Coupled FCT-HP for Analytical Solutions of the Generalized Time-fractional Newell-Whitehead-Segel Equation

S. O. EDEKI O. P. OGUNDILE
Department of Mathematics Department of Mathematics
Covenant University, Canaanland, Ota Covenant University, Canaanland, Ota
NIGERIA NIGERIA
soedeki@yahoo.com opeyemiogundile@yahoo.com

B. OSOBA G. A. ADEYEMI
Department of Physical Sciences Department of Civil Engineering
Bells University of Technology, Ota Covenant University, Canaanland, Ota
NIGERIA NIGERIA
benardomth@gmail.com gideon.adewale@cu.edu.ng

F. O. EGARA S. A. EJOH
Department of Science Education Department of Biological Sciences
University of Nigeria, Nsukka Covenant University, Canaanland, Ota
NIGERIA NIGERIA
felix.egara@unn.edu.ng samuel.ejoh@covenantuniversity.edu.ng

Abstract: This paper considers the generalized form of the time-fractional Newell-Whitehead-Segel model (TFNWSM) with regard to exact solutions via the application of Fractional Complex Transform (FCT) coupled with He’s polynomials method of solution. This is applied to two forms of the TFNWSM viz: nonlinear and linear forms of the time-fractional NWSE equation whose derivatives are based on Jumarie’s sense. The results guarantee the reliability and efficiency of the proposed method with less computation time while still maintaining high level of accuracy.

Key-Words: Fractional calculus, Fractional complex transform, Adomian Decomposition method, Analytical solution; He’s polynomials.

1 Introduction
Fractional calculus (FC) as a branch of applied mathematics deals with different possibilities of how the powers of operators being it differential or integral are defined in terms of real number or complex number. It generalizes the classical corresponding differential calculus of integer orders. Mathematical modelling in most cases, involves partial differential equations (PDEs) of nonlinear and/or linear forms. Meanwhile, obtaining solutions to these model-equations has been a great concern. Hence, the adoption and construction of semi-analytical, numerical methods, and their modified forms [1-14]. Therefore, this paper will be focusing on an effective coupled method applied to the time-fractional Newell-Whitehead-Segel equation of the form:

\[
\begin{align*}
\frac{\partial^\alpha w(x,t)}{\partial x^\alpha} &= k \frac{\partial^2 w(x,t)}{\partial x^2} + aw(x,t) - bw^\alpha(x,t), \\
w(x,0) &= f(x), \quad \alpha \in (0,1]
\end{align*}
\] (1)

where \(a, b \in \mathbb{R} \), and \(k, j \in \mathbb{Z}^+\).

Many researchers have considered solving (1) at \(\alpha = 1\) via some solution techniques [15-18]. The aim of this paper is to obtain the solution of the time-fractional NWSE via the application of FCT coupled with He’s polynomial solution method [19-24]. This coupled method involves less computational time and work.

2 Jumarie’s Fractional Derivative
Jumarie’s Fractional Derivative (JFD) [25, 26] is a modified form of the Riemann-Liouville derivatives.
Hence, the definition of JFD and its basic properties as follows:

Let \(h(v) \) be a continuous real function of \(v \) (not necessarily differentiable), and \(D_v^\alpha h = \frac{\partial^\alpha}{\partial v^\alpha} h \) denoting JFD of \(h \), of order \(\alpha \) w.r.t. \(v \). Then,

\[
\begin{align*}
D_v^\alpha h &= \left\{ \begin{array}{l}
\frac{1}{\Gamma(-\alpha)} \int_0^v (v-\lambda)^{-\alpha-1} \left(h(\lambda) - h(0) \right) d\lambda, \\
\alpha \in (-\infty, 0)
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
&= \left\{ \begin{array}{l}
\frac{1}{\Gamma(1-\alpha)} \int_0^v (v-\lambda)^{-(\alpha-1)} \left(h(\lambda) - h(0) \right) d\lambda, \\
\alpha \in (0,1)
\end{array} \right.
\end{align*}
\]

\[
\left(h^{(\alpha-\alpha)}(v) \right)^{(m)}, \ \alpha \in [m,m+1), \ m \geq 1
\]

(2)

where \(\Gamma(\cdot) \) denotes a gamma function. As summarized in [25], the basic properties of JFD are as stated via P1-P5:

P1: \(D_v^\alpha k = 0, \ \alpha > 0 \),
P2: \(D_v^\alpha (kh(v)) = kD_v^\alpha h(v), \ \alpha > 0 \),
P3: \(D_v^\alpha v^\beta = \frac{\Gamma(1+\beta)}{\Gamma(1+\beta-\alpha)} v^{\beta-\alpha}, \ \beta \geq \alpha > 0 \),
P4: \(D_v^\alpha \left(h_1(v)h_2(v) \right) = \left(\begin{array}{l}
D_v^\alpha h_1(v)h_2(v) \\
+h_1(v)D_v^\alpha h_2(v)
\end{array} \right) \),
P5: \(D_v^\alpha \left(h(v(g(v))) \right) = D_v^\alpha h \cdot D_v^\alpha v, \)

where \(k \) is a constant.

Note: P1, P2, P3, P4, and P5 are referred to as fractional derivative of: constant function, constant multiple function, power function, product function, and function of function respectively. P5 can be linked to Jumarie’s chain rule of fractional derivative.

2.1 The He’s Polynomials and the Generalized non-integer NWSE

Here, we make reference to [19, 27, 28] for details of the He’s Polynomials method. Hence, presented below is the structure of the He’s Polynomials solution method on the generalized version of NWSE in terms of integer order.

Consider (1) for \(\alpha = 1 \) where \(I_0' (\cdot) \) denotes an integral operator, then:

\[
\begin{align*}
w = w(0) + I_0' \left(kw_{xx} + aw - bw' \right), \\
w(0) = f(x), \ w = w(x,t), w(0) = w(x,0).
\end{align*}
\]

The series solution form can be expressed as:

\[
w(x,t) = \sum_{n=0}^{\infty} p^n w_n,
\]

which is calculated as \(p \to \infty \). Hence, by the application of convex homotopy method, (3) becomes:

\[
\sum_{n=0}^{\infty} p^n w_\eta = g(x) + I_0' \left(k \sum_{n=0}^{\infty} p^{n+1} w_{x,\eta} \right)
\]

(5)

where \(H_\eta, \ \eta \in \{0 \} \cup \mathbb{N} \) denotes He’s polynomials for the concerned nonlinear term, \(w'(x,t) \).

So, by comparison of the \(p \)'s powers in (5), we have:

\[
p^{(0)} : w_0 = g(x)
\]

\[
p^{(1)} : w_1 = I_0' \left(kw_{xx,0} + aw_0 - bH_0 \right)
\]

\[
p^{(2)} : w_2 = I_0' \left(kw_{xx,1} + aw_1 - bH_1 \right)
\]

\[
p^{(3)} : w_3 = I_0' \left(kw_{xx,2} + aw_2 - bH_2 \right)
\]

\[
\vdots
\]

\[
p^{(i)} : w_i = I_0' \left(kw_{xx,i} + aw_{i-1} - bH_{i-1} \right), i \geq 1.
\]

Hence, the solution:

\[
w(x,t) = \sum_{n=0}^{\infty} p^n w_n \to \sum_{n=0}^{\infty} w_n \text{ as } p \to \infty.
\]

2.2 The Fractional Complex Transform

In general form, the fractional differential equation of the following form is considered:

\[
\begin{align*}
\begin{cases}
f \left(\sigma, D_t^\alpha \sigma, D_t^{\alpha_1} \sigma, D_t^{\alpha_2} \sigma, D_t^{\alpha_3} \sigma \right) = 0, \\
\sigma = \sigma(t,x,y,z).
\end{cases}
\end{align*}
\]

(6)

Then, the Fractional Complex Transform [24] is defined as follows:
\[
\begin{align*}
T &= \frac{at^\alpha}{\Gamma(1+\alpha)}, \quad \alpha \in (0,1], \\
X &= \frac{bx^\beta}{\Gamma(1+\beta)}, \quad \beta \in (0,1], \\
Y &= \frac{cy^\lambda}{\Gamma(1+\lambda)}, \quad \lambda \in (0,1], \\
Z &= \frac{dz^\gamma}{\Gamma(1+\gamma)}, \quad \gamma \in (0,1],
\end{align*}
\]
with \(a, b, c, \) and \(d\) as unknown constants.

From P3,
\[D_t^\alpha v = \frac{\Gamma(1+\beta)}{\Gamma(1+\beta-\alpha)} v^{\beta-\alpha}, \quad \beta \geq \alpha > 0,\]
\[\therefore \quad D_t^\alpha T = D_t^\alpha \left[\frac{at^\alpha}{\Gamma(1+\alpha)} \right] = \frac{a}{\Gamma(1+\alpha)} D_t^\alpha t^\alpha = a.
\]

Obviously in a similar manner, using properties P1-P5, and the FCT in (7), the following are easily obtained:
\[\begin{align*}
D_t^\alpha T &= \frac{\partial^\alpha T}{\partial t^\alpha} = a, \\
D_t^\alpha X &= \frac{\partial^\beta X}{\partial x^\beta} = b, \\
D_t^\alpha Y &= \frac{\partial^\lambda Y}{\partial y^\lambda} = c, \\
D_t^\alpha Z &= \frac{\partial^\gamma Z}{\partial z^\gamma} = d.
\end{align*}
\]
Hence,
\[\begin{align*}
D_t^\alpha p(t,x,y,z) &= D_t^\alpha p(T(t)) = D_t^\alpha p \cdot D_t^\alpha T = a \frac{\partial p}{\partial T}, \\
D_t^\alpha p(t,x,y,z) &= D_t^\alpha p(X(x)) = D_x^\alpha p \cdot D_x^\alpha X = b \frac{\partial p}{\partial X}, \\
D_t^\alpha p(t,x,y,z) &= D_t^\alpha p(Y(y)) = D_y^\alpha p \cdot D_y^\alpha Y = c \frac{\partial p}{\partial Y}, \\
D_t^\alpha p(t,x,y,z) &= D_t^\alpha p(Z(z)) = D_z^\alpha p \cdot D_z^\alpha Z = d \frac{\partial p}{\partial Z}.
\end{align*}
\]
Thus, for \(p = p(t,x,y,z)\), we have:
\[\begin{align*}
D_t^\alpha p &= a \frac{\partial p}{\partial T}, \\
D_t^\alpha p &= b \frac{\partial p}{\partial X}, \\
D_t^\alpha p &= c \frac{\partial p}{\partial Y}, \\
D_t^\alpha p &= d \frac{\partial p}{\partial Z}.
\end{align*}
\]

3 Applications and Test Cases
Here, the proposed method is applied to both linear and nonlinear NWSE as follows:

Case Ia: Consider the following linear NWSE [16, 17]:
\[
\begin{align*}
w_t^\alpha - w_{xx} + 3w &= 0, \\
w(x,0) &= e^{2x},
\end{align*}
\]
with an exact solution:
\[w(x,t) = e^{2x}.\]

Procedure:
By FCT,
\[T = \frac{at^\alpha}{\Gamma(1+\alpha)},\]
gives \(D_t^\alpha w = \frac{\partial w}{\partial T} = w_t\) for \(a = 1\). So, (12) becomes:
\[\begin{align*}
w_t - w_{xx} + 3w &= 0, \\
w(x,0) &= e^{2x}.
\end{align*}
\]

Therefore, using the outlined procedures in section 2.1, we obtained the following:
\[
\begin{align*}
p(0) &= w_0 = e^{2x}, \\
p(1) &= w_1 = I_0^T \left(w_{xx,0} - 3w_0 \right) = T e^{2x}, \\
p(2) &= w_2 = I_0^T \left(w_{xx,1} - 3w_1 \right) = \frac{T^2 e^{2x}}{2!}, \\
p(3) &= w_3 = I_0^T \left(w_{xx,2} - 3w_2 \right) = \frac{T^3 e^{2x}}{3!}, \\
p(4) &= w_4 = I_0^T \left(w_{xx,3} - 3w_3 \right) = \frac{T^4 e^{2x}}{4!}, \\
p(5) &= w_5 = I_0^T \left(w_{xx,4} - 3w_4 \right) = \frac{T^5 e^{2x}}{5!}, \\
p(6) &= w_6 = I_0^T \left(w_{xx,5} - 3w_5 \right) = \frac{T^6 e^{2x}}{6!}, \\
p(7) &= w_7 = I_0^T \left(w_{xx,6} - 3w_6 \right) = \frac{T^7 e^{2x}}{7!}.
\end{align*}
\]
Thus, the analytical solution of (14) according to He’s polynomial with reference to (1) where \(k = 1, a = -3, b = 0, \) and \(g(x) = e^{2x} \) gives:

\[
\begin{align*}
T^0 e^{2x} \\
T^1 e^{2x} \\
T^2 e^{2x} \\
\end{align*}
\]

\[
\vdots
\]

\[
T^m e^{2x} = \frac{e^{2x}}{m!}, m \in N
\]

Thus, the analytical solution of (14) according to He’s polynomial with reference to (1) where \(k = 1, a = -3, b = 0, \) and \(g(x) = e^{2x} \) gives:

\[
\begin{align*}
w(x,T) &= \left(1 + T + \frac{T^2}{2} + \frac{T^3}{6} + \frac{T^4}{24} + \cdots\right) e^{2x} \\
&= e^{2x+T}.
\end{align*}
\]

Whence, the exact solution of (12) is:

\[
\begin{align*}
w(x,t) &= e^{2x+T} \\
&= \exp(2x) \exp\left(\frac{t^\alpha}{\Gamma(1+\alpha)}\right) \\
&= e^{2x(\frac{at^\alpha}{\Gamma(1+\alpha)})}
\end{align*}
\]

Note: When \(\alpha = 1, \) we have \(w(x,t) = e^{2x+t} \) which corresponds to the exact solution of the classical NWSE of integer order \([16, 17]\). The exact and approximate solutions of case 1a are graphically presented in Fig. 1 and Fig. 1 respectively.

Case 1b: Consider the following linear NWSE \([18]\):

\[
\begin{align*}
w^{\alpha}_{t} &= w_{xx} - 2w, \\
w(x,0) &= e^t,
\end{align*}
\]

with an exact solution:

\[
w(x,t) = e^{e^{x-t}}.
\]

Procedure w.r.t case 1b:

By FCT,

\[
T = \frac{at^\alpha}{\Gamma(1+\alpha)}, \text{ which according to section 3}
\]

gives \(D^\alpha w = \frac{\partial w}{\partial T} = w_T \) for \(a = 1. \) Hence, (17) becomes:
\[
\left\{
\begin{aligned}
w_T &= w_{xx} - 2w = 0, \\
w(x,0) &= e^x,
\end{aligned}
\right.
\]

\[(19)\]

\[
p^{(0)} : w_0 = e^{2x},
\]

\[
p^{(1)} : w_1 = I_0^T\left(w_{xx,0} - 2w_0\right) = -Te^x,
\]

\[
p^{(2)} : w_2 = I_0^T\left(w_{xx,1} - 2w_1\right) = \frac{T^2e^x}{2!},
\]

\[
p^{(3)} : w_3 = I_0^T\left(w_{xx,2} - 2w_2\right) = \frac{T^3e^x}{3!},
\]

\[
p^{(4)} : w_4 = I_0^T\left(w_{xx,3} - 2w_3\right) = \frac{T^4e^x}{4!},
\]

\[
p^{(5)} : w_5 = I_0^T\left(w_{xx,4} - 2w_4\right) = \frac{T^5e^x}{5!},
\]

\[
p^{(6)} : w_6 = I_0^T\left(w_{xx,5} - 2w_5\right) = \frac{T^6e^x}{6!},
\]

\[
p^{(7)} : w_7 = I_0^T\left(w_{xx,6} - 2w_6\right) = \frac{T^7e^x}{7!},
\]

\[
p^{(8)} : w_8 = I_0^T\left(w_{xx,7} - 2w_7\right) = \frac{T^8e^x}{8!},
\]

\[
p^{(9)} : w_9 = I_0^T\left(w_{xx,8} - 2w_8\right) = \frac{T^9e^x}{9!},
\]

\[
p^{(10)} : w_{10} = I_0^T\left(w_{xx,9} - 2w_9\right) = \frac{T^{10}e^x}{10!},
\]

\[
p^{(m)} : w_m = I_0^T\left(w_{xx,m} - 2w_{m-1}\right) = (-1)^m \frac{T^me^{2x}}{m!}, m \in N.
\]

Therefore, the analytical solution of (19) according to He’s polynomial is:

\[
w(x,T) = \left(1 - T + \frac{T^2}{2!} - \frac{T^3}{3!} + \frac{T^4}{4!} + \cdots \right) e^x
\]

\[(20)\]

Whence, the exact solution of (17) is:

\[
w(x,t) = \exp(x) \exp\left(- \frac{t^\alpha}{\Gamma(1+\alpha)} \right)
\]

\[(21)\]

Note: When \(\alpha = 1 \), we have \(w(x,t) = e^{x-t} \) which corresponds to the exact solution of the classical NWSE of integer order \[16\]. The exact and the approximate solutions of Case 1b are graphically presented in Fig. 3 and Fig. 4 respectively.

![Fig. 3: Exact Solution w.r.t. Case 1b](image-url)
Case 2: Consider the following nonlinear (NL) NWSE
\[
\begin{aligned}
 w_{xx} &= w_{xx} + 2w - 3w^2, \\
 w(x, 0) &= \eta,
\end{aligned}
\]
with the exact solution at \(\alpha = 1 \):
\[
w(x, t) = \frac{2\eta e^{2t}}{2 - 3\eta + 3\eta e^{2t}}
\]

Procedure w.r.t Case2:

By the FCT,
\[
T = \frac{at^\alpha}{\Gamma(1 + \alpha)},
\]
which according to section 3 gives \(D^a w = \frac{\partial w}{\partial T} = w_{\tau} \) for \(a = 1 \). Hence, (22) becomes:
\[
\begin{aligned}
 w_\tau &= w_{xx} + 2w - 3w^2, \\
 w(x, 0) &= \eta.
\end{aligned}
\]

Therefore, using the outlined procedures in section 2.1, we obtained the following:

- \(p^{(0)} : w_0 = \eta \),
- \(p^{(1)} : w_1 = I_0^{(\alpha)} w_{xx,0} + 2w_0 - 3(w_0)^2 \),
- \(p^{(2)} : w_2 = I_0^{(\alpha)} w_{xx,3} + 2w_1 - 3(2w_0w_1) \),

\[
\begin{aligned}
 &\left\{ \begin{array}{l}
 p^{(3)} : w_3 = I_0^{(\alpha)} w_{xx,3} + 2w_2 - 3(2w_0w_1) \\
 \end{array} \right.
 = \left\{ \begin{array}{l}
 (-27\eta^4 + 36\eta^3 - 14\eta^2 + \frac{3}{4}\eta)T^3 \\
 \end{array} \right.
 ,
 \\
 &\left\{ \begin{array}{l}
 p^{(4)} : w_4 = I_0^{(\alpha)} w_{xx,3} + 2w_3 - 3(2w_0w_1 + 2w_1w_2) \\
 \end{array} \right.
 = \left\{ \begin{array}{l}
 (81\eta^5 - 135\eta^4 + 75\eta^3 - 15\eta^2 + \frac{2}{5}\eta)T^4 \\
 \end{array} \right.
 ,
 \\
 &\left\{ \begin{array}{l}
 p^{(5)} : w_5 = I_0^{(\alpha)} w_{xx,4} + 2w_4 - 3(2w_0w_4 + 2w_3w_2) \\
 \end{array} \right.
 = \left\{ \begin{array}{l}
 (-243\eta^6 + 486\eta^5 - 35\eta^4)T^5 \\
 + 108\eta^3 - \frac{62}{5}\eta^2 + \frac{4}{15}\eta \\
 \end{array} \right.
 ,
\]

Therefore, the analytical solution of (24) according to He’s polynomial is:

\[
w(x, T) = \eta + \left(\frac{2\eta - 3\eta^2}{\Gamma(1 + \alpha)} \right)T + \left(\frac{2\eta - 9\eta^2 + 9\eta^3}{\Gamma(1 + \alpha)} \right)T^2 \\
+ \left(\frac{3}{4}\eta - 14\eta^2 + 36\eta^3 - 27\eta^4 \right)T^3 \\
+ \left(\frac{2}{3}\eta - 15\eta^2 + 75\eta^3 \right)T^4 \\
- 135\eta^4 + 81\eta^5 \\
+ \left(\frac{4}{15}\eta - \frac{62}{5}\eta^2 + 108\eta^3 \\
- 35\eta^4 + 486\eta^5 - 243\eta^6 \right)T^5 + \ldots
\]

Hence, the solution of (22) is:

\[
w(x, t) = w\left(x, T = \frac{t^\alpha}{\Gamma(1 + \alpha)} \right)
\]

\[
\begin{aligned}
 &\left\{ \begin{array}{l}
 \eta + \left(\frac{2\eta - 3\eta^2}{\Gamma(1 + \alpha)} \right)T + \left(\frac{2\eta - 9\eta^2 + 9\eta^3}{\Gamma(1 + \alpha)} \right)T^2 \\
 + \left(\frac{3}{4}\eta - 14\eta^2 + 36\eta^3 - 27\eta^4 \right)T^3 \\
 + \left(\frac{2}{3}\eta - 15\eta^2 + 75\eta^3 \right)T^4 \\
 - 135\eta^4 + 81\eta^5 \\
 + \left(\frac{4}{15}\eta - \frac{62}{5}\eta^2 + 108\eta^3 \\
 - 35\eta^4 + 486\eta^5 - 243\eta^6 \right)T^5 + \ldots
 \end{array} \right.
\]

\[
\begin{aligned}
 &\left\{ \begin{array}{l}
 \eta + \left(\frac{2\eta - 3\eta^2}{\Gamma(1 + \alpha)} \right)T + \left(\frac{2\eta - 9\eta^2 + 9\eta^3}{\Gamma(1 + \alpha)} \right)T^2 \\
 + \left(\frac{3}{4}\eta - 14\eta^2 + 36\eta^3 - 27\eta^4 \right)T^3 \\
 + \left(\frac{2}{3}\eta - 15\eta^2 + 75\eta^3 \right)T^4 \\
 - 135\eta^4 + 81\eta^5 \\
 + \left(\frac{4}{15}\eta - \frac{62}{5}\eta^2 + 108\eta^3 \\
 - 35\eta^4 + 486\eta^5 - 243\eta^6 \right)T^5 + \ldots
 \end{array} \right.
\]

Note: In Table 1 and Table 2, the exact solution (Soln), approximate (Appr.) solution and relative absolute error (Rel. Abs. Error) are considered for
$\alpha = 1$. For Table 1, $\eta = 0.01$ through 0.11 at $t = 1$ is used while $0.01 \leq \eta \leq 0.10$ and $0 \leq t \leq 1$ are used for Table 2. Figure 2 shows the exact and FCT-HP solutions for Case 2.

Table 1: Solutions of Case 2 NL at $t = 1$

<table>
<thead>
<tr>
<th>Exact Soln</th>
<th>Appr. Soln</th>
<th>Rel. Abs. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.067428494</td>
<td>0.06754959</td>
<td>0.00179274</td>
</tr>
<tr>
<td>0.124011608</td>
<td>0.12571705</td>
<td>0.01356573</td>
</tr>
<tr>
<td>0.172171175</td>
<td>0.17569407</td>
<td>0.02005131</td>
</tr>
<tr>
<td>0.213657904</td>
<td>0.21856245</td>
<td>0.02244003</td>
</tr>
<tr>
<td>0.249768793</td>
<td>0.25530047</td>
<td>0.02166734</td>
</tr>
<tr>
<td>0.281485162</td>
<td>0.28678908</td>
<td>0.01849415</td>
</tr>
<tr>
<td>0.309563187</td>
<td>0.3138179</td>
<td>0.01355792</td>
</tr>
<tr>
<td>0.334594967</td>
<td>0.33791110</td>
<td>0.00740492</td>
</tr>
<tr>
<td>0.357050732</td>
<td>0.35723301</td>
<td>0.00671037</td>
</tr>
<tr>
<td>0.377308671</td>
<td>0.3747937</td>
<td>0.00671037</td>
</tr>
<tr>
<td>0.395676392</td>
<td>0.39025411</td>
<td>0.00740492</td>
</tr>
</tbody>
</table>

Table 2: Solutions of Case 2 NL at $t \in [0,1]$

<table>
<thead>
<tr>
<th>η</th>
<th>t</th>
<th>Exact Soln</th>
<th>Appr. Soln</th>
<th>Rel. Abs Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.0</td>
<td>0.010000000</td>
<td>0.0100000</td>
<td>1.7347E-16</td>
</tr>
<tr>
<td>0.02</td>
<td>0.2</td>
<td>0.029402665</td>
<td>0.0294027</td>
<td>1.8769E-06</td>
</tr>
<tr>
<td>0.03</td>
<td>0.3</td>
<td>0.052713413</td>
<td>0.0527153</td>
<td>3.486E-05</td>
</tr>
<tr>
<td>0.04</td>
<td>0.4</td>
<td>0.082924030</td>
<td>0.0829416</td>
<td>0.00021159</td>
</tr>
<tr>
<td>0.05</td>
<td>0.5</td>
<td>0.120398234</td>
<td>0.1204862</td>
<td>0.00073028</td>
</tr>
<tr>
<td>0.06</td>
<td>0.6</td>
<td>0.164795898</td>
<td>0.1650817</td>
<td>0.00173143</td>
</tr>
<tr>
<td>0.07</td>
<td>0.7</td>
<td>0.214918881</td>
<td>0.2155659</td>
<td>0.0030016</td>
</tr>
<tr>
<td>0.08</td>
<td>0.8</td>
<td>0.268754950</td>
<td>0.2697225</td>
<td>0.00359832</td>
</tr>
<tr>
<td>0.09</td>
<td>0.9</td>
<td>0.323760179</td>
<td>0.3242452</td>
<td>0.00149576</td>
</tr>
<tr>
<td>0.10</td>
<td>1.0</td>
<td>0.377308671</td>
<td>0.3747937</td>
<td>0.00671037</td>
</tr>
</tbody>
</table>

Figure 2: Exact and FCT-HP solutions for case 2

4 Concluding Remarks

Fractional Complex Transform (FCT) coupled with He’s polynomials method was successfully applied for the time-fractional Newell-Whitehead-Segel model (TFNWSM) with regard to exact and approximate solutions. The associated derivatives were defined in terms of Jumarie’s sense. Based on the solved linear and nonlinear problems, reliability and efficiency of the proposed solution method are assured by the obtained results as less computational time is involved. In addition, high basic knowledge of fractional calculus is not necessarily required. The method is therefore, recommended for space-fractional derivatives of higher-ordered problems arising from other areas of pure and applied sciences. This can also be benchmarked with the Restarted Adomian decomposition Method and other approaches.

Acknowledgement

The authors are grateful to Covenant University for enabling working environment and financial support. Sincere thanks to the anonymous referee(s) for their productive comments.

Conflict of Interests

The authors declare that they have no conflict of interest regarding the publication of this paper.

References

