be derived from F ∪G
by repeated applications of the rules IR1–IR10. Since
these rules are sound, we know that any fuzzy depen-
dency in (F ,G )+ is valid in each fuzzy relation in-
stance on R(U) that obeys all dependences in F ∪G .

The limit strength of a FFD X θ−→F Y , with re-
spect to F and G , is a number θl ∈ [0,1] such that

X
θl−→F Y is in (F ,G )+ and θl ≥ θ

′
for any X θ

′

−→F Y
in (F ∪G )+.

The limit strength of a FMV D X → θ−→F Y , with
respect to F and G , is a number θl ∈ [0,1] such

that X → θl−→F Y is in (F ,G )+ and θl ≥ θ
′

for any

X → θ
′

−→F Y in (F ,G )+.
The closure X+ (θ) of X ⊆U , with respect to F

and G , is the set of all attributes A∈U such that X θ−→F

A is in (F ,G )+. Consequently, X θ−→F Y belongs to
(F ,G )+ if and only if Y ⊆ X+ (θ).

By [18, p. 177, Lemma 4.4.], for given X ⊆U and
θ ∈ [0,1], we can partition U into sets of attributes Y1,

Y2, ... , Yk, such that X → θ−→F Z if and only if Z is the
union of some of the Yi’s. We call the set dep(X ,θ)
= {Y1,Y2, ...,Yk}, constructed for X with respect to θ ,
the dependency basis for X .

By [18, p. 177, Th. 4.2.], the inference rules IR1–
IR10 are complete. This means the following.

Let F and G be some sets of FFDs and FMV Ds
on some universal set of attributes U . Suppose that
some FFD X θ−→F Y on U (FMV D X → θ−→F Y on
U) does not belong to (F ,G )+. Then, there exists
a fuzzy relation instance r∗ on R(U) which satisfies
all dependences in (F ,G )+ and does not satisfy the

dependency X θ−→F Y (X → θ−→F Y ).
Recall that the authors in [18, pp. 177–178] con-

structed r∗ as follows (see, Table 2).
Let W1, W2, ... , Wm, where m ≥ 1, be the sets in

the dependency basis dep(X ,θ) of X with respect to
θ , that cover U \X+ (θ). Thus, X+ (θ), W1, W2, ... ,
Wm form a partition of U . Here, X+ (θ) is the closure
of X with respect to F and G . Note that X+ (θ) is
a proper subset of U since otherwise each FFD or
FMV D with left side X belongs to (F ,G )+.

Table 2:
X+ (θ) W1 ... Wm−1 Wm

a, ... , a a, ... , a ... a, ... , a a, ... , a
a, ... , a a, ... , a ... a, ... , a b, ... , b
...

... ...
...

...
a, ... , a b, ... , b ... b, ... , b a, ... , a
a, ... , a b, ... , b ... b, ... , b b, ... , b

The set {a,b} is chosen to be the domain of each
of the attributes in U . A similarity relation s (s = s1
= s2 = ... = sn now if U = {A1,A2, ...,An}) is de-
fined by s(a,b) = θ

′
, where θ

′
is a number less than

θ and greater than or equal to the strength of any de-
pendency in (F ,G )+ whose limit strength is less than
θ . If there are no such dependences, then θ

′
= 0.

Note that ϕ (Q [t1, t2]) ≥ θ
′

for any attribute set
Q⊆U and any two tuples t1 and t2 in r∗.

Each attribute in X+ (θ) has the value a in all
rows of r∗. Every row in r∗ corresponds to some fi-
nite sequence of the length m, whose elements be-
long to {a,b}. For example, the row that corre-
sponds to the sequence (a,a, ...,a,b) has all a’s in
the X+ (θ) columns, all a’s in the Wi columns, i ∈
{1,2, ...,m−1}, all b’s in the Wm columns. Since the
number of such sequences is 2m, the fuzzy relation in-
stance r∗ has 2m rows.

4 Auxiliary results
In the earlier literature, different authors proposed
many individual definitions of fuzzy implications
(see, e.g., [17, p. 3]).
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Besides these individual definitions, two classes
of fuzzy implications, generated from the fuzzy logic
operators: negation, conjunction and disjunction have
emerged. They are strong implications (S) and resid-
uated implications (R).

Besides (S) and (R) implications, there is another
class of fuzzy implications generated from the fuzzy
logic operators: negation, conjunction and disjunction
coming from quantum logic. Such implications are
called quantum logic implications (QL).

(S), (R) and (QL) implications are the most im-
portant classes of fuzzy implications which were
widely studied from the beginning until now.

Thus, in [1] and [2], the authors work on the char-
acterization of (S) implications generated from con-
tinuous negations. [12], [19] and [16] deals with the
properties of a group of (QL) implications. The au-
thors in [14] and [15] work on (R) implications and
left-continuous t-norms, etc.

Besides (S), (R) and (QL) implications, there
are other classes of fuzzy implications which are
not generated from the fuzzy logic operators: nega-
tion, conjunction and disjunction. Examples of such
classes are: two parameterized classes of fuzzy im-
plications generated from aditive generating functions
[20], fuzzy implications generated from uninorms [3],
etc.

For the intersections between classes of fuzzy im-
plication operators we refer to [3] and [13]. For de-
tailed general study on the fuzzy implication operators
we refer to [3] and [17].

Note that here and through the rest of the paper
we shall assume that the fuzzy implication operator is
given by

τ (a⇒ b) = max(1− τ (a) ,τ (b)) , (3)

where, as before, τ (a), τ (b) ∈ [0,1] and τ (x) denotes
the truth value of the formula x.

Recall that this fuzzy implication operator is
widely-known as Kleene-Dienes or (KD) operator. It
represents a classical example of (S) and (QL) impli-
cations.

Let r = {t1, t2} be any two-element fuzzy relation
instance on scheme R(A1,A2, ...,An), U be the univer-
sal set of attributes A1, A2, ..., An, and β ∈ [0,1].

A valuation joined to r and β is a mapping
ir,β : {A1,A2, ...,An}→ [0,1] such that

ir,β (Ak)>
1
2

if ϕ (Ak [t1, t2])≥ β ,

ir,β (Ak)≤
1
2

if ϕ (Ak [t1, t2])< β ,

k ∈ {1,2, ...,n}. Note that here, as well as in the
fuzzy functional and fuzzy multivalued dependences
definitions, we assume that each attribute domain is
equipped with a similarity relation. We apply these
relations to calculate conformances ϕ (Ak [t1, t2]), k ∈
{1,2, ...,n}. Comparing these values to β , we de-
fine the values ir,β (Ak), k ∈ {1,2, ...,n}. More pre-
cisely, for ϕ (Ak [t1, t2]) ≥ β , we put ir,β (Ak) to be
some value in

(1
2 ,1
]
. Otherwise, we put ir,β (Ak) to

be some value in
[
0, 1

2

]
. In this way, we consider the

attributes A1, A2, ..., An as fuzzy formulas with respect
to ir,β . Now, for A, B ∈ {A1,A2, ...,An}, it makes sense
to consider A∧B, A∨B and A⇒ B as fuzzy formulas
with respect to ir,β if we put ir,β (A∧B), ir,β (A∨B)
and ir,β (A⇒ B) to be in line with (1), (2) and (3), re-
spectively, i.e., if we put that

ir,β (A∧B) = min
(
ir,β (A) , ir,β (B)

)
,

ir,β (A∨B) = max
(
ir,β (A) , ir,β (B)

)
,

ir,β (A⇒ B) = max
(
1− ir,β (A) , ir,β (B)

)
.

Consequently, expressions like ∧A∈X A, ∨B∈Y B,
(∧B∈Y B)∨ (∧C∈ZC), (∧A∈X A)⇒ (∧B∈Y B),
(∧A∈X A)⇒ ((∧B∈Y B)∨ (∧C∈ZC)), etc., where X , Y ,
Z ⊆U , become fuzzy formulas as well.

Let X θ−→F Y
(

X → θ−→F Y
)

be some FFD
(FMV D) on U .

We join the fuzzy formula

(∧A∈X A)⇒ (∧B∈Y B) resp.

(∧A∈X A)⇒ ((∧B∈Y B)∨ (∧C∈ZC))

to the fuzzy functional dependency X θ−→F Y resp. the
fuzzy multivalued dependency

(
X → θ−→F Y

)
, where

Z = U \ (X ∪Y ).

Theorem 1 Let r = {t1, t2} be any two-element, fuzzy
relation instance on scheme R(A1,A2, ...,An), U be
the universal set of attributes A1, A2, ..., An and X, Y
be subsets of U. Let Z = U \ (X ∪Y ). Then, r sat-

isfies the fuzzy multivalued dependency X → θ−→F Y ,
θ−actively if and only if

ϕ (X [t1, t2])≥ θ , ϕ (Y [t1, t2])≥ θ or

ϕ (X [t1, t2])≥ θ , ϕ (Z [t1, t2])≥ θ .

Proof: (⇒) Assume that r satisfies X → θ−→F Y ,
θ−actively. Then, as already mentioned, we have that
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ϕ (X [t1, t2]) ≥ θ . Since r satisfies X → θ−→F Y , there
exists a tuple t3 ∈ r such that

ϕ (X [t3, t1])≥min(θ ,ϕ (X [t1, t2])) = θ ,

ϕ (Y [t3, t1])≥min(θ ,ϕ (X [t1, t2])) = θ ,

ϕ (Z [t3, t2])≥min(θ ,ϕ (X [t1, t2])) = θ .

If t3 = t1, then ϕ (Z [t1, t2])≥ θ . If t3 = t2, we have that
ϕ (Y [t1, t2])≥ θ .
(⇐) Suppose that either conditions ϕ (X [t1, t2]) ≥ θ ,
ϕ (Y [t1, t2]) ≥ θ or ϕ (X [t1, t2]) ≥ θ , ϕ (Z [t1, t2]) ≥ θ

hold true.
Let ϕ (X [t1, t2]) ≥ θ and ϕ (Y [t1, t2]) ≥ θ hold

true.
Then, there exists t3 ∈ r, t3 = t2 such that

ϕ (X [t3, t1])≥ θ = min(θ ,ϕ (X [t1, t2])) ,

ϕ (Y [t3, t1])≥ θ = min(θ ,ϕ (X [t1, t2])) ,

ϕ (Z [t3, t2]) = 1≥ θ = min(θ ,ϕ (X [t1, t2])) .

Similarly, if ϕ (X [t1, t2])≥ θ and ϕ (Z [t1, t2])≥ θ hold
true, then there exists t3 ∈ r, t3 = t1 such that

ϕ (X [t3, t1])≥min(θ ,ϕ (X [t1, t2])) ,

ϕ (Y [t3, t1])≥min(θ ,ϕ (X [t1, t2])) ,

ϕ (Z [t3, t2])≥min(θ ,ϕ (X [t1, t2])) .

Therefore, r satisfies X→ θ−→F Y . Since ϕ (X [t1, t2])≥
θ , we conclude that r satisfies X→ θ−→F Y , θ−actively.
This completes the proof. ut

Theorem 2 Let r = {t1, t2} be any two-element, fuzzy
relation instance on scheme R(A1,A2, ...,An), U be
the universal set of attributes A1, A2, ..., An and X,
Y be subsets of U. Let Z = U \ (X ∪Y ). Then, r

satisfies the fuzzy multivalued dependency X → θ−→F
Y , θ−actively if and only if ϕ (X [t1, t2]) ≥ θ and
ir,θ (H )> 0.5, where H denotes the fuzzy
formula (∧A∈X A)⇒ ((∧B∈Y B)∨ (∧C∈ZC)) associated

to X → θ−→F Y .

Proof: (⇒) Assume that r satisfies the dependency
X → θ−→F Y , θ−actively. By Theorem 1,
ϕ (X [t1, t2]) ≥ θ , ϕ (Y [t1, t2])≥ θ or
ϕ (X [t1, t2])≥ θ , ϕ (Z [t1, t2])≥ θ .

Let ϕ (X [t1, t2]) ≥ θ and ϕ (Y [t1, t2]) ≥ θ hold
true.

Since minB∈Y {ϕ (B [t1, t2])} = ϕ (Y [t1, t2]) ≥ θ hold
true, we conclude that ϕ (B [t1, t2]) ≥ θ for all B ∈ Y .
Hence, ir,θ (B) > 0.5 for B ∈ Y . Therefore,
ir,θ (∧B∈Y B) = min{ir,θ (B) |B ∈ Y} > 0.5. We have,

ir,θ (H )

= max(1− ir,θ (∧A∈X A) , ir,θ ((∧B∈Y B)∨ (∧C∈ZC)))

= max
(
1−min{ir,θ (A) |A ∈ X} ,

max(ir,θ (∧B∈Y B) , ir,θ (∧C∈ZC))
)

= max
(
1−min{ir,θ (A) |A ∈ X} ,

ir,θ (∧B∈Y B) , ir,θ (∧C∈ZC)
)
.

Since, ir,θ (∧B∈Y B)> 0.5, it follows immediately that
ir,θ (H ) > 0.5

Similarly, if we assume that ϕ (X [t1, t2]) ≥ θ and
ϕ (Z [t1, t2]) ≥ θ hold true, we obtain that ir,θ (∧C∈ZC)
> 0.5 and hence ir,θ (H )> 0.5.
The assertion follows.
(⇐) Let ϕ (X [t1, t2])≥ θ and ir,θ (H )> 0.5. Suppose
that ir,θ (H ) = 1−min{ir,θ (A) |A ∈ X}. Then, there
exists A0 ∈ X such that 1− ir,θ (A0) =
1−min{ir,θ (A) |A ∈ X} = ir,θ (H ) > 0.5. We ob-
tain, ir,θ (A0) < 0.5. Therefore, ϕ (A0 [t1, t2]) < θ

and hence ϕ (X [t1, t2]) = minA∈X {ϕ (A [t1, t2])} < θ ,
which contradicts our assumption ϕ (X [t1, t2]) ≥ θ .
As a consequence, we have that either ir,θ (H ) =
ir,θ (∧B∈Y B) or ir,θ (H ) = ir,θ (∧C∈ZC).

Assume that min{ir,θ (B) |B ∈ Y}=
ir,θ (∧B∈Y B) = ir,θ (H ) > 0.5. We obtain ir,θ (B)
> 0.5 for all B∈Y . Hence, ϕ (B [t1, t2])≥ θ for B∈Y .
This implies that ϕ (Y [t1, t2]) = minB∈Y {ϕ (B [t1, t2])}
≥ θ . Now, by Theorem 1, ϕ (X [t1, t2]) ≥ θ and
ϕ (Y [t1, t2]) ≥ θ yield the result.

Similarly, if we assume that ir,θ (H ) =
ir,θ (∧C∈ZC), we obtain that ϕ (Z [t1, t2]) ≥ θ . Since
ϕ (X [t1, t2])≥ θ , the theorem follows. This completes
the proof. ut

Theorem 3 Let r = {t1, t2} and q = {u1,u2} be any
two, two-element, fuzzy relation instances on scheme
R(A1,A2, ...,An). Let U be the universal set of at-
tributes A1, A2, ..., An and X, Y subsets of U. Put
Z =U \(X ∪Y ). Assume that r satisfies the fuzzy mul-

tivalued dependency X→ θ−→F Y , θ−actively. Suppose
that ϕ (A [u1,u2]) ≥ θ for every attribute A ∈U such

that ϕ (A [t1, t2]) ≥ θ . Then, q satisfies X → θ−→F Y ,
θ−actively.

Proof: Since r satisfies X → θ−→F Y , θ−actively,
it follows from Theorem 1 that either conditions
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ϕ (X [t1, t2]) ≥ θ , ϕ (Y [t1, t2]) ≥ θ or ϕ (X [t1, t2]) ≥
θ , ϕ (Z [t1, t2]) ≥ θ hold true.

Suppose that ϕ (X [t1, t2]) ≥ θ and
ϕ (Y [t1, t2]) ≥ θ hold true. We have,
minA∈X {ϕ (A [t1, t2])}= ϕ (X [t1, t2]) ≥ θ and
minB∈Y {ϕ (B [t1, t2])}= ϕ (Y [t1, t2]) ≥ θ . Hence,
ϕ (A [t1, t2])≥ θ for all A ∈ X and ϕ (B [t1, t2])≥ θ for
all B ∈Y . Therefore, by our assumption, ϕ (A [u1,u2])
≥ θ for all A ∈ X and ϕ (B [u1,u2]) ≥ θ for all B ∈ Y .
Now, ϕ (X [u1,u2]) = minA∈X {ϕ (A [u1,u2])} ≥ θ and
ϕ (Y [u1,u2]) = minB∈Y {ϕ (B [u1,u2])} ≥ θ . Hence,

by Theorem 1, q satisfies X → θ−→F Y , θ−actively.
If ϕ (X [t1, t2])≥ θ and ϕ (Z [t1, t2])≥ θ hold true,

the theorem follows analogously. This completes the
proof. ut

Lemma 4 Let r be any fuzzy relation instance on
scheme R(A1,A2, ...,An), U be the universal set of at-
tributes A1, A2, ..., An and X, Y be subsets of U. Then,
r satisfies the fuzzy functional dependency X θ−→F Y if
and only if r satisfies X θ−→F B for all B ∈ Y .

Proof: (⇒) Suppose that r satisfies the dependency
X θ−→F Y . Then, ϕ (B [t1, t2]) ≥ ϕ (Y [t1, t2]) ≥
min(θ ,ϕ (X [t1, t2])) for any B∈Y and any t1 and t2 in

r. Hence, r satisfies X θ−→F B for all B ∈ Y .
(⇐) Suppose that r does not satisfy the dependency
X θ−→F Y . Then, there exist tuples t1 and t2 in r
such that ϕ (Y [t1, t2]) < min(θ ,ϕ (X [t1, t2])). Since
ϕ (Y [t1, t2]) = minB∈Y {ϕ (B [t1, t2])}, we
conclude that there exists B ∈ Y such that
ϕ (B [t1, t2]) = ϕ (Y [t1, t2]). Now, ϕ (B [t1, t2]) <
min(θ ,ϕ (X [t1, t2])). Hence, r does not satisfy the de-

pendency X θ−→F B. This completes the proof. ut

5 Main result
Firstly, we prove the following result regarding the
fuzzy relation instance r∗ introduced in Section 3.

Theorem 5 There exists some two-element, fuzzy re-
lation instance s ⊆ r∗ such that s satisfies all depen-
dences from the set (F ,G )+ but does not satisfy the

dependency X θ−→F Y
(

X → θ−→F Y
)

.

Proof: We distinguish between two cases:

1) r∗ does not satisfy the fuzzy functional depen-
dency X θ−→F Y ,

2) r∗ does not satisfy the fuzzy multivalued depen-
dency X → θ−→F Y .

1) Suppose that r∗ does not satisfy the dependency
X θ−→F Y . Then, ϕ (Y [u1,u2]) < min(θ ,ϕ (X [u1,u2]))
for some u1, u2 ∈ r∗. Now, {u1,u2} ⊆ r∗ is some two-
element, fuzzy relation instance which does not sat-
isfy the dependency X θ−→F Y . Since r∗ satisfies all
fuzzy functional dependences from the set (F ,G )+,
we immediately obtain that each, two- element, fuzzy
relation instance s∗ ⊆ r∗ satisfies all fuzzy functional
dependences from (F ,G )+.

Let {t1, t2} = s ⊆ r∗ be two element, fuzzy re-
lation instance such that s does not satisfy the de-
pendency X θ−→F Y and s actively satisfies the maxi-
mal number of the fuzzy multivalued dependences in
(F ,G )+. In the sequel, we prove that s satisfies the
claim of the theorem.

Let V → θ1−→F W be any fuzzy multivalued depen-
dency from the set (F ,G )+.

Suppose that ϕ (V [t1, t2]) < θ1.
Put Z =U \ (V ∪W ). Now, ϕ (V [t1, t2]) < θ1 ≤ 1

and then θ
′
= ϕ (V [t1, t2]) < θ1. We obtain

ϕ (V [t1, t1]) = 1≥min(θ1,ϕ (V [t1, t2])) ,

ϕ (W [t1, t1]) = 1≥min(θ1,ϕ (V [t1, t2])) ,

ϕ (Z [t1, t2])≥ θ
′
= min(θ1,ϕ (V [t1, t2])) .

Hence, s satisfies the dependency V → θ1−→F W .
Let ϕ (V [t1, t2]) ≥ θ1.
Suppose that s does not actively satisfy the depen-

dency V → θ1−→F W . Then, by Theorem 1, ϕ (W [t1, t2])
< θ1 and ϕ (Z [t1, t2]) < θ1. Hence, ϕ (W [t1, t2]) = θ

′

< θ1 and ϕ (Z [t1, t2]) = θ
′
< θ1. Now, ϕ (V [t1, t2]) ≥

θ1 > θ
′
.

Since s does not satisfy the dependency X θ−→F
Y , it follows from Lemma 4 that s does not satisfy
X θ−→F B for some B ∈ Y . Therefore, ϕ (B [t1, t2]) <
min(θ ,ϕ (X [t1, t2])).

By construction of the relation instance r∗ we
know that ϕ (X [t1, t2]) = 1. Hence, ϕ (B [t1, t2]) < θ .
Now, ϕ (B [t1, t2]) < θ ≤ 1 and then θ

′
= ϕ (B [t1, t2])

< θ . Since, ϕ (V [t1, t2]) > θ
′

and ϕ (W [t1, t2]) = θ
′
,

ϕ (Z [t1, t2]) = θ
′
, we conclude that either B ∈W or

B ∈ Z. Without loss of generality, we may assume
that B ∈ Z.

By construction of the instance r∗, there exists
some tuple t3 ∈ r∗ which coincides with the tuple t1
on V , W and coincides with the tuple t2 on Z.

Put q = {t1, t3}.
Since B ∈ Z, ϕ (B [t1, t2]) = θ

′
and t2, t3 coincide

on Z, we obtain ϕ (B [t1, t3]) = θ
′
. Hence, ϕ (B [t1, t3])

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
Nedzad Dukic, Dzenan Gusic, Amela Muratovic-Ribic, 

Adis Alihodzic, Edin Tabak, Haris Dukic

E-ISSN: 2224-2856 291 Volume 13, 2018



= θ
′
< θ = min(θ ,1) = min(θ ,ϕ (X [t1, t3])), i.e., q

does not satisfy the dependency X θ−→F B. Now, by
Lemma 4, q does not satisfy the dependency X θ−→F Y .

Since t1 and t3 coincide on V and W , we have that
ϕ (V [t1, t3]) = 1 ≥ θ1, ϕ (W [t1, t3]) = 1 ≥ θ1. Hence,
by Theorem 1, the instance q actively satisfies the de-
pendency V → θ1−→F W .

Let P→ θ2−→F Q be any fuzzy multivalued depen-
dency from the set (F ,G )+ which is actively satisfied
by the instance s.

Suppose that ϕ (A [t1, t2]) ≥ θ2 for some attribute
A ∈U . If A ∈ V ∪W , then ϕ (A [t1, t3]) = 1 ≥ θ2. If
A ∈ Z, then ϕ (A [t1, t3]) = ϕ (A [t1, t2]) ≥ θ2. There-
fore, by Theorem 3, q actively satisfies the depen-
dency P → θ2−→F Q. Now, q actively satisfies more
fuzzy multivalued dependences from the set (F ,G )+

than s does, i.e., a contradiction. Therefore, s actively
satisfies the dependency V → θ1−→F W . As mentioned
before, this implies that s satisfies the dependency
V → θ1−→F W . In any case, i.e., either ϕ (V [t1, t2]) <
θ1 or ϕ (V [t1, t2]) ≥ θ1, the instance s satisfies the de-

pendency V → θ1−→F W . Since, V → θ1−→F W was arbi-
trary, we conclude that the instance s satisfies all fuzzy
multivalued dependences from the set (F ,G )+. This
completes the proof in this case.
2) Suppose that r∗ does not satisfy the dependency
X → θ−→F Y . Put Z = U\ (X ∪Y ). Then, there exist
some tuples u1 and u2 in r∗ such that the conditions

ϕ (X [u3,u1])≥min(θ ,ϕ (X [u1,u2])) ,

ϕ (Y [u3,u1])≥min(θ ,ϕ (X [u1,u2])) ,

ϕ (Z [u3,u2])≥min(θ ,ϕ (X [u1,u2]))

don’t hold at the same time for any u3 ∈ r∗. Now,
{u1,u2} ⊆ r∗ is a two-element, fuzzy relation instance

which does not satisfy the dependency X → θ−→F Y .
Let {t1, t2} = s ⊆ r∗ be two-element, fuzzy relation
instance such that the conditions

ϕ

(
X
[
t
′
3, t1
])
≥min(θ ,ϕ (X [t1, t2])) ,

ϕ

(
Y
[
t
′
3, t1
])
≥min(θ ,ϕ (X [t1, t2])) ,

ϕ

(
Z
[
t
′
3, t2
])
≥min(θ ,ϕ (X [t1, t2]))

(4)

don’t hold at the same time for any t
′
3 ∈ r∗ and s ac-

tively satisfies the maximal number of the fuzzy mul-
tivalued dependences from the set (F ,G )+. The in-

stance s does not satisfy the dependency X → θ−→F Y .

In the sequel, we prove that s satisfies the claim of the
theorem.

As in the previous case, we know that s satis-
fies all fuzzy functional dependences from the set
(F ,G )+.

If s satisfies all fuzzy multivalued dependences
from the set (F ,G )+, then s satisfies the claim of the
theorem.

Suppose that s does not satisfy the fuzzy multival-
ued dependency V → θ1−→F W from the set (F ,G )+.
Let Q = U\ (V ∪W ). Now, the conditions

ϕ (V [t1, t1])≥min(θ1,ϕ (V [t1, t2])) ,

ϕ (W [t1, t1])≥min(θ1,ϕ (V [t1, t2])) ,

ϕ (Q [t1, t2])≥min(θ1,ϕ (V [t1, t2]))

don’t hold at the same time. Since the first and the
second condition are obviously satisfied, we obtain
ϕ (Q [t1, t2]) < min(θ1,ϕ (V [t1, t2])). Hence,
ϕ (Q [t1, t2]) < min(θ1,ϕ (V [t1, t2])) ≤ 1 and then
ϕ (Q [t1, t2]) = θ

′
, ϕ (V [t1, t2]) > θ

′
. Similarly, the

conditions

ϕ (V [t2, t1])≥min(θ1,ϕ (V [t1, t2])) ,

ϕ (W [t2, t1])≥min(θ1,ϕ (V [t1, t2])) ,

ϕ (Q [t2, t2])≥min(θ1,ϕ (V [t1, t2]))

don’t hold at the same time. Since the first and the
third condition are satisfied, we have ϕ (W [t1, t2]) <
min(θ1,ϕ (V [t1, t2])). Therefore, ϕ (W [t1, t2]) <
min(θ1,ϕ (V [t1, t2])) ≤ 1 and then ϕ (W [t1, t2]) = θ

′
.

By construction of the relation instance r∗, there
exist tuples t3, t4 ∈ r∗ such that t3 resp. t4 coincides
with t1 on V , Q resp. V , W and coincides with t2 on
W resp. Q.

Put q1 = {t1, t3} and q2 = {t1, t4}. Since t1 and
t3 coincide on V and Q, we have that ϕ (V [t1, t3]) =
1 ≥ θ1, ϕ (Q [t1, t3]) = 1 ≥ θ1. Hence, by Theorem
1, the instance q1 actively satisfies the dependency
V → θ1−→F W . Similarly, t1 and t4 coincide on V and W .
Then, ϕ (V [t1, t4]) = 1 ≥ θ1, ϕ (W [t1, t4]) = 1 ≥ θ1.
Therefore, by Theorem 1, the instance q2 actively sat-
isfies the dependency V → θ1−→F W .

Let P→ θ2−→F T be any fuzzy multivalued depen-
dency from the set (F ,G )+ which is actively satis-
fied by s. Suppose that ϕ (A [t1, t2]) ≥ θ2 for some
attribute A ∈ U . If A ∈ V ∪Q, then ϕ (A [t1, t3]) =
1≥ θ2. If A∈W , then ϕ (A [t1, t3]) = ϕ (A [t1, t2])≥ θ2.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
Nedzad Dukic, Dzenan Gusic, Amela Muratovic-Ribic, 

Adis Alihodzic, Edin Tabak, Haris Dukic

E-ISSN: 2224-2856 292 Volume 13, 2018



Therefore, by Theorem 3, q1 actively satisfies the de-
pendency P→ θ2−→F T . Similarly, if A ∈ V ∪W , then
ϕ (A [t1, t4]) = 1 ≥ θ2. If A ∈ Q, then ϕ (A [t1, t4]) =
ϕ (A [t1, t2]) ≥ θ2. Hence, q2 actively satisfies the de-

pendency P→ θ2−→F T . Now, the instances q1 and q2
actively satisfy more fuzzy multivalued dependences
from the set (F ,G )+ than s does. Hence, if q1 or q2

does not satisfy the dependency X→ θ−→F Y , we obtain
a contradiction.

Suppose that q1 and q2 satisfy the dependency
X→ θ−→F Y . By construction of the relation instance r∗

we have that ϕ (X [t1, t3]) = 1 ≥ θ and ϕ (X [t1, t4]) =
1 ≥ θ . Hence, q1 and q2 actively satisfy the depen-
dency X → θ−→F Y . Now, by Theorem 1, either condi-
tions ϕ (X [t1, t3])≥ θ , ϕ (Y [t1, t3])≥ θ or ϕ (X [t1, t3])
≥ θ , ϕ (Z [t1, t3]) ≥ θ hold true, and either conditions
ϕ (X [t1, t4]) ≥ θ , ϕ (Y [t1, t4]) ≥ θ or
ϕ (X [t1, t4]) ≥ θ , ϕ (Z [t1, t4]) ≥ θ hold true.

Since ϕ (V [t1, t2]) > θ
′
, ϕ (W [t1, t2]) = θ

′
and

ϕ (Q [t1, t2]) = θ
′
, we introduce the sets

W ∗ =
{

A ∈W |ϕ (A [t1, t2]) = θ
′
}
,

Q∗ =
{

A ∈ Q |ϕ (A [t1, t2]) = θ
′
}
.

The conditions (4) don’t hold at the same time for any
t
′
3 ∈ r∗. In particular, if t

′
3 = t1, the first and the sec-

ond condition in (4) are obviously satisfied. Hence,
ϕ (Z [t1, t2]) < min(θ ,ϕ (X [t1, t2])) = min(θ ,1) =

θ . Therefore, ϕ (Z [t1, t2]) < θ ≤ 1 and then θ
′
=

ϕ (Z [t1, t2]) < θ .
Now, if ϕ (Y [t1, t3])≥ θ , we have that ϕ (Y [t1, t3])

≥ θ > θ
′
. Then, W ∗ ⊆ Z. If ϕ (Z [t1, t3]) ≥ θ then

W ∗ ⊆ Y . Similarly, if ϕ (Y [t1, t4]) ≥ θ then Q∗ ⊆ Z.
Finally, if ϕ (Z [t1, t4]) ≥ θ then Q∗ ⊆ Y . We obtain
the following possibilities:

W ∗ ⊆ Z and Q∗ ⊆ Z,

W ∗ ⊆ Z and Q∗ ⊆ Y,

W ∗ ⊆ Y and Q∗ ⊆ Z,

W ∗ ⊆ Y and Q∗ ⊆ Y.

Suppose that W ∗ ⊆ Z and Q∗ ⊆ Z hold true. Then,
ϕ (X [t1, t2]) = 1 ≥ θ , ϕ (Y [t1, t2]) = 1 ≥ θ and
ϕ (Z [t1, t2]) = θ

′
. Hence, by Theorem 1, the instance

s actively satisfies the dependency X → θ−→F Y . This is
a contradiction. Similarly, if W ∗ ⊆Y and Q∗ ⊆Y hold
true, then ϕ (X [t1, t2]) = 1 ≥ θ , ϕ (Y [t1, t2]) = θ

′
and

ϕ (Z [t1, t2]) = 1 ≥ θ . Therefore, s actively satisfies

the dependency X → θ−→F Y , i.e., a contradiction.
Suppose that W ∗ ⊆ Z and Q∗ ⊆Y hold true. Now,

ϕ (X [t3, t1]) = 1≥min(θ ,ϕ (X [t1, t2])) ,

ϕ (Y [t3, t1]) = 1≥min(θ ,ϕ (X [t1, t2])) ,

ϕ (Z [t3, t2]) = 1≥min(θ ,ϕ (X [t1, t2])) .

This contradicts the fact that the conditions (4) don’t
hold at the same time for any tuple t

′
3 ∈ r∗.

Similarly, if W ∗ ⊆ Y and Q∗ ⊆ Z hold true, then

ϕ (X [t4, t1]) = 1≥min(θ ,ϕ (X [t1, t2])) ,

ϕ (Y [t4, t1]) = 1≥min(θ ,ϕ (X [t1, t2])) ,

ϕ (Z [t4, t2]) = 1≥min(θ ,ϕ (X [t1, t2])) .

Hence, a contradiction.
Since our assumption that s does not satisfy the

dependency V → θ1−→F W always leads to contradic-
tion, it cannot be true. Therefore, s satisfies all fuzzy
multivalued dependences from the set (F ,G )+, i.e., s
satisfies the claim of the theorem. This completes the
proof. ut

Corollary 6 Let C be a set of fuzzy functional and
fuzzy multivalued dependences on some universal set
of attributes U. Suppose that c is some fuzzy func-
tional or fuzzy multivalued dependency on U. The fol-
lowing statements are equivalent:

(a) Any fuzzy relation instance on scheme R(U)
which satisfies all dependences in C, satisfies the
dependency c.

(b) Any two-element, fuzzy relation instance on
scheme R(U) which satisfies all dependences in
C, satisfies the dependency c.

Proof: (⇒) Suppose that (a) holds true. Let r be any
two-element, fuzzy relation instance on R(U) which
satisfies all dependences in C. Since (a) is valid for
all fuzzy relation instances on U satisfying all depen-
dences in C, it follows that r satisfies c.
(⇐) Suppose that (a) does not hold. Now, there exists
a fuzzy relation instance r on R(U) which satisfies all
dependences in C and does not satisfy the dependency
c.

Suppose that c ∈C+, where C+ is the closure of
C.
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Now, as mentioned before, the fact that c ∈ C+

and the fact that r is a fuzzy relation instance on R(U)
that obeys all dependences in C, yield that r satisfies
c. Hence, a contradiction. We conclude, c /∈C+.

Now, reasoning as in Section 3, we obtain that
for c /∈ C+ there exists a fuzzy relation instance r∗

on R(U) which satisfies all dependences in C+ and
does not satisfy the dependency c. Therefore, by The-
orem 5, there exists some two-element, fuzzy relation
instance s ⊆ r∗ such that s satisfies all dependences
in C+ and does not satisfy the dependency c. Since
C ⊆C+, it follows that s is a two-element, fuzzy rela-
tion instance on R(U) which satisfies all dependences
in C and does not satisfy the dependency c. In other
words, (b) does not hold. This completes the proof. ut

Theorem 7 Let C be a set of fuzzy functional and
fuzzy multivalued dependences on some universal set
of attributes U. Suppose that c is some fuzzy func-
tional or fuzzy multivalued dependency on U. Denote
by C

′
resp. c

′
the set of fuzzy formulas resp. the fuzzy

formula associated to C resp. c. Then, the following
two conditions are equivalent:

(a) Any two-element, fuzzy relation instance on
scheme R(U) which satisfies all dependences in
C, satisfies the dependency c.

(b) ir,β
(

c
′
)
> 0.5 for every ir,β such that ir,β (K ) >

0.5 for all K ∈C
′
.

Proof: Similar to the proof of [9, pp. 38-42, Th. 2.]
in the case of Yager’s fuzzy implication operator and
the proof of [10, pp. 288-296, Th. 2.] in the case of
Reichenbach’s fuzzy implication operator. ut

Corollary 8 Let C be a set of fuzzy functional and
fuzzy multivalued dependences on some universal set
of attributes U. Suppose that c is some fuzzy func-
tional or fuzzy multivalued dependency on U. Denote
by C

′
resp. c

′
the set of fuzzy formulas resp. the fuzzy

formula associated to C resp. c. Then, the following
two conditions are equivalent:

(a) Any fuzzy relation instance on scheme R(U)
which satisfies all dependences in C, satisfies the
dependency c.

(b) ir,β
(

c
′
)
> 0.5 for every ir,β such that ir,β (K ) >

0.5 for all K ∈C
′
.

Proof: An immediate consequence of Corollary 6 and
Theorem 7. ut

6 Conclusion
Problems like:

input: S a set of fuzzy functional and fuzzy mul-
tivalued dependences

input: s a fuzzy functional or a fuzzy multival-
ued dependency

output: S⇒ s

can be efficiently solved using the results derived in
this paper. Let us illustrate this in the following exam-
ple.
Example 1. If the fuzzy functional and the fuzzy mul-
tivalued dependences:

A1A2
θ1−→F A3A4,

A2A3
θ2−→F A6,

A1A3A4→
θ3−→F A5A6A7,

A3A4
θ4−→F A7

hold true, where U = {A1,A2,A3,A4,A5,A6,A7} is
the universal set of attributes and A1 = Name, A2
= Intelligence, A3 = Abilities, A4 = Activity, A5 =
Job, A6 = Salary, A7 = Success, then the fuzzy func-

tional dependency A1A2A3
min(θ1,θ2,θ3,θ4)→ F A6A7 holds

also true.
Proof: I (applying IR1–IR17)

We deduce:

1) A1A2
θ1−→F A3A4 (input)

2) A1A2
θ1−→F A1A3A4 (from 1) and IR3)

3) A1A2→
θ1−→F A1A3A4 (from 2) and IR9)

4) A1A3A4→
θ3−→F A5A6A7 (input)

5) A1A2
min(θ1,θ3)→→ F A5A6A7 (from 3),4) and IR8)

6) A3A4
θ4−→F A7 (input)

7) A1A2
min(θ1,θ3,θ4)→ F A7 (from 5),6) and IR10)

8) A1A2A3
min(θ1,θ3,θ4)→ F A3A7 (from 7) and IR3)

9) A2A3
θ2−→F A6 (input)

10) A1A2A3
θ2→F A1A6 (from 9) and IR3)
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11) A1A2A3
min(θ1,θ2,θ3,θ4)→ F A1A3A6A7

(from 8),10) and IR11)

12) A1A3A6A7→F A6A7 (from IR2)

13) A1A3A6A7
min(θ1,θ2,θ3,θ4)→ F A6A7 (from 12)

and IR1)

14) A1A2A3
min(θ1,θ2,θ3,θ4)→ F A6A7 (from 11),13)

and IR4)

Thus, the assertion follows. ut
Proof: II (applying Corollary 8 and the
resolution principle)

In order to apply Corollary 8, we associate the
fuzzy formulas:

K1 ≡ (A1∧A2)⇒ (A3∧A4) ,

K2 ≡ (A2∧A2)⇒ A6,

K3 ≡ (A1∧A3∧A4)⇒ ((A5∧A6∧A7)∨A2) ,

K4 ≡ (A3∧A4)⇒ A7,

c
′ ≡ (A1∧A2∧A3)⇒ (A6∧A7)

to the given set of fuzzy dependences.
We have four axioms: K1, K2, K3 and K4.
We shall prove c

′
by the refutation of its negation.

Let us find conjunctive normal forms of the for-
mulas: K1, K2, K3, K4 and ¬c

′
. We have:

K1 ≡ (¬A1∨¬A2)∨ (A3∧A4)

≡ (¬A1∨¬A2∨A3)∧ (¬A1∨¬A2∨A4) ,

K2 ≡ ¬A2∨¬A3∨A6,

K3 ≡ (¬A1∨¬A3∨¬A4)∨ ((A5∧A6∧A7)∨A2)

≡ (¬A1∨¬A3∨¬A4)

∨ ((A5∨A2)∧ (A6∨A2)∧ (A7∨A2))

≡ (¬A1∨A2∨¬A3∨¬A4∨A5)∧
(¬A1∨A2∨¬A3∨¬A4∨A6)∧
(¬A1∨A2∨¬A3∨¬A4∨A7) ,

K4 ≡ ¬A3∨¬A4∨A7,

¬c
′ ≡ ¬(¬(A1∧A2∧A3)∨ (A6∧A7))

≡ A1∧A2∧A3∧ (¬A6∨¬A7) .

Let M be the set of all conjunctive terms that appear
in conjunctive normal forms of the formulas: K1, K2,
K3, K4 and ¬c

′
. Therefore, the elements of the set M

are: ¬A1∨¬A2∨A3, ¬A1∨¬A2∨A4, ¬A2∨¬A3∨A6,
¬A1 ∨A2 ∨¬A3 ∨¬A4 ∨A5, ¬A1 ∨A2 ∨¬A3 ∨¬A4 ∨
A6, ¬A1 ∨A2 ∨¬A3 ∨¬A4 ∨A7, ¬A3 ∨¬A4 ∨A7, A1,
A2, A3 and ¬A6∨¬A7.

Applying resolution principle to the set M, we ob-
tain:

1) ¬A1∨¬A2∨A4 (input)

2) A1 (input)

3) ¬A2∨A4 (resolution from 1) and 2))

4) A2 (input)

5) A4 (resolvent from 3) and 4))

6) ¬A2∨¬A3∨A6 (input)

7) ¬A3∨A6 (resolvent from 4) and 6))

8) A3 (input)

9) A6 (resolvent from 7) and 8))

10) ¬A3∨¬A4∨A7 (input)

11) ¬A4∨A7 (resolvent from 8) and 10))

12) A7 (resolvent from 5) and 11))

13) ¬A6∨¬A7 (input)

14) ¬A7 (resolvent from 9) and 13))

Resolving 12) and 14), we conclude that the formu-
las: K1, K2, K3, K4 and ¬c

′
are not simultaneously

valid. In other words, the assertion (b) of Corollary
8 holds true. Now, by the assertion (a) of Corollary

8, A1A2A3
min(θ1,θ2,θ3,θ4)→ F A6A7 follows from the given

dependences. ut
Thus, Corollary 8 gives us an opportunity to avoid

the disadvantages of the classical approach to these
problems (disadvantages like: number of inference
rules, matter of their choice, uncertainty of outcome,
etc.) and to position ourselves into equivalent, fuzzy
logic environment, where our steps can be fully auto-
mated.

In view of Example 1 (proof II), it is clear that
the translation of fuzzy dependences to fuzzy formu-
las, finding of conjunctive normal forms of fuzzy for-
mulas, an application of resolution principle represent
these automated steps.

Once, a refutation within resolution principle is
achieved, our task is done.

Note that the results derived in this paper do not
offer a code of an application that would practically
support our work. Such automatization has yet to be
done.
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Also, note that the fuzzy logic operators applied
in this paper are fixed. It would be worth to determine
if the set of applicable operators to our results could be
widen to include not only the operators applied here
and in [9], [10].

Finally, we point out that our research in itself is
original in many aspects. Hence, the contribution of
the used literature to the results obtained in the paper
is only limited and partial. However, we highlight the
following:

Our background and preliminary material is
mainly founded on the similarity-based fuzzy rela-
tional database approach [18]. It assumes the use of
fuzzy relation instances, similarity relations, confor-
mances, the formal definitions of fuzzy functional and
fuzzy multivalued dependences, linguistic strengths
and limit strengths of dependences, inference rules,
closures, dependency basis, soundness and complete-
ness. [18], however, is based on [4]-[6]. Some of
the classical relational database model [8] definitions,
we adopt from [7] (entities for example, attributes, at-
tribute values, tuples, etc.). The definition of active
fuzzy multivalued dependency fulfillment is our own.
It plays the key role in a large part of the paper, espe-
cially in the proofs of the main results of Sections 4
and 5. Motivated by the satisfy (falsify) interpretation
definition [11], we introduce the valuation definition,
i.e., the valuation joined to some two-element, fuzzy
relation instance. This definition plays the key role in
the proof of Theorem 7, Section 5 of the paper (see the
corresponding proof [9] in the case of Yager’s fuzzy
implication operator and the corresponding proof [10]
in the case of Reichenbach’s fuzzy implication oper-
ator). The references [3] and [17] provides detailed
study on fuzzy implication operators. The remaining
references deal with various types of fuzzy implica-
tion operators and are of secondary importance to this
paper.
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