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Abstract: We study cyclic personnel scheduling with double shift requirement under demand uncer-
tainty. The problem is formulated as a two-stage stochastic integer program with integer recourse. Solv-
ing it with commercial software CPLEX takes extended period of time. We explore an exact approach
based on Benders decomposition technique and compare its performance to a heuristics approach based
on genetic algorithm and a mip approach , solving the original problem by a commercial mip solver. A
special solution method allow us to obtain optimal solutions to subproblems efficiently. This method are
applicable to both exact and heuristic approaches which significantly accelerate overall solution process.
Numerical results illustrate that the proposed approach, exact approach based on Benders decomposi-
tion technique, outperform the heuristics approach based on genetic algorithm and the CPLEX mip
solver in all 16 instances.
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1 Introduction

Labor cost constitutes a major cost especially in
service sectors such as health care, call centers,
and toll booths. Businesses rely heavily on work-
force management which plays a crucial role in
determining success and survivability. Person-
nel scheduling is used to fill work periods with
agents according to the demand. Other con-
straints or requirements could make the prob-
lems more complicate and cause difficulty to the
solution process. Effective personnel scheduling
methods can lead to significant reduction of la-
bor cost.

Each time period requires certain amount of
working agents. This demand can be predicted
ahead of time. However, it is known without ab-
solute certainty in many cases. The demand is
confirmed just in a short time ahead of each pe-
riod. To maintain quality of service after the ac-
tual demand is realized, the manager will need
to hire extra workers in case of a demand short-
age or cancel some assigned workers if they are
oversupplied.

We divide up a time horizon in considera-
tion into several time periods. This time hori-

zon can be a day, a week, a month, or any other
period of time. In many cases, the time horizon
can be viewed as a cycle, meaning that the pe-
riod after the last period can be considered as the
first period. In such situations, actions during the
last few periods may influence or have an effect
on the first few periods. For example, if work-
ing a double shift is required and a worker starts
working on the last period, he or she must work
on the first period. Since our time horizon con-
sists of one cycle, first period of the next cycle is
considered the same as first period of the current
cycle. Much research has been done in this con-
text or similar situations.

Reference [5] provides a unified formula-
tion for both deterministic and stochastic labor
scheduling problems and solves them by a dis-
tributed genetic algorithm. This work influences
us to compare our proposed algorithm to a ge-
netic algorithm, for which research and examples
can be found in [1] and [2]. Reference [3] inves-
tigates deterministic cyclic personnel scheduling
of nurses using a Lagrangian-based heuristic. In
[4], a real world scheduling problem of work-
force planning at USPS processing and distribu-
tion centers is modeled and solved as stochas-
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tic integer program yielding significant saving.
Nurse scheduling from recorded data can be
found in [6], [8], and [9]. In [11], personnel
scheduling is modeled as MIP and solved by
branch-and-price and heuristic algorithms. In
[10], employee scheduling system is modeled for
retail outlets and solve the problems using MIP.
In [7], mixed-integer rounding inequalities are
used to enhanced Benders decomposition tech-
nique to solve multiclass service system staffing
and scheduling with arrival rate uncertainty. In
[12] multi-cut L-shaped method is applied as
their solution approach to solve multi-activity
tour scheduling problem under demand uncer-
tainty. All of the work mentioned above have
similar stochastic personnel scheduling structure
as our work in this paper. However, cyclic nature
of the planning horizon and double shift require-
ments are not both considered together.

In this paper, we work on a problem of per-
sonnel scheduling of a system with uncertain de-
mand where time horizon is considered as a cy-
cle and double shift requirements are imposed.
The manager may choose to let go some workers
if a shift is overstaffed or must hire more work-
ers to cover the shift in case of demand short-
age. We formulate the problem as two-stage
stochastic mixed integer programming and solve
to minimize total operating cost. To our best
knowledge, this problem structure and assump-
tions have never been considered in the litera-
ture. We test our proposed algorithm and com-
pare it with genetic algorithm and CPLEX mip
solver Our computational results show that our
approach can speed up optimization process, in
many instances, by more than 30 times compar-
ing to solving the problems by the CPLEX MIP
solver. When compare our proposed algorithm
to genetic algorithm, our proposed algorithm not
only have an ability to provide optimality gap
and optimality proof but also find solutions of
good quality faster than genetic algorithm in all
cases.

2 Model Description and Formu-
lation

Our cyclic scheduling horizon consists of N time
periods. Quantity of service demanded for each
period is a random variable with discrete prob-
ability distribution. Assuming all the workers’
skill are comparable and employees must work
two shifts back to back. This double shift require-
ment applies to initial scheduling as well as extra

worker hiring and scheduling cancellation. The
double shift requirement can be considered as a
job condition or an agreement between employer
and employee union. The objective is to mini-
mize expected operating cost consisting of labor-
ing cost plus expected hiring cost of extra work-
ers when labor is short less expected shift can-
celing cost of surplus workers. In [5], a general
model for stochastic personnel scheduling prob-
lems in extensive form is given. The followings
are parameters for the model.

The model is given as the following.

min
E

∑
e=1

Ne

∑
j=1

CjXj

+
T

∑
t=1

Wt

∑
k=1

ρtk(Stkd−tk −Otkd+tk) (1a)

s.t.
E

∑
e=1

Ne

∑
j=1

aijXj + d+tk − d−tk = Rtk;

k = 1, · · · , Wt, ∀t, (1b)
d−t1 = 0, ∀t, (1c)

∑
j∈Ee

Xj ≤
E

∑
e=1

πe

Ne

∑
j=1

Xj∀e, (1d)

Xj ∈ {0, 1, 2, . . . }, (1e)

d−tk, d+tk ≥ 0; pk = 2, · · · , Wt; ∀t. (1f)

The objective (1a) is to minimize total oper-
ating cost, which includes hiring costs plus ex-
pected shortage costs level as less the expected
benefit of oversupplied staff. Constraints (1b) en-
sures quality of service by maintaining the staff
level at service demand level k. Constraints (1c)
restricts the minimum number of workers. Con-
straints (1d) forces the number of employees of
a certain type to be within some fraction of the
total workers.

Mathematical model representing our prob-
lem can be derived from above model. In our
model, since we assume that all workers are
comparable, constraints (1d) are dropped. Con-
straints (1c) are also dropped since we will ex-
plicitly state the required number of workers for
each scenario. On the decision variables, the
number of employees assigned to schedule j, Xj,
can be rewritten as xi representing the number
of employees assigned to start working on pe-
riod i. Similarly, d+tk can be rewritten as uω

i repre-
senting the number of extra employees who are
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Table 1: Parameters for a general model for
stochastic personnel scheduling problems

Parameter Description
M The number of difference em-

ployee types, indexed e =
1, . . . , M

Ee The set of all possible schedules
for employee type e for which
Ei ∩ Ej = ∅ for i , j

Ne The total number of possi-
ble scheduling patterns for
employee type e

pe The average productivity of type
e employees

πe Type e employee maximum pro-
portion

Cj The wages of one employee as-
signed to schedule j when j ∈ Ee
for some e

T The number of periods in the
planning horizon, indexed t

atj pe if period t is in schedule j or 0
otherwise

Wt The range of possible labor re-
quirements needed for period t

Rtk The quantity of labor required
for satisfactory service during
period t for service demand at
level k, which is a strictly in-
creasing function of k for each t

ρtk The probability that the demand
for labor will be at level k during
period t

Otk Economic benefit per unit for ex-
cess staff during period t when
service demand is at level k

Stk Unit cost of labor shortage dur-
ing period t when service de-
mand is at level k

Decision
variables
Xj The number of employees as-

signed to schedule j
d+tk The labor surplus for period t if

demand is at level k
d−tk The labor shortage for period t if

demand id at level k2

assigned to start working on period i to cover
demand shortage and d−tk can be rewritten as vω

i
representing the number of employees assigned
to start working on period i whose shift is can-
celed due to demand oversupplied. This results
in the following model.

min
x,u,v ∑

i∈I
cixi + ∑

i∈I
∑

ω∈Ω
(gω

i uω
i − hω

i vω
i ) (2a)

s.t. xi + xi+1 + uω
i + uω

i+1

− vω
i − vω

i+1 = dω
i+1, ω ∈ Ω

, for i ≤ N − 1 (2b)
xN + x1 + uω

N + uω
1

− vω
N − vω

1 = dω
1 , ω ∈ Ω (2c)

∀i ∈ I, ∀ω ∈ Ω, xi, uω
i , vω

i ∈N. (2d)

We will show efficient algorithm to solve
subproblems of (2) when some additional re-
quirements are imposed. This includes the num-
ber of total time period being odd and all possi-
ble demand being even. The model can be shown
here.

min
x,u,v ∑

i∈I
cixi + ∑

i∈I
∑

ω∈Ω
(gω

i uω
i − hω

i vω
i ) (3a)

s.t. xi + xi+1 + uω
i + uω

i+1

− vω
i − vω

i+1 = dω
i+1,

ω ∈ Ω, for i ≤ N − 1 (3b)
xN + x1 + uω

N + uω
1

− vω
N − vω

1 = dω
1 , ω ∈ Ω (3c)

N is odd, ∀i ∈ I, ∀ω ∈ Ω
, xi, uω

i , vω
i ∈N, dω

i ∈ 2N. (3d)

For the rest of this work, we assume that the
total number of time period N is odd. In the next
section, we will show how to efficiently solve the
problem.

3 Research Methodology
3.1 Benders Decomposition Algorithm
We would like to apply Benders decomposition
to solve the problem. To fully take advantage of
Benders decomposition methodology, we exam-
ine a special case of the above model. The fol-
lowing proposition considers (2) when all possi-
ble demands are even numbers.

Proposition 1. Suppose that problem (3) is feasible
then its RMIP has an integer optimal solution.
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Proof. The coefficient matrix of (3b)-(3c) has the
following pattern.


A A −A 0 0 . . . 0 0
A 0 0 A −A . . . 0 0
...

...
...

...
...

. . .
...

...
A 0 0 0 0 . . . A −A


where A has the following form.

A =



1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
1 0 0 0 . . . 0 1.


When consider matrices as column vectors, they
have a property called miltilinearity [16]. The de-
terminant, as a function of the column vectors, is
linear. That is,

det
(

a b + b′

c d + d′

)
= det

(
a b
c d

)
+ det

(
a b′

c d′

)
(4)

Let A1 and A2 be matrices such that all of
their columns but the last one are the same as
those of A and last column of A1 plus last column
of A2 equals last column of A. Then, by multilin-
earity property (4) we have the following.

det
(

A
)
= det

(
A1
)
+ det

(
A2
)

The following can be A1 and A2.

A1 =



1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
0 0 0 0 . . . 0 1



A2 =



1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
1 0 0 0 . . . 0 0


The remaining of the proof is to show that A1

and A2 are TU matrices. We achieve that by di-
viding even rows of A1 into one set and the rest

into the other set. Similarly, we divide all even
rows of A2 plus the last row into one set and the
rest into the other set. This shows that A1 and A2
are TU matrices.
Proof of the claim: let B be the optimal basis of
(2). From Crammer’s rule, B−1 = B∗/det(B),
where B∗ is adjoint of B. Since B is integral, RHS
is assumed to be even, and det(B) is at most two,
(B∗/det(B)) ∗ RHS is integral.

�

Proposition 1 allows us to solve MIP (3) by
solving its integral relaxation as the following.

min
x,u,v ∑

i∈I
cixi + ∑

i∈I
∑

ω∈Ω
(gω

i uω
i − hω

i vω
i ) (5a)

s.t. xi + xi+1 + uω
i + uω

i+1

−vω
i − vω

i+1 = dω
i+1, i ≤ N − 1, (5b)

xN + x1 + uω
N + uω

1

−vω
N − vω

1 = dω
1 , (5c)

x, u, v ≥ 0, ∀ω ∈ Ω, dω
i ∈ 2N. (5d)

Hence, we can solve our original integer pro-
gramming problem by linear programming. This
is essentially what commercial software CPLEX
does. Its optimization process only provides one
integral solution which is the optimal solution to
the problem.
Given x∗ ≥ 0, (5) becomes

min
u,v ∑

i∈I
cix∗i + ∑

i∈I
∑

ω∈Ω
(gω

i uω
i − hω

i vω
i ) (6a)

s.t. x∗i + x∗i+1 + uω
i + uω

i+1

−vω
i − vω

i+1 = dω
i+1, i ≤ N − 1, (6b)

x∗N + x∗1 + uω
N + uω

1

−vω
N − vω

1 = dω
1 , (6c)

u, v ≥ 0, ∀ω ∈ Ω. (6d)

To construct a linear programming duality of
(6), we associate each of its constraint with a dual
variable yω

i and obtain the following.

max
y ∑

i∈I
∑

ω∈Ω
(dω

i+1 − x∗i − x∗i+1)y
ω
i (7a)

s.t. yω
i + yω

i+1 ≤ gω
i+1, i ≤ N − 1, (7b)

−yω
i − yω

i+1 ≤ −hω
i+1,

i ≤ N − 1, (7c)
yω

N + yω
1 ≤ gω

1 , (7d)
−yω

N − yω
1 ≤ −hω

1 , (7e)
yω

i urs, ∀ω ∈ Ω. (7f)
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Problem (7) can be rearranged as

max
y ∑

i∈I
∑

ω∈Ω
(dω

i+1 − x∗i − x∗i+1)y
ω
i (8a)

s.t. hω
i+1 ≤ yω

i + yω
i+1 ≤ gω

i+1,
i ≤ N − 1, (8b)

hω
1 ≤ yω

N + yω
1 ≤ gω

1 , (8c)
yω

i urs, ∀ω ∈ Ω. (8d)

To simplify the problem, coefficients of yω
i in (8)

can be renamed as d̃ω
i , i.e.,

d̃ω
i B dω

i+1 − x∗i − x∗i+1. (9)

Therefore, a more compact form of (8) is

max
y ∑

i∈I
∑

ω∈Ω
d̃ω

i yω
i (10a)

s.t. hω
i+1 ≤ yω

i + yω
i+1 ≤ gω

i+1,
i ≤ N − 1, (10b)

hω
1 ≤ yω

N + yω
1 ≤ gω

1 , (10c)
yω

i urs, ∀ω ∈ Ω. (10d)

To apply Benders decomposition technique to
solve the original problem (2), a quick algorithm
to find an optimal solution to (10) would be ben-
eficial. To develop such an algorithm, we refor-
mulate (10) using new variables.

αω
1 B yω

N + yω
1 , (11a)

αω
i+1 B yω

i + yω
i+1,

i ≤ N − 1. (11b)

Also, let

kω
i B (d̃ω

i + ∑
j≥i+1

(−1)j+i+1d̃ω
j +

∑
j≤i−1

(−1)j+id̃ω
j )/2. (12)

Putting this together, we have the following
problem equivalent to (8)

max
α

∑
i∈I

∑
ω∈Ω

kω
i αω

i (13a)

s.t. hω
i ≤ αω

i ≤ gω
i ,

∀i ∈ I, ω ∈ Ω (13b)

Solution to (13) can be obtained from the fol-
lowing proposition.

Proposition 2.

(αω
i )
∗ =

{
gω

i , if kω
i > 0

hω
i , otherwise.

(14)

is an optimal solution to (13).

Proof. From (13), we associate constraints αω
i ≤

gω
i with βω

i and constraints hω
i ≤ αω

i with β̄ω
i .

The duality is as follow.

min
β,β̄

∑
i∈I

∑
ω∈Ω
−hω

i β̄ω
i + gω

i βω
i (15a)

s.t. βω
i − β̄ω

i = kω
i , ∀i ∈ I, ω ∈ Ω (15b)

β̄ω
i , βω

i ≥ 0, ∀i ∈ I, ω ∈ Ω. (15c)

We can check that the following is an optimal
solution of (15).

(βω
i )
∗ =

{
kω

i , if kω
i > 0

0 , otherwise
(16)

and

(β̄ω
i )
∗ =

{
−kω

i , if kω
i > 0

0 , otherwise
(17)

This completes the proof as we check that all
conditions of strong duality theorem are satis-
fied. �

Proposition 3. (8) and (13) are equivalent. Also, an
optimal solution to (8) is

(yω
i )
∗ = [(αω

i )
∗ + ∑

j≥i+1
(−1)j+i(αω

j )
∗

+ ∑
j≤i−1

(−1)j+i+1(αω
j )
∗]/2. (18)

Proof. To show that (8) and (13) are equivalent,
we only need to show that (12) is a correct trans-
formation of (8) to (13). We can show (18) by
mathematical manipulation. �

Given Q as the set of all extreme points ỹ of
(7), we can reformulate problem (5) as:

min z + ∑
i∈I

cixi (19a)

s.t. z ≥ (d− Ax)ᵀỹ (19b)
ỹ ∈ Q, x ≥ 0 (19c)
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, where d− Ax = [dω
i+1 − xi − xi+1] and ỹ =

[yω
i ]. The constraint

z ≥ (d− Ax)ᵀy∗ (20)

for a given y∗ is referred to as a Benders’ Cut [17].
Let Q′ ⊂ Q, then the following is a relaxation

of (19):

min z + ∑
i∈I

cixi (21a)

s.t. z ≥ (d− Ax)ᵀỹ (21b)
ỹ ∈ Q′, x ≥ 0. (21c)

Using above transformation of original prob-
lem (5), we apply Bendersdecomposition algo-
rithm to our problem as follows.

BendersDecomposition Iterations

Initialization:

1. Let x∗ in (5) be some positive number.

2. Set UB = ∞ and LB = −∞.

3. Let Q′ = ∅.

Step 1:

1. Obtain optimal solution y∗ to (8) from
proposition 3.

2. Update the UB yielded by (8).

3. Add y∗ to Q′ (hence, add a Benders cut, to
(21)).

Step 2:

1. Solve (21) for x∗.

2. Update the LB.

• If |UB− LB| < ε then exit and declare
x∗ as an optimal solution to (5).

• If the number of iteration exceeds iter-
ation limit then exit and declare x∗ as a
feasible solution to (5), otherwise, go to
step 1.

3.2 Genetic Algorithm (GA)
Performance of our exact method, Bendersde-
composition approach, is tested in comparison
to a heuristic method. A genetic algorithm cho-
sen as an inexact method to solve our stochas-
tic labor scheduling problems was successfully
demonstrated in [5]. In that work, the author
apply genetic algorithm to solve stochastic labor
scheduling problems on parallel computer net-
work. The process is called distributed genetic
algorithm (DGA). We make a small change to
their procedure to solve our problem on a single
computer.

One of the most crucial parts of genetic al-
gorithm is the design of fitness function which
distinguishes good solutions from bad ones and
ranks all solutions by their quality. Since, the
objective of our personnel scheduling problem
is to minimize total labor cost, the best fitness
function for our genetic algorithm is inverse of
this objective function. A fitter candidate, which
has a higher fitness function value, corresponds
to a personnel schedule with lower total labor
cost. However, given feasible first stage solu-
tion xi, finding its complement, the second stage
solution, is normally computationally expensive.
This can be done by solving the MIP to optimal-
ity. Fortunately, our work of Benders decomposi-
tion method suggests a viable alternative. Given
xi, we can find the second stage solution and
and its objective function from (18) efficiently.
Our genetic algorithm makes up of the following
components.

1. Population
Initial small subset called deme of popula-
tion are generated with values nearby the
demand. Each individual represent first
stage solution, a vector of positive integers
xi, to the problem. This solution has a ring
configuration as our time horizon is consid-
ered cyclic. We create left and right demes
from this initial solution as xL

i = xi+1 and
xR

i = xi−1, respectively. Each iteration of
the genetic algorithm maintains these three
demes, or a neighborhood, with individuals
evolve over time. One iteration of GA pro-
vides a generation of the population.

2. Fitness function and hill climbing
Fitness function is the inverse of the objec-
tive value of each individual. The objective
value is obtained from (8) for each solution.
Hill climbing process, adapted from [14] and
[15] by local search technique, is applied to
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40% of new solutions at the beginning of
each iteration to refine solution quality. The
change to each xi of ±1 is applied if the new
solution is fitter.

3. Reproduction selection
This process involves chosen individuals
only within each deme called a mating pool.
An application of elitist [13] and biased sam-
ple will be applied to form a mating pool by
ranking individuals in the ascending man-
ner with equally spaced score of .8 to 1.2 ac-
cording to their fitness score, selecting the
ones with scores at least one to put in the
mating pool then reduce their scores by one,
and then normalized remaining scores to
use them as probability to fill in the remain-
ing spots in the mating pool.

4. Crossover and mutation
Randomly paired up two individuals in
each mating pool proceed crossover process.
With 0.7 coefficient for crossover, 70% of all
chosen pairs undergo crossover operation
while the other 30% are clones , remaining
untouched during this process. Crossover
process randomly picks starting and end-
ing points for gene to switch. This corre-
sponds to Xi, Xi+1, · · ·Xi+k for a length k
crossover genes which can possibly rollover
to X1 as our solution is cyclic. In this length
k genes, one gene is randomly pick and mu-
tated with mutation coefficient of 0.2, or 20%
chance, to ensure population diversity. If the
new best fit solution is less fit than the for-
mer best fit, replace the new least fit individ-
ual with the former best fit individual.

5. Interdeme migration
At the end of each iteration of evolving by
this genetic algorithm, the least fit individ-
ual within each deme is replaced by the
best fit individual from the other two demes
within the neighborhood, if the fitness value
is better.

We apply the genetic algorithm described above
to initial population to evolve for ten genera-
tions.

4 Numerical Results
We generate test instances by generating param-
eters gω

i , hω
i , and dω

i . Employee wages per shift
are assumed to be equal for everyone. Instance

size suitable for our proposed algorithm and the
computational power is N = 11. Each instance
differs by demands and demand variations. The
demand variations define the number of possi-
ble events |Ω| for our stochastic model. We im-
plemented all algorithms in GAMS [19] using
CPLEX solver [18] on a Windows 10 Pro personal
computer with 2.20GHz Intel Core i5 CPUs and
12 GB memory.

Table 2 shows size of our test instances in
term of number of variables and number of con-
straints. Table 3 shows number of Benders itera-
tions needed to achieve optimal solution.

Table 2: Instance size as number of columns (#
Variables)and rows (# Constraints)

Instance # Constraints # Variables
002 1,368,576 2,737,163
003 1,520,640 3,041,291
004 1,710,720 3,421,451
005 684,288 1,368,587
006 1,026,432 2,052,875
007 4,105,728 8,211,467
008 2,737,152 5,474,315
009 1,425,600 2,851,211
010a 2,138,400 4,276,811
010b 2,138,400 4,276,811
011 2,027,520 4,055,051
012 2,376,000 4,752,011
013 1,013,760 2,027,531
014 2,433,024 4,866,059
015 912,384 1,824,779
016 2,566,080 5,132,171

Tables 4 and 5 show comparison of solution
time between our proposed algorithm, genetic
algorithm, and CPLEX MIP solver. It is clear that
on all instances, solving the problem by MIP take
significantly longer than solving the problem by
our proposed algorithm. Our genetic algorithm,
which consists of evolving for ten generations,
takes about three time longer than the proposed
algorithm. Optimal solutions are found on 10 out
of 16 tested problems. The other 6 problems have
optimality gap of less than 0.2%. In all 16 cases
as shown in table 4, the proposed algorithm per-
forms better than genetic algorithm.

These four instances represent similar trends
of the performance of all of our test instances in
figures 1, 2, 3, and 4. These figures show solution
quality of genetic algorithm of each generation
for a total of ten generations.

We can see that the genetic algorithm per-
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Table 3: Problem size as number of demand sce-
nario (# events) comparing to number of Bender-
siterations needed to achieve an optimal solution

Instance # events (|Ω|) # BendersIterations
002 124,416 96
003 138,240 111
004 155,520 115
005 62,208 94
006 93,312 110
007 373,248 96
008 248,832 109
009 129,600 104
010a 194,400 90
010b 194,400 92
011 184,320 101
012 216,000 104
013 92,160 91
014 221,184 106
015 82,944 107
016 233,280 104

Table 4: Comparison of solution time between
our proposed algorithm and Genetic Algorithm

Instance Time on Proposed Time on GA
Algorithm (hh:mm:ss) (hh:mm:ss)

002 1:03:51 3:37:55
003 1:31:41 3:51:57*
004 1:51:22 4:44:40
005 0:30:54 1:55:25
006 1:00:34 2:21:22
007 5:54:18 14:29:22
008 2:42:13 8:23:21*
009 1:16:48 4:14:04
010a 1:27:29 6:49:55*
010b 1:30:18 6:50:27*
011 1:42:35 5:20:29
012 2:06:39 7:26:53*
013 0:42:01 2:48:05
014 2:13:23 3:59:36
015 0:50:38 2:15:22*
016 2:17:01 6:25:54
Symbol * indicates that solution is not optimal but
is within 0.2% optimality gap.

Table 5: Comparison of solution time between
our proposed algorithm and CPLEX MIP solver

Instance Time on Proposed Time on MIP
Algorithm (hh:mm:ss) (hh:mm:ss)

002 1:03:51 36:28:45
003 1:31:41 48:00:36
004 1:51:22 61:35:45
005 0:30:54 7:05:49
006 1:00:34 23:48:23
007 5:54:18 -
008 2:42:13 -
009 1:16:48 38:05:49
010a 1:27:29 -
010b 1:30:18 -
011 1:42:35 -
012 2:06:39 -
013 0:42:01 18:20:27
014 2:13:23 -
015 0:50:38 14:17:14
016 2:17:01 -
Symbol - indicates that solution time for the
method is more than 72 hours.
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Figure 1: Performance comparison between ge-
netic algorithm (GA) and proposed algorithm,
Benders decomposition based algorithm (BD),
on instance 005

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Pattarapong Pakpoom, Peerayuth Charnsethikul

E-ISSN: 2224-2856 282 Volume 13, 2018



0 1 2 3 4 5 6 7 8

910

900

890

880

870

860

Time [·103 seconds]

O
bj

ec
ti

ve
fu

nc
ti

on
va

lu
e

Instance 015

GA
BD

Figure 2: Performance comparison between GA
and proposed algorithm on instance 015
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Figure 3: Performance comparison between GA
and proposed algorithm on instance 013

0 1 2 3 4 5 6 7 8

910

900

890

880

870

860

Time [·103 seconds]

O
bj

ec
ti

ve
fu

nc
ti

on
va

lu
e

Instance 006

GA
BD

Figure 4: Performance comparison between GA
and proposed algorithm on instance 006

forms worse than our proposed Bendersdecom-
position algorithm. However, all problems can
achieve optimal solutions or solutions within
0.2% optimality gap tolerance in ten generations.

5 Conclusions And Discussions
Our methods of solving cyclic personnel
scheduling with uncertain demand and double
shift requirements combine special solution
method with Benders decomposition. The
result is a quick and exact solution algorithm
for our test instances which performs much
better in all tested instances when we compare
this to the CPLEX MIP solver. The proposed
algorithm also outperforms genetic algorithm.
However, the genetic algorithm has potential in
parallel optimization application which should
be examined in the near future especially for
other cases or problems with less restrictions.
Since our test instances only cover cases with
certain assumptions, all other cases could be
investigated in upcoming research.

References:

[1] N.E. Mastorakis, Unstable Ordinary differ-
ential equations: Solution via genetic algo-
rithms and the method of Nelder-Mead,
Proc. WSEAS Int. Conf. Sys. Thorem. Sci. Comp,
2006, pp. 1–6.

[2] N.E. Mastorakis, Solving non-linear
equations via genetic algorithms,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Pattarapong Pakpoom, Peerayuth Charnsethikul

E-ISSN: 2224-2856 283 Volume 13, 2018



Proc. WSEAS Int. Conf. Evol. Comp., 2005,
pp. 24–28.

[3] J.F. Bard and H.W. Purnomo, Cyclic
preference scheduling of nurses using a
Lagrangian-based heuristic, J. Sche. 10(1),
2007, pp. 5–23.

[4] J.F. Bard, D.P. Morton and Y.M. Wang,
Workforce planning at USPS mail process-
ing and distribution centers using stochastic
optimization, Anal. Oper. Res. 155(1), 2007,
pp. 51–78.

[5] F.F. Easton and N. Mansour, A dis-
tributed genetic algorithm for deterministic
and stochastic labor scheduling problems,
Eu. J. Oper. Res. 118(3), 1999, pp. 505–523.

[6] P. Punnakitikashem, J.M. Rosenberber, and
D.F. Buckley-Behan, A stochastic program-
ming approach for integrated nurse staffing
and assignment, IIE Tran. 45(10), 2013,
pp. 1059–1076.

[7] M. Bodur and J.R. Luedtke, Mixed-integer
rounding enhanced benders decomposition
for multiclass service-system staffing and
scheduling with arrival rate uncertainty,
Man. Sci. 63(7), 2016, pp. 2073–2091.

[8] H. Huang, W. Lin, Z. Lin, Z. Hao and
A. Lim, An evolutionary algorithm based
on constraint set partitioning for nurse ros-
tering problems, Neur. Comp. App. 25(3-
4)2014, pp. 703–715.

[9] K. Kim and S. Mehrotra, A two-stage
stochastic integer programming approach
to integrated staffing and scheduling
with application to nurse management,
Oper. Res. 63(6), 2015, pp. 1431–1451.

[10] A. Parisio and C.N Jones, A two-stage
stochastic programming approach to em-
ployee scheduling in retail outlets with un-
certain demand, Omeg, 53, 2015, pp. 97–103.

[11] M.I. Restrepo, L. Lozano and A.L. Medaglia,
Constrained network-based column gener-
ation for the multi-activity shift schedul-
ing problem, Int. J. Pro. Econ 140(1), 2012,
pp. 466–472.

[12] M.I. Restrepo, B. Gendron and
L.M. Rousseau, A two-stage stochastic
programming approach for multi-activity
tour scheduling, Eu. J. Oper. Res. 262(2),
2017, pp. 620–635.

[13] J.E. Baker, Adaptive selection methods for
genetic algorithms, Proc. Int. Con. Gen. Alg.,
Hillsdale, New–Jersey, 1985, pp. 101–111.

[14] L. Davis, Handbook of genetic algorithms,
CUMINCAD, 1991.

[15] C.L. Huntley and D.E. Brown, A paral-
lel heuristic for quadratic assignment prob-
lems, Comp. Oper. Res. Elsevier, 18(3), 1991,
pp. 275–289.

[16] P.B. Garrett, Abstract algebra, CRC
Press,2007.

[17] J.F. Benders, Partitioning procedures for
solving mixed-variables programming
problems, Num Math. Springer, 4(1), 1962,
pp. 238–252.

[18] IBM ILOG, CPLEX Release 12.6.3.0, 2016.
[19] GAMS Development Corporation, General

Algebraic Modeling System (GAMS) Re-
lease 24.7.4, Washington, DC, 2016.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Pattarapong Pakpoom, Peerayuth Charnsethikul

E-ISSN: 2224-2856 284 Volume 13, 2018




