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Abstract: - This paper addresses nanosecond square pulses transmitted by lossy transmission line on 
conventional printed circuit board. The pulse source is assumed to produce real square pulses with nonzero rise 
and fall times. Influence of parasitics on the shape is also taken into consideration. Shape distortion of 
transmitted pulses with duration from 0.1 ns to 10 ns is compared based on the measured transfer function of 
straight 25 cm long transmission line. For pulses with linear edges, distortion can be reduced using balanced 
relationship between the rise and fall times. Achievable reduction depends on the duration of the pulse; it is 
most effective for pulses of 2 ns to 5 ns. The results can be usable in signal processing where we know how 
much shape distortion can be tolerated. 
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1 Introduction 
Square pulse is the most frequent form of pulses 
used in standard digital signal processing. Many 
electronic applications based on signal processing 
are influenced by the quality of both pulse’s 
excitation and interconnects between electrical 
modules. As the demand for fast data continuously 
escalate, the questions arise what happens if the 
very short square pulse is not ideal (i.e., the 
transitions on the edge of the pulse is not extremely 
sharp) and, additionally, if the interconnect 
transmitting the digital data by means of pulses is 
also not ideal (i.e., the transmission is not lossless in 
full frequency range). 

Real square pulses in electronic circuits on 
printed circuit boards (PCBs) differ from the ideal 
waveform due to limited sharpness of edges and 
influence of board-based parasitics. Parasitic effects 
occur more or less depending on physical nature of 
the used circuit components as well as material of 
the board and thus, the impact of parasitics should 
be taken into consideration, especially at high 
frequencies. Some typical parasitics are described in 
[1] and formulas for estimation of parasitic 
capacitance and inductance of individual elements 
on PCB are presented in [2]. For instance, input of 
integrated circuits (IC) mounted on PCB is 
characterized by low serial capacitance (for 
example, CMOS circuits have typically capacitance 
of 5 pF). Generally, capacitance of the IC inputs is 
more significant than capacitance of pins or vias. 

Remember that some parasitic effects can 
compensate one another [3], as well as some 
existing parasitics are simply not effective enough. 
An overview of basic aspects regarding signal 
integrity on circuit boards is introduced, for 
instance, in [4] and [5]. 

In this study, transmission of very short square 
pulses by transmission line on conventional PCB 
was investigated. An introduction to the 
transmission line theory can be found, for instance, 
in [6]. Multiconductor transmission lines are studied 
in [7]. The transmission line itself is usually 
modelled by cascade connection of the RLGC 
sections. There are four parameters which specify 
one section, namely series resistance R, series 
inductance L, shunt conductance G, and shunt 
capacitance C. These lumped components are 
directly related to the electrical parameters of the 
board materials, such as resistivity and permeability 
of the trace and conductivity and permittivity of the 
dielectric. Parameter R models the ohmic losses in 
the transmission line, while G models the dielectric 
losses [4]. Thus, a lossless transmission line is 
characterized by R=0 and G=0. On low-cost PCBs, 
the line’s characteristic impedance can vary as much 
as ±15% from the target impedance [8]. The RLGC 
parameters are usually frequency dependent at high 
frequencies (gigahertz and higher). For instance, the 
shunt capacitance C is commonly between 0.2-
0.8 pF/cm. A frequency dependent RLGC-model up 
to 20 GHz is described in [9]. 
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Typically, there is a source at one end of the line, 
and a load at the other end. Figure 1 shows two 
basic placements of connected source, namely an 
internal generator mounted directly on the PCB to 
produce digital data and an external generator 
delivering for instance clock signal for control. 
Input of transmission line for external signal is 
mostly realized by pins that can be source of 
parasitic capacitances and inductances. 
Alternatively, external pulses can be received 
wireless by small size PCB antenna [10], [11].  
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Fig. 1 Schematic connection of transmission lines 
on PCB for transmission of pulses. 
 

This article is based on the conference paper [12] 
and provides an extended report of the performed 
pulse investigation. The rest of the article is 
organized as follows: Section 2 presents the 
investigated pulses and analyses their basic spectra, 
Section 3 gives results of shape distortion under 
different conditions and, finally, Section 4 makes 
brief conclusion. 
 
 
2 Investigated Square Pulses 
We have investigated three types of real square 
pulses from the perspective of distortion by 
transmission line on a PCB and compared them with 
the ideal square pulse. All pulses were centered in 
the time t=0. For our purpose, the waveform of ideal 
square pulse is defined by two signal levels 
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where H is high level, L is low level and ϑ denotes 
the pulse duration. In our experiments, unipolar 
ideal pulses having the levels L=0 V and H=1 V 
were taken into account. 

The waveforms of real square pulses are based 
on the ideal pulse but differ in edge characteristics. 
Figure 2 shows graphically all types of the 
investigated pulses, namely: 

1) ideal square pulse x(t); 
2) pulse xL(t) with linear edges, i.e. pulse 

generated by real generator assuming 
negligible parasitics; 

3) pulse xE(t) with exponential edges, i.e. pulse 
generated by ideal generator but influenced 
by parasitics; 

4) pulse xLE(t) incorporating both effects, i.e. 
pulse generated by real generator with short 
linear edges and then influenced by parasitics 
on the board. 

Note that the pulses are referred to as square 
pulse with linear or exponential edges (and not 
trapezoidal or exponential pulse) with respect to the 
fact that an edge usually represents a very short 
portion of the full width of the pulse. For 
comparison purposes, all pulses shown in Fig. 2 
were regarded symmetric from –0.5 s to 0.5 s 
having unity height 1 V and unity width 1 s. Most of 
real signals carrying digital data are typically 
modelled by pulses with equal rise time tR and fall 
time tF. Hence, our analysis of square pulses is first 
focused on signals having also equal times tR=tF. 

 

Fig. 2 Waveforms (left column) and continuous 
spectra (right column) of investigated pulses. 
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To determine the signal spectrum X(ω), standard 
Fourier transform [13] was applied 

,)ωexp()()ω( ∫
∞
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−= dttjtxX  (2) 

where x(t) is signal in time domain (here the pulse 
waveform), ω is circular frequency, and j stands for 
imaginary unit. For the ideal square pulse (1), 
transform (2) goes into a simpler form 
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Another simplified specific formula results for real 
pulses having linear edges with the same rise and 
fall times tR=tF→tRF 
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which contains product of three expressions; two of 
them are similar ratios. The first ratio depends on 
the difference between pulse width ϑ  and edge time 
tRF while the second one depends on the edge times 
tRF only. By using the important property for limit 
α→0 of general sin(α)/α function 
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formula (4) is reduced to (3) when tRF=0 in (4), i.e. 
the rise and fall times are zero. 

For a proper understanding of the pulse 
spectrum, we have studied more in details the effect 
of varying edge slope on spectrum of the pulse with 
linear edges and exponential edges, respectively. In 
Fig. 3, the results for edge durations tRF representing 
0% (i.e. ideal square pulse), 5%, and 10% of the full 
pulse width are graphically compared. Each of the 
waveforms is symmetric to t=0 (i.e., satisfies an 
even function), so the Fourier spectrum results only 
in real part values. All spectra are displayed for low 
frequencies from 0 to 8π which cover approximately 
the four most energy significant spectral lobes. For 
these pulses, increasing rise and fall times influence 
the spectrum in two ways: peaks of all individual 
lobes (i.e., local spectral maxima) are lower and 
zero points are shifted from multiples of 2π to 
higher frequencies. Thus, the whole spectrum 
becomes flatter. Decrease of the main peak at the 
frequency ω=0 with growing edge time tRF is given 
by a simple relation. This peak is determined only 
by the first expression in (4) 

)()0( RFL tHX −ϑ=   (6) 

because for the frequency ω=0 is equation (4) 
reduced to (6) according to the property (5). 

Regular zero points in the spectrum are given by 
zero values in the sinus function, specifically 

0
2
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This is true when the argument of sinus goes to a 
multiple of π, which are frequencies 
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where k stands for natural numbers. For tRF=0 and 
ϑ=1, all zero points are located at frequencies of the 
exact multiples of 2π. Any parameter tRF≠0 shifts all 
the zero points ωz to higher values. In addition, the 
last expression in (4) produces other zero points in a 
similar way 

RF
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π2ω
t
k

= .   (9) 

In the situation shown in Fig. 3, the lowest zero 
point of this type corresponds to tRF=10% (i.e, 
tRF=0.1 s) and has the circular frequency ωzz=20π; 
therefore, it lies beyond the scope of the spectral 
graph. 

         

 

Fig. 3 Detail waveforms (top) and corresponding 
spectra (bottom) of pulses with different linear 
edges when tR=tF=tRF. 
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Further, waveforms and corresponding spectra 
for the pulses having exponential edges with time 
constants of 0%, 5%, and 10% of the full pulse 
width are shown in Fig. 4. Each pulse has equal time 
constants τR=τF→τRF for rise and fall edges. Since 
the waveform of these pulses is not fully symmetric 
to t=0, the Fourier spectrum results in complex 
values. For comparison, the spectra in Fig. 4 are 
displayed in the same frequency range as in Fig. 3. 
Unlike the pulses with linear edges in Fig. 3, this 
spectrum shows to be much more robust against the 
change in edge time. Only peaks of the side lobes 
are influenced—they decrease with growing edge 
time while the peak of the main lobe is not changed 
as well as the main lobe has in all cases nearly the 
same slope, independently of the time constants. 
Furthermore, all the zero points in spectrum remain 
at the origin frequencies given by the multiples of 
2π (in this case). There are no additional zero points 
as in previous pulse type. 

  

 
Fig. 4 Detail waveforms (top) and corresponding 
spectra (bottom) of pulses with different exponential 
edges when τR=τF=τRF. 
 
 
3 Obtained Results 
Pulse analysis focuses on the shape distortion of the 
pulse types presented in Section 2 due to frequency 
limited transmission by the transmission lines on 
PCB. The shape distortion (in percent) was 
estimated in time domain as ratio of the pulse areas 
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where x(t) is the original pulse before transmission 
and y(t) stands for the same pulse distorted by 
transmission. The symbol x(t) represents in 
computation (10) all types of pulse, i.e. x(t), xL(t), 
xE(t), and xLE(t), respectively. All pulses x(t) as well 
as y(t) were centered at time t=0 in order to 
eliminate influence of transfer delay. Only changes 
in the pulse form are taken into account in the 
computation. Other definition of pulse distortion 
based on total harmonic distortion can be found in 
[14], for instance. Generally, for the degree of shape 
distortion plays key role the relationship between 
two frequency bandwidths: the bandwidth of the 
transmission line and the bandwidth of the pulse 
signal that is carried by the transmission line. 
Because of the line’s bandwidth is more or less 
predetermined, for example, by the line geometry or 
by the PCB material and topology, so the 
relationship can be optimized only by the bandwidth 
of pulse spectrum. 

In the following experiments, the time parameters 
tR, tF, and ϑ were measured on waveforms as is 
illustrated in Fig. 5.  

 

 

Fig. 5 Definition of time parameters in pulses with 
linear edges (top) and exponential edges (bottom). 

 
The pulse duration was measured in all types of 

investigated pulses on the 50% level of the pulse 
height H. The measurement of the edge times differs 
depending on type of the pulse. In pulses with 
nonlinear edges, i.e. xE(t) and xLE(t) are tR and tF 
defined as time interval between the points where 
the appropriate edge achieves 10% and 90% of the 
pulse height H, while in pulse with linear edges, i.e. 
xL(t) represent tR and tF entire duration of the 
respective edge (in ideal pulse is the edge duration 
zero). 

0 

0.5 

1 0.9 Amplitude 

0.1 

Time tF tR 

ϑ
 

-1 -0.5 0 0.5 1 1.5 

0.5 

1 
Amplitude 

Time (s) 

0 2π 4π 6π 8π 

0.5 

1 
|XE(ω)| 

Frequency, ω 

τRF = 0 % 
τRF = 5 % 
τRF = 10 % 

0 

0.5 

1 Amplitude 

tF Time tR 

ϑ
 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Milan Sigmund, Lubomir Brancik

E-ISSN: 2224-2856 221 Volume 13, 2018



 
3.1 Transfer Characteristics of Microstrip 
Line on Conventional PCB 
In order to obtain detailed view on signal transfer, 
we have measured the transfer characteristics of 
parallel coupled microstrip lines on a PCB without 
mounted electrical components. The straight 
transmission lines were 25 cm long, 1 mm width 
and 35 μm thick with distance between lines of 
6 mm. The board was made from the substrate FR4 
(fiberglass) 1.5 mm thick with relative permittivity 
of εr = 4.3. Fig. 6 shows the transfer function 
measured by network analyzer Agilent E5071C in 
frequency range from 300 MHz to 10 GHz and its 
approximation in full frequency band from 0 to 
10 GHz. It is clearly evident that the transfer 
function meets low-pass filter function. High 
frequencies above about 7.5 GHz are practically not 
transmitted. On the other hand, frequencies below 
300 MHz are not affected and frequencies in the 
band from 300 MHz to 1 GHz are only slightly 
damped. The basic theory of low-pass filtering of 
pulse signals can be found, for instance, in [15]. The 
approximate curve in Fig. 5 resulted from the 
measured data using the minimum total error 
criterion [16] by examination of the squared 
pointwise errors between the measured and the 
approximated curve. 
 
 

 
 
Fig. 6 Transfer function of 25 cm long transmission 
line on PCB. 
 
 

Based on the approximate curve, the theoretical 
cut-off frequency was set to FCO = 2.615 GHz which 
corresponds to the value of 0.707 (i.e., –3 dB) at the 
curve. Figure 7 illustrates the waveforms of 
transmitted 1 ns pulse along with the original pulse 
using either the theoretical low-pass filter (passing 
the frequencies from 0 to FCO and rejecting other 
frequencies) or the real low-pass filter according to 
the nonlinear approximate curve (dashed line in 

Fig. 6). The loss of high-frequency components 
contained in short square pulses logically makes a 
flattening of the sharp edges. By applying the ideal 
low-pass, the waves oscillate which, in addition, 
increases the overall distortion. Thus, the 
approximate transfer function was used in next 
experiments for estimation of exact pulse’s 
distortion. 
 

 

 
Fig. 7 Comparison of 1 ns pulse with 1% edge 
duration applying the transfer function once as 
theoretical low-pass filter (top) and once as real 
low-pass filter (bottom). Dotted lines show original 
pulses before transmission, solid lines are pulses 
after transmission. 
 
 
3.2 Distortion of Pulses during Transmission 
We have investigated shape distortion of the real 
square pulses xL(t), xE(t) and xLE(t) as well as the 
ideal square pulse x(t) when passing through 
transmission line. All pulses were observed in the 
nanosecond regime with pulse duration from 0.1 ns 
to 2 ns and two different edge times: 1% and 5% of 
the full pulse duration (except for the ideal pulse 
having zero edges). In each pulse, the rise and fall 
times were equal. 

To get an overview of the distortions, obtained 
results are summarized in Table 1 and Table 2 
separately for both mentioned edge times. The first 
row presenting the distortion of the ideal square 
pulse x(t) shows the same results in both tables, 
because in this pulse the edge time is always zero. 
In nanoseconds, distortion was more dependent on 
pulse duration and less on impulse type. Distortion 
of the pulse with purely exponential edges xE(t) 
seems to be similar to the distortion of Gaussian 
pulse [17]. Comparing Tables 1 and 2, it can be seen 
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that the pulses with sharper edges (Table 1) are 
more distorted by the filtering effect of the 
transmission line. Regardless of the edge slope, the 
use of pulses shorter than 0.6 ns can be problematic 
particularly in signal processing on conventional 
PCBs (such as the measured board) due to their high 
deformation. 
 
 
TABLE 1 PULSE DISTORTION (IN PERCENT) WHEN 
EDGE SLOPE COVERS 1% OF PULSE DURATION 

Pulse 
form 

Pulse duration (ns) 

2 1 0.6 0.3 0.1 

x(t) 4.1 8.1 13.4 26.7 77.8 

xL(t) 3.3 7.3 12.7 26.1 78.2 

xE(t) 2.7 6.4 11.6 24.7 76.7 

xLE(t) 2.3 5.5 12.5 26.2 76.6 
 
 
TABLE 2 PULSE DISTORTION (IN PERCENT) WHEN 
EDGE SLOPE COVERS 5% OF PULSE DURATION 

Pulse 
form 

Pulse duration (ns) 

2 1 0.6 0.3 0.1 

x(t) 4.1 8.1 13.4 26.7 77.8 

xL(t) 1.7 5.8 10.1 24.8 79.9 

xE(t) 1.2 3.5 7.5 19.0 68.6 

xLE(t) 1.4 3.4 6.7 17.1 77.2 
 
 
TABLE 3 DISTORTION AGAINST IDEAL SQUERE 
PULSE FOR 1 NS PULSES WHEN EDGE SLOPE 
COVERS 5% OF PULSE DURATION 

Pulse form 
Shape distortion (%) 

Before 
transmission 

After 
transmission 

x(t) 0 8.08 

xL(t) 10.02 12.55 

xE(t) 14.41 16.99 

xLE(t) 19.48 22.82 

Another way to compare pulse distortion by the 
transmission line is shown in Table 3. Here are 
compared the shape distortions in all types of pulse 
against ideal pulse before and after transmission. In 
this way, distortion caused by transmission appears 
to be less than the distortion of the same pulses 
measured regardless of the ideal pulse (compare 
with the column for 1 ns pulse in Table 2). Table 3 
presents the results for 1 ns pulses, but a similar 
trend is also seen with pulses of different duration. 

As can be seen in Tables 1 and 2, pulses of 0.1 ns 
are significantly deformed during the transmission 
along the whole waveform. In comparison with their 
initial waveform they do not achieve the original 
height of 1 V at all and they are rounded as well as 
spread in time. Figure 8 illustrates the shape 
deformation of 0.1 ns pulses when each edge time tR 
and tF is 10% of the full pulse duration, i.e. 
tR=tF=10 ps. In this case, achieved peaks are below 
0.7 V. The decrease of the peak begins to show in 
pulses shorter than 0.3 ns and drops nonlinear when 
the pulses are further shortened. Figure 9 shows 
decrease of peak for pulses with duration from 
0.1 ns to 0.3 ns having constant edge time of 10 ps 
and 20 ps, respectively. Pulses with linear edges are 
more affected by the drop of peak as pulses with 
exponential edges. To maintain 99% of the original 
peak, the pulses must not be shorter than 0.26 ns. 

 

Fig. 8 Deformation of 0.1 ns pulses with linear 
edges (top) and with exponential edges (bottom). 
Dashed lines show original pulses before 
transmission, solid lines are deformed pulses after 
transmission. 
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Fig. 9 Drop of peak in very short pulses with linear 
edges (top) and with exponential edges (bottom). 
Solid line is for edge time 10 ps, dashed line is for 
edge time 20 ps. 
 
 
3.3 Reduction of Distortion by Optimization 
of Edge Relation 
In next experiments, we have estimated how the 
distortion depends on the relation of rise time tR to 
fall time tF when the sum of both times tR+tF retains 
constant. For pulses xL(t), the shape distortion 
slightly decreases to the minimum that it achieves 
when the edge times are equal tR=tF. An example of 
the symmetric dependence of distortion is depicted 
in Fig. 10 for the pulse of 1 ns keeping the tR+tF sum 
to 10% of the full pulse duration (i.e., 100 ps). The 
relation tR to tF varies from 0:10 to 10:0, i.e. the rise 
time tR grows from 0 up to 10% and the fall time tF 
vice versa. Such a dependence did not occur in 
pulses with exponential edges, i.e. xE(t) and xLE(t). 

The total reduction as the difference between the 
maximum and minimum distortions in each pulse 
(i.e., change of tR:tF from 0:10 to 5:5 or 10:0 to 5:5) 
depends on the duration of the pulse. Figure 11 
shows an overview of distortion reductions for 
pulses with duration from 0.1 ns to 10 ns having the 
tR+tF sum of 10% of the pulse duration. The best 
improvement about 0.5% was achieved for pulses 
with duration between 2 ns and 5 ns. Still, a small 
reduction in distortion is important. For example, in 
5 ns pulse, the distortion has decreased from 1.04% 
to 0.49%. 

    
 
Fig. 10 Evolution of the shape distortion dependent 
on the relation tR to tF  when tR+tF=10%: example for 
1 ns pulse. 

 

 

Fig. 11 Achievable reduction of shape distortion 
versus pulse duration. 
 
 
4 Conclusion 
Single square pulses in nanosecond regime were 
objects of this study focused on shape distortion of 
the pulses by conventional transmission line on 
PCB. The shorter the single pulse, the higher 
possible speed of pulse series as well as speed of 
periodic signal created by repeating the pulse. The 
transmission lines can transmit signals in the 
frequency band up to low gigahertz. If higher 
frequencies are needed, other technologies should 
be considered such as printed “coaxial-like” 
transmission line [18] or optical signals [19]. 
However, these alternatives are a bit more expensive 
solutions. Signal analysis leading to the results in 
this paper was implemented using Mathcad [20]. 
Presented theory and results can help to better 
understand some frequency effects limiting practical 
signal processing on PCB using square pulses. For a 
complete view, let's say other effects that can 
deform very short pulses on PCB such as crosstalk 
[6] and electromagnetic radiation [21]. 
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